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Abstract. A new original formulation of the discrete element method based on the soft contact approach is presented in this work.
The standard DEM has been enhanced by the introduction of the additional (global) deformation mode caused by the stresses in
the particles induced by the contact forces. Uniform stresses and strains are assumed for each particle. The stresses are calculated
from the contact forces. The strains are obtained using an inverse constitutive relationship. The strains allow us to obtain deformed
particle shapes. The deformed shapes (ellipses) are taken into account in contact detection and evaluation of the contact forces. A
simple example of a uniaxial compression of a rectangular specimen, discretized with equal sized particles is simulated to verify the
DDEM algorithm. The numerical example shows that a particle deformation changes the particle interaction and the distribution
of forces in the discrete element assembly. A quantitative study of micro-macro elastic properties proves the enhanced capabilities
of the DDEM as compared to standard DEM

INTRODUCTION

The discrete element method (DEM) is a powerful tool for predicting the behaviour of various particulate and non-
particulate materials such as soils, powders, rocks, concrete, or ceramics [1, 2, 3, 4]. In the DEM, a material is
represented by a large assembly of particles (discrete elements) interacting with one another by contact. Two differ-
ent approaches to contact treatment in the DEM can be identified, the so-called soft-contact approach [5] and the
hard-contact concept [6]. In the soft-contact DEM formulation, the particles are treated as pseudo-rigid bodies with
deformation concentrated at the contact points. A small overlap of the particles is allowed and it is considered as
equivalent to the particle deformation at the contact point. In this approach, the duration of contact is assumed to be
much larger than the time step and contact force evolution is determined. The soft-contact approach allows to adopt a
suitable contact model and thus resulting in an intended macroscopic behaviour.

The material properties in DEM cannot be prescribed directly, rather they emerge from the collective response
of the aggregate and depend on the choice of the interparticle contact model as well as the discrete element assembly
characteristics [7]. An appropriate representation of the macroscopic properties in the discrete element method is still a
challenge and it is sometimes difficult or impossible to obtain a required deformation behaviour [8]. Some limitations
of the discrete element method are due to the assumption of the rigidity of discrete elements.Their deformability
would allow to enrich modelling capabilities of the DEM. The simplest way to introduce deformability in the discrete
element method is to discretize discrete elements with finite elements [9]. This approach is computationally very
expensive and it cannot be used for a large number of particles.

An alternative approach is by adding deformation modes to a rigid motion of discrete elements [10, 11]. Until
now this concept has been applied to the discrete elements in the form of polygonal prisms (in 2D) or polyhedra (in
3D). This work presents an original formulation of the discrete element method based on the soft contact approach
with deformable circular discs. The developed numerical algorithm has been implemented in the discrete element
program developed by the author of this paper. Numerical results will be presented in order to verify the developed
theory.
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CLASSICAL FORMULATION OF THE DISCRETE ELEMENT METHOD

Based on key assumptions of Cundall and Strack [5], a 2D formulation of the discrete element method employing
cylindrical particles (cylindrical discs) is considered in this work. Fundamental formulations of the discrete element
method have been presented in a number of publications [12, 13, 14]. However, for the sake of completeness formu-
lation of the contact model is presented here shortly.

Considering a pair of interacting particles, say i and j, with the radii R; and R;, shown in Fig. 1. Vectors x;
and x; denotes the positions of the particle centroids. Velocities of particle centroids are described by translational
components v; and vj, and the rotational components w; and w;

FIGURE 1. Definition of the inter-particle interaction

The particle interaction is described by the bonded particle contact model. In the formulation of this contact
model the contact force F€ is decomposed into the normal and tangential components, F,, and Fy, respectively:

FC:FH+Fl:an+F[, (1)

where n is the unit normal vector at the contact point (Fig. 1). Different models can be employed to evaluate the
normal and tangential contact forces[15, 16].
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FIGURE 2. Rheological scheme of the bonded particle interaction model.

In this work, the normal and tangential particle interactions are modelled by linear springs connected in parallel
with dashpots (Fig. 2) providing an additional mechanism to dissipate contact oscillations. Thus, the normal and
tangential contact forces are decomposed into the elastic, F;,. and Fy, and damping parts, F,q and Fy4, respectively:

Fy=Fne+ Fna )

Fl :Fte+Fld (3)

The elastic contact force components are evaluated assuming linear constitutive relationships. The elastic normal force
is given by
Fye = kyh, (€]

where k, is the interface stiffness in the normal direction, and /4 is the change of the distance between the particles
with respect to the distance when the cohesive bond has been established

h=|x;=xll - R —R; )
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The tangential elastic force is given by the relationship
Fi=ku, (6)

where k; is the interface stiffness in the tangential direction, u, — the relative displacement at the contact point in the
tangential direction.
The contact damping forces in the normal and tangential directions are given by

Frg = CnVim @)

Fu = cvn ®
respectively, where ¢, and ¢, are the damping coefficients. The damping coeflicients, ¢, and ¢, can be related to the
critical damping in the normal and tangential direction, ¢y and c;", by means of certain scaling factors, &, and &:

n = &nCy C))

Ct = {:[Cfr (10)
For the system of two rigid bodies with masses m; and m;, connected with a spring of the stiffness k, the critical
damping ¢ is given by, cf. [17]:

mim ;k
Ccr - 2 J

an

m; +m;
By taking k = ky or k; in Eq. (11) the critical damping ¢ and c{" is obtained.
FORMULATION OF THE DEFORMABLE DISCRETE ELEMENT METHOD

We shall consider a discrete element model consisting of cohesionless or cohesive cylindrical particles subjected to a
prescribed external loading. The idea of the DDEM is shown in Fig. 3.

deformed
shape

undeformed
& shape

FIGURE 3. The idea of deformable discrete element method.

In addition to standard kinematics of the discrete element method, in our new formulation particles are assumed
to be uniformly deformed under the internal particle stress induced by the contact forces. A uniform stress is assumed
in the particle. The internal particle stress o, is obtained as the average stress derived from the contact forces using
the following formula [18]:

Npe
1 & . . . .
&p:—Z—(s‘®FL+F‘®s‘), (12)
V, 2
c=1
where V), is the particle volume, n,,, number of elements being in contact with the particle, s” vector, connecting the
particle center with the contact point, F¢ contact force, and the symbol ® denotes the outer (tensor) product. In case

of a constrained particle, except for contact forces we have also reaction forces.
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Particle strains are calculated using an inverse constitutive relationship
e,=D:0o, (13)

where D is the elastic compliance tensor for the plane strain.

The circular configuration under a uniform strain is deformed into an elliptical one with its principal axes aligned
to the principal strain directions. The normal contact force is determined as a linear function of the overlap of such
ellipses. This overlap is considered as equivalent to local deformation of the particles. Similarly, as in the standard
DEM the local damping is included in the normal interaction. The tangential contact force is evaluated similarly as in
the standard DEM.

NUMERICAL EXAMPLE

A uniaxial compression of a rectangular specimen discretized with bonded discs as it is shown in Fig. 4 has been
simulated using the standard and new DEM formulation. A bonded particle contact model has been used. The sample
is a regular assembly of 180 particles each of radius r = 1 mm, arranged in 20 rows and 9 columns. Total sample
height H is 40 mm and width A is 18 mm. A particle density p = 2000 kg/m? and normal contact stiffness k, = 7-10'°
N/m has been assumed. A uniform linear load (0 to 10 kN in 0.1 ms) is applied on each column from top and bottom.
The maximum value total force F has achieved is 90 kN.
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FIGURE 4. Uniaxial compression of a rectangular specimen — DEM model

Figure 5 shows the results obtained with the standard DEM formulation in the form of the contours of displace-
ments along the y and x axes. It can be seen that all the elements have zero x displacements. This means that the
macroscopic effective Poisson’s ratio is zero in this model under the loading along the y axis. Figure 6 shows the
results obtained with the new DEM formulation. One can notice non-zero displacements in the x direction which
implies a non-zero Poisson’s ratio. This shows that the new formulation allows us to capture the Poisson’s effect even
in such a simple configuration of discs where standard DEM fails. This confirms new capabilities of the proposed
formulation with respect to the standard DEM.

A quantitative investigation has been conducted in order to study the influence of particle (microscopic) elastic
parameters on global (macroscopic) elastic parameters. Simulations are performed by keeping a constant normal
contact stiffness k, = 7 - 10! N/m. The particle Young’s modulus E, varies in range 2-10'° N/m? — 8-10'° N/m?
(kn/Ep in the range 0.350 — 0.0875). A constant value of particle Poisson’s ratio v, = 0.35 is assumed. Figure 7 presents
the effect of the particle parameters — contact stiffness k, and particle Young’s modulus E, on global parameters —
macroscopic Young’s modulus Eppgpy and macroscopic Poisson’s ratio vppga.

From Fig.7 we can deduce that the global (macroscopic) stiffness in the DDEM is lower than that obtained in
standard DEM. Moreover, lower particle Young’s modulus E, (or equivalently, the higher k,/E, ratio) results in lower
global stiffness in DDEM. It also shows that the stiffness in the DEM — Epgy, coincides with the stiffness of the DDEM
model — Eppgy for k,/E, — 0 (or equivalently E,, — oo0), which corresponds to the basic assumption of the standard
DEM that the particles are rigid with deformation localized at contact areas. Similar behaviour can also be observed
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FIGURE 5. Simulation results obtained with the standard DEM formulation — contours of displacements along, the y-axis (lef?),
the x-axis (right) at # = 0.0001 s. Particle Young’s modulus E, = 2 - 10'° N/m?.
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FIGURE 6. Simulation results obtained with the deformable DEM formulation — contours of displacements along, the y-axis (left),
the x-axis (right) at t = 0.0001 s. Particle Young’s modulus E, = 2 - 10" N/m?.
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FIGURE 7. Influence of particle elastic parameters on the global elastic parameters — Ratio of global Young’s modulus in the
deformable and standard DEM and global Poisson’s ratio as a function of ratio k,/E,,. Particle Poisson’s ratio v, = 0.35 is used.

for Poisson’s ratio in Fig. 7, where as k,/E, — 0 (or equivalently £, — oo) the Poisson’s ratio of DDEM model
vppem coincides with Poisson’s ratio of standard DEM model vpgy, which is equal to O cf. Fig. 5. Results presented
in Fig. 7 can provide us a basis for the quantitative study of a more realistic, irregular particle assembly.
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CONCLUSIONS

Numerical example has shown that by taking deformability of particles into account, the modelling capabilities of the
DEM has been enhanced. The non-local contact interactions which appear due to global deformation (shape change)
of the discrete particles can introduce Poisson’s effect even in simple assemblies where standard DEM fails. The new
formulation introduces a greater flexibility in terms of controlling the elastic behaviour of a particulate system and
allows for better representation of deformation modes of particles.

A quantitative investigation has been conducted to evaluate the influence of micro elastic parameters on macro
elastic parameters. The DDEM model is able to reproduce the behaviour of standard DEM model as the limit case.
The quantitative relationships can be used in studying more realistic particle configurations. The proposed formulation
is equally valid for cohesionless DEM models and can be easily extended to 3D problems.
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