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The rapid development of experimental methods for the analysis of solid solutions in the wide spectrum of chemical

composition has opened a demand for constitutive modelling of the effect of composition on the resultant size of crystal

lattice. This concerns the prediction of misfit of thin layers deposited in crystal growth processes, phase transitions,

as well as many other problems. As of yet, Vegard’s law seems to be the main mathematical tool for the quantitative

assessment of the experimental data and the ab-initio results both in terms of their agreement with Vegard’s law as

well as in terms of deviations of such obtained results from this law, see e.g. Germini et al. (1999), Zhou and Usher

(2001) among many others.

The classical form of Vegard’s law states that the length of lattice vectors of a solid solution changes linearly

with its chemical composition. Such a rule was observed in 1921 by Vegard to cubic crystals. Recently, this law

is used widely for many other structures in which the crystallographic angles are fixed by symmetry. In the case

of low symmetry crystals, the shape of resultant unit cell depends not only on three lattice parameters, a, b, c, but

also on three crystallographic angles which are not determined uniquely by the classical (scalar) form of Vegard’s

law. The problem is that for lattice structures of low symmetry the mentioned law can be generalized in different

ways. Thus, a various generalizations were proposed in literature, see e.g. discussion in Peters et al. (2006). It is

easy to show that all the generalizations mentioned do not determine uniquely the resultant size of unit cell for solid

solutions in a triclinic lattice. For example, the use of Vegard’s law for calculation of lattice vectors of a monoclinic

solution MgyCu3−yV2O8 should not depend on the choice of the reference bound structure, Mg3V2O8 vs Cu3V2O8.

As a matter of fact, from the stochiometric point of view, the monoclinic lattice (P 1 21/c 1) of MgyCu3−yV2O8 and

Mg3−zCuzV2O8 for y = z = 1.5 is one and the same Mg1.5Cu1.5V2O8 crystal structure.

Contrary to the previous finite strain generalizations a generalization of Vegard’s law presented here is invariant

with respect to the choice of the reference chemical composition of a triclinic lattice.
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