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ABSTRACT 

 

This paper proposed a frequency domain method of substructure identification for local health 

monitoring. The substructure isolation method (SIM) consists of two steps: the first is the construction 

of isolated substructure which is the key of the method, and the second is damage identification of 

substructure. The isolated substructure is a virtual and independent structure, and it have the same 

physical parameters of the real substructure with the additional virtual supports on boundary, which is 

realized by operating the measured response. This paper extends the SIM method to frequency domain, 

which could make the method employ more measured response and compute more efficiently. A 

mass-spring numerical model is used to verify the theory of the SIM method, and a cantilever beam is 

experimented to test the method. The method preformed efficiently and accurately in the both 

numerical model and experiment. 

 

INTRODUCTION 

 

Structural Health Monitoring (SHM) is a hot researched field in civil engineering, and the damage 

identification is the theoretical basic of SHM. The damage could be detected directly by signal 

processing of the measured response without model, like wavelet analysis[1], time series[2], or be 

estimated by optimizing the FEM model using flexibility matrix[3], nature frequencies and mode 

shapes[4], time domain responses[5] or frequency response[6]. Some of the methods are well 

developed, but sometimes it is still hard to use for the large and complex structure to be identified 

globally and accurately. The structures of civil engineering, like bridges, tall buildings and dams, 



 

usually have some uncertain factors, such as boundary conditions, nonlinear components. Furthermore, 

sometimes the sensors are not enough to estimate the complex structure accurately, and the response of 

the structure is not sensitive to the local damage. While the substructuring method could reduce the 

entire structure to the local critical substructure, and only use the local according the responses of the 

few senses placed on the substructure.  

The substructure is a local part of the global structure, and it is not independent of the global 

structure. In order only to focus on the substructure, mostly methods separate the substructure from the 

global structure, and then the interface force will be exposed. They estimated the substructure based on 

the motion of the equation of the substructure, so most substructuring methods belongs to time domain 

methods. 2003, Koh et al.[7] employed genetic algorithms;  2005, Tee et al.[8]developed a 

divide-and-conquer for identification at the substructure level in first-order model and second-order 

model; 2006, Yuen et al. [9] presented a bayesian frequency-domain approach; 2011, Trinh et al.[10] 

embedded a simple numerical integration scheme to obtain interface response; 2011, Xing et al.[11] 

use ARMAX to identification. Most of the literature [7-11] use shear structure to verify the proposed 

substructuring method. However, more structures are complex than shear structure in real application, 

and the according substructure and the boundary contains more Dofs. Then the time domain 

substructuring method above will be time-consuming and hard to converge.  

To overcome this drawback, Hou et al.[12] have proposed the substructure isolation method, of 

which the core idea is different. The isolation method firstly operate of the measured responses to 

constructed new responses which belonged to isolated substructure, which is a virtual and independent 

substructure and have the same elements stiffness and mass matrixes with the real substructure. 

Secondly, the damage identification of the substructure could be carried out equivalently and flexibly 

by any of the existing methods aimed originally at global identification using the constructed 

responses, so there is no demand or limitation on the size or Dofs of substructure. 

The key step of isolation method is the construction of isolated substructure. The literature [12] 

constructed the response in time domain. The SIM in time domain need compute the invers of 

constraining matrix, of which the computing time is in proportion to time steps and usually it is 

time-consuming, so usually the measured time could not be very long. Therefore, this paper will 

extends the method to frequency domain, which could employ more measured response and compute 

more efficiently.  

 

SUBSTRUCTURE ISOLATION METHOD 

 

The isolation method in frequency domain 

The equation of the motion of the structure can be written as: 

 Mẍ(t) + Cẋ(t) + Kx(t) = f(t) (1) 

The Fourier transfer of the Equation (1) is:  

(−ω2M+ jωC + K)X(ω) = F(ω) (2) 

Where X(ω) = ℱ(x(t)) = ∫ x(t)
t

0
e−jωtdt, F(ω) = ℱ(f(t)), ℱ  is the Fourier operator. Denote 

the Dofs is the Degree of freedoms (Dofs) of inner substructure, b is the Dofs of substructure boundary 

and r is the Dofs of outside substructure. Separate the system matrix according to 3 kinds of DOF, then 

the Equation (2) could be written as: 



 

 

(−ω2 [

Mss Msb 0
Mbs Mbb Mbr

0 Mrb Mrr

] + ω [

Css Csb 0
Cbs Cbb Cbr
0 Crb Crr

] + [

Kss Ksb 0
Kbs Kbb Kbr
0 Krb Krr

]) {

Xs(ω)

Xb(ω)

Xr(ω)
}

= {

Fs(ω)

Fb(ω)

Fr(ω)
} 

(3) 

Where M = [

Mss Msb 0
Mbs Mbb Mbr

0 Mrb Mrr

] , C = [

Css Csb 0
Cbs Cbb Cbr
0 Crb Crr

] , K = [

Kss Ksb 0
Kbs Kbb Kbr
0 Krb Krr

] , F = {

Fs
Fb
Fr

} , 

X = {

Xs
Xb
Xr

}. 

If apply n+1 groups of excitationF0(ω), F1(ω), … , Fn(ω)  on the structure respectively, the 

corresponding responses of the structure are X0(ω), X1(ω), … , Xn(ω). For convenience of later 

derivation, F0(ω) is called as basic excitation, and the according response X0(ω) is called as basic 

response; F1(ω), … , Fn(ω)  are called as constraining excitation, and the according response 

X1(ω), … , Xn(ω) are called as constraining response.  

Linear combination of all the excitations and the responses,  

 

{
 
 

 
 P(ω) = F0(ω) +∑Zi(ω)Fi(ω)

n

i=1

= F0(ω) +  QZ

Y(ω) = X0(ω) +∑Zi(ω)Xi(ω)

n

i=1

= X0(ω) + [
D
B
] Z

 (4) 

where, Z = [Z1(ω) … Zn(ω)]
T  are the coefficient of linear combination, 

 Q = [F1 (ω) … Fn (ω)],  B = [Xb
1(ω) … Xb

n(ω)],  D = [Xs
1(ω) … Xs

n(ω)].  

If the structure is linear system, then the linear combination of excitation P(ω) and response 

Y(ω) should be satisfy the equation of the monition of the structure: 

 (−ω2M+ωC + K)Y(ω) = P(ω) (5) 

The first row of the Equation (3) can be written as: 

 {
(−ω2Mss + ωCss + Kss)Ys(ω) = Ps(ω) + Pc(ω)

Pc(ω) = (ω2Ms𝑏 − ωCsb − Ksb)Yb(ω)
 (6) 

where Pc(ω) is the coupled interface force related with the boundary response Yb(ω). 

If the response of substructure boundary Yb(ω) = Xb
0(ω) + B(ω)Z(ω) = 0, then Equation (7) can 

be obtained from the second equation of Equation (4): 

 {
Z(ω) = −[B(ω)]+Xb

0(ω)

Ys(ω) = Xs
0(ω) − D(ω)[B(ω)]+Xb

0(ω)
 (7) 

where ‘+’ is general inverse. 

Put Yb(ω)=0 into the Equation (6), then the equation of the monition of the substructure is 

 (−ω2Mss +ωCss + Kss)Ys(ω) = Ps(ω) (8) 

As is well known,Yb(ω)=0 is the boundary condition of boundary fixed support. Furthermore, it 

can be seen from Equation (8) that the constructed response Ys(ω) are only associated with the linear 

combined excitation Ps(ω) and substructure system matrix Mss, Css, Kss. Therefore, the virtual fixed 

support is constructed, and the substructure is successfully isolated from the structure which is called 



 

Isolated Substructure. The constructed response Ys(ω) belongs to the response of the Isolated 

Substructure, and they have no relationship with the outside of the substructure. So if the value or the 

feature of the excitation Ps(ω)  is known, then the response Ys(ω)  could be used for the 

identification of the substructure. 

A 2-Dofs mass-spring system is taken as an example, see Figure 1. The mass of each dof is m, and 

the stiffness and the damping of the each spring is k and c. so the matrix of the system is M =

[
m 0
0 m

] , C = [
2c −c
−c c

] , K = [
2k −k
−k k

]. 

 

 

Figure 1. A 2-Dofs system 

 

The matrix of frequency response matrix is H(ω), see Matrix (9), where Hiv(ω)is the frequency 

response of i-th Dof at the coordinate ω, when apply unite impulse excitation on v-th Dofs; 

A = m2ω4 − 3cmω3j − (c2 + 3km)ω2 + 2ckωj + k2. 

 H(ω) =
1

A
[
−mω2 + cωj + k cωj + k

cωj + k −mω2 + 2cωj + 2k
] (9) 

If 2-th mass and spring is substructure, and 1-th Dofs is the boundary of substructure, then 

according to the isolation method, the parameters in Equation (7) can be written as:  

 

{
 
 

 
 B(ω) = (−mω2 + cωj + k) A⁄

Xb
0(ω) = (cωj + k) A⁄

D(ω) = (−mω2 + 2cωj + 2k) A⁄

Xs
0(ω)= cωj + k A⁄

 (10) 

Then the frequency response of isolated substructure can be computed using Equation (7), see 

Equation (11), which is the same as frequency response of the one mass-spring system. That’s to say, 

the isolated substructure has been constructed successfully. 

 Hs(ω) = 1 (−mω2 + cωj + k)⁄  (11) 

 

The method using the FFT of measured response 

In real application the measured response is discrete, so the Fast Fourier Transform (FFT) is used 

practically to compute the frequency response. When the time-domain signal is of a finite length and 

does not tend to zero during the integration time, the spectral leakage is avoidless. It will affect the 

accuracy of the constructed frequency response of the isolated substructure using the isolation function. 

Therefore, the window is used to avoid the spectral leakage. The Equation (12) is exponential window, 

and the coefficient η in exponential window is the damped exponential. 

 we(t) = {
e−ηt, 0 ≤ t ≤ T
0,       else

 (12) 

The free response of a N-dofs structure could be written as in Equation (13), and the free response 

with adding exponential window is Equation.(14). ϕi  is i-th mode shape, ξi  is damping ratio, 

ωdi = ωi(1 − ξi
2)
0.5

, ωi is the i-th natural frequency. Compared with the Equation (13) and (14), the 

m , c , k

1 2 2

m , c , k

a) Global structure b) Isolated substructure



 

exponential window only adding the damping radio η/wdi of free response, which doesn’t change 

the frequency information of the response. Therefore, the constructed response Ys(s) belongs to 

isolated substructure.  

 x(t) =∑Aiϕie
−ωdiξitsin (ωdit + φi)

n

i=1

 (13) 

 

 x(t)we(t) =∑Aiϕie
−ωdi(ξi+η/ωdi)tsin (ωdit + φi)

n

i=1

 (14) 

 

SUBSTRUCTURE DAMAGE IDENTIFICATION 

 

The above derivation indicates that the substructure damage identification can be performed 

equivalently via the identification of Isolated Substructure, since they have the same system matrix as 

the substructure. If the basic excitation Ps(t) is impulse excitation, then the constructed frequency 

response Ys(ω) could be used for identifying the natural frequencies of the isolated substructure, of 

which the i-th natural frequency is denoted as ω𝑖
𝑚. If the natural frequencies of FEM model of 

isolated substructure is ω𝑖
𝐹(𝜇), where 𝜇𝑖 is the i-th damage extent, then the damage extent could be 

identified by minimizing the following objective function: 

 Δ(𝜇) =∑|
ω𝑖
𝐹(𝜇) − ω𝑖

𝑚

ω𝑖
𝑚 |

𝑖

2

 (15) 

 

EXPERIMENT 

 

An aluminum cantilever beam is experimented for verification the proposed substructure isolation 

method in frequency domain, see Figure 2. The upper part of the beam is the considered as the 

substructure. The damage with the length 10.2 cm is made by cutting even notches near the fixed end, 

which is decreased to 42% of its original stiffness .Three strain sensors (Y1, Y2, Y3) are placed on the 

substructure, of which one (Y3) is placed on the boundary. The boundary velocity (Y4) is also 

measured by laser vibrometer. The single virtual pinned support is constructed by constraining the 

boundary responses of Y3 & Y4 sensors to zero, see Figure 7. The virtual support separated the 

substructure from the global structure to be the independent isolated substructure, see Figure 3.The 

substructure is divided into five parts, and the real damage extents of the five parts are [1 0.42 1 1 1]. 

 



 

 

Figure 2. Cantilever beam 

 

 

Figure 3. Isolation of the substructure 

 

 

Figure 4. The measured basic responses 
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Figure 5. The measured constraining responses 
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Figure 6. The exponential window 

 

The three groups of responses excited by the hammer which is applied on the P1, P2 and P3 of 

beam respectively (see Figure 2) are shown in Figure 4 and Figure 5. Do FFT of the windowd 

measured response with the exponential window (see Figure 6), and put the frequency response into 

Equation (7), then the frequency responses of the isolated substructure can be computed, seen in 

Figure 7. The nature frequencies of the substructure were easily obtained via the peaks of its 

constructed frequency responses (Figure 7). The damages of the substructure were then identified by 

minimizing the square distance between the constructed nature frequencies of the isolated substructure 

and the nature frequencies computed using its Finite Element model, see Figure 8. Both the isolation 

and the identification steps are performed very well using the experimental data. 

 

 

Figure 7. Constructed frequency responses 
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Figure 8. Damage extent 
 

CONCLUSION 

 

The paper extended the substructure isolation method in frequency domain. It could be using for 

a large scale substructure, and only focus on the identification of the damage extends of substructure 

stiffness, and don’t regard to the interface force, damping coefficient, state vectors and some other 

parameters in the optimization. The mass-spring numerical model and beam experiment have verified 

that the proposed substructring method is efficient and accurate.  
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