
Biophysical Journal Volume 98 June 2010 2759–2769 2759
Using a Single Fluorescent Reporter Gene to Infer Half-Life of Extrinsic
Noise and Other Parameters of Gene Expression
Micha1 Komorowski,†* Bärbel Finkenstädt,† and David Rand‡

†Department of Statistics, and ‡Systems Biology Centre and Mathematics Institute, University of Warwick, Coventry, United Kingdom
ABSTRACT Fluorescent and luminescent proteins are often used as reporters of transcriptional activity. Given the prevalence
of noise in biochemical systems, the time-series data arising from these is of significant interest in efforts to calibrate stochastic
models of gene expression and obtain information about sources of nongenetic variability. We present a statistical inference
framework that can be used to estimate kinetic parameters of gene expression, as well as the strength and half-life of extrinsic
noise from single fluorescent-reporter-gene time-series data. The method takes into account stochastic variability in a fluorescent
signal resulting from intrinsic noise of gene expression, kinetics of fluorescent protein maturation, and extrinsic noise, which is
assumed to arise at transcriptional level. We use the linear noise approximation and derive an explicit formula for the likelihood of
observed fluorescent data. The method is embedded in a Bayesian paradigm, so that certain parameters can be informed from
other experiments allowing portability of results across different studies. Inference is performed using Markov chain Monte Carlo.
Fluorescent reporters are primary tools to observe dynamics of gene expression and the correct interpretation of fluorescent data
is crucial to investigating these fundamental processes of cellular life. As both magnitude and frequency of the noise may have
a dramatic effect on the cell fitness, the quantification of stochastic fluctuation is essential to the understanding of how genes are
regulated. Our method provides a framework that addresses this important question.
INTRODUCTION
Fluorescent and luminescent proteins are among the most

commonly used reporters of gene expression (1). In partic-

ular, they are used to quantify changes in protein concentra-

tion over time (2) and as reporters of transcriptional activity

(3) in single cells and tissue. Hence an abundance of data is

becoming available that is useful for the estimation of kinetic

parameters of expression of many different genes.

The significance of single gene expression dynamics has

resulted in numerous theoretical models (4–7) and experi-

mental studies (8–11) that revealed aspects of the stochastic

nature of this process (see (12,13) for reviews). Usually the

systems being considered are far from thermodynamic equi-

librium (14) and they may involve small copy numbers of

reacting macromolecules (15). Determining the origins and

the magnitude of the stochastic effects is of interest because

of the implications for cell fate decisions, development, and

nongenetic individuality (see (12,13,16) for reviews). One

of the important advances in the studies of noise in gene

expression is the development of experimental methods based

on using two equivalent reporters in the same cell. This allows

the determination of extrinsic and intrinsic components of the

total gene expression noise (11,17). Intrinsic noise is defined

as a source of variability creating differences between the

expression of two identical genes placed in the same cell.

By contrast, extrinsic noise refers to the sources that affect

the two genes equally in any given cell.
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A basic assumption behind using fluorescent or lumines-

cent proteins as reporters of dynamical gene expression,

particularly in experiments investigating noise in gene

expression, is that the observed fluorescence intensity is

proportional to the number of proteins being expressed in

the cell (8,9,11,18). There is a reasonable basis to the

assumption that such proportionality exists for molecules

that are actively fluorescent (19). Nevertheless, before the

expressed protein becomes visible to fluorescent detection

techniques, it must undergo a maturation process that can

last from a few minutes to greater than a day (20,21). This

process comprises three major steps: folding; cyclization of

the tripeptide motif; and oxidation of the cyclized motif

(22). The dynamics of this process significantly contributes

to the observed variability of a fluorescent signal and has

the potential to impact both estimates of the number of

proteins present and estimates of the variability in gene

expression (21,23). Even though the maturation process

has been recognized, it is most often neglected in the quan-

titative analysis of fluorescent data (e.g., (9,11,18,24–26)).

The presence of extrinsic and intrinsic noises and

stochastic effects of protein maturation indicate that extract-

ing information from the fluorescent signal is not straightfor-

ward. Stochastic fluctuations arising at each level of gene

expression are masked by subsequent steps of this process,

so that the observed variability is a filtered mixture of

multiple noise sources. In particular, the fluctuations in tran-

scription rate, which is of great importance to the under-

standing of gene regulation, are masked by random events

that occur between the release of mRNA molecules and the

occurrence of fluorescent proteins. Therefore, a precise inter-

pretation of the fluorescent signal requires a mathematical
doi: 10.1016/j.bpj.2010.03.032
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model and a statistical method for its calibration. Various

approaches have been proposed to address this problem

(7,18,27–30). Nevertheless, none of the currently available

inference methods takes into account the stochasticity of

the protein maturation kinetics or infers strength of extrinsic

fluctuations from commonly used single reporter gene data.

In this article, we calculate protein distributions that

account for the variability that originates from the fluorescent

protein maturation, transcriptional extrinsic noise, and the

intrinsic noise of gene expression. The calculated distribu-

tions are used to generate predictions of fluctuating protein

levels in steady state as well as away from steady state.

We combine the model with an efficient statistical inference

framework to fit a time course of fluorescence. The method

allows for the estimation of translation rate, the decay rate

(half-life), and magnitude of transcriptional extrinsic fluctu-

ations from data of a single reporter gene experiment.

The quantification of fluctuations in protein abundance is

important to the understanding of how genes are regulated.

For example, it has been demonstrated that both magnitude

and frequency of the noise may determine cell fitness (3).

Small changes in protein concentration may have a signifi-

cant effect if they last for long enough, whereas large fluctu-

ations in concentration may not have any effect if they occur

too frequently to influence cellular processes (12). This

observation stimulated studies of protein level dynamics

(31,32) and reveals the need for a method to quantify the

stochastic characteristics of the expression of different genes.

Our approach constitutes a general framework for the

interpretation of fluorescent time-lapse steady-state and

out-of-steady-state data because it simultaneously addresses

two important problems: it infers the strength of transcrip-

tional noise in a way that often allows quantification of the

transcriptional extrinsic variability using only a single fluo-

rescent reporter gene rather than the dual reporters used

previously; and it accounts for stochasticity of the fluores-

cent protein maturation.

The article is organized as follows. First, we introduce the

mathematical model of gene expression that incorporates

stochasticity of protein maturation kinetics and extrinsic

noise and calculate matured protein distributions out of

steady state. We briefly analyze the influence of kinetic

parameters on stochastic properties of the fluorescent signal.

Finally, we present the statistical method to fit a time course

of fluorescence and quantify observed stochasticity in fluo-

rescent signal. We demonstrate applicability of the frame-

work using examples of a gene that is expressed both in

a steady state and out of steady state. We explain why all

the model components are necessary to reliably interpret

the fluorescent signal.
METHODS

In this section, we extend the standard model of single gene expression by

adding the protein maturation process and a model for extrinsic noise.
Biophysical Journal 98(12) 2759–2769
Subsequently we analyze stationary fluorescence fluctuations predicted by

the model using the autocorrelation function and the power spectral density.

Finally, we use the linear noise approximation (30,33,34) to construct

a statistical method for estimation of model parameters from fluorescent-

reporter-gene time series.
Model of fluorescent gene expression

Although gene expression involves numerous biochemical reactions, the

current common consensus is to model it in terms of only three biochemical

species (DNA, mRNA, and protein) and four reaction channels (transcrip-

tion, mRNA degradation, translation, and protein degradation) (4,7,35).

Such a simple model has been successfully used in a variety of applications

and can generate data with the same statistical behavior as more complicated

models (36,37).

We assume what are now standard simplifications employed in this

model. We assume that the process begins with production of mRNA mole-

cules (R) at time-dependent rate kr(t). Each mRNA molecule may be inde-

pendently translated into protein molecules (P) at rate kp. Both mRNA

and protein molecules are degraded at rates gr and gp, respectively. To

model the expression of a fluorescent protein, we extend the standard model

in a similar way to that seen in (21,23). After translation, proteins are folded

at a rate kf and subsequently matured (oxidated) at a rate km. The number of

unmatured folded proteins and matured proteins are denoted by Pf and Pm.

Matured proteins are capable of emitting a fluorescent signal when illumi-

nated. Here, we neglect the cyclization, because it is much faster than the

other two folded proteins that constitute the maturation process (see 22).

We also assume that both folded and matured proteins degrade at rate gp.

The reactions in this model can thus be summarized as the following

stoichiometric equations:

R1 : DNA /
krðtÞ

DNA þ R R5 : P /
kf

Pf

R2 : R /
gr

B R6 : Pf /
gp

B

R3 : R /
kp

R þ P R7 : Pf /
km

Pm

R4 : P /
gp

B R8 : Pm /
gp

B:

We model biochemical reactions as Poisson birth and death processes.

Precisely, we assume that the probability for each reaction to occur in a small

time interval is proportional to the product of the length of that interval, the

rate of the reaction, and the number of molecules that may undergo the reac-

tion. The probability that more than one event will take place in a small time

interval is of the higher order, with respect to the length of the interval.

Finally, we assume that events taking place in disjoint time intervals are

independent when conditioned on events in the previous interval. This spec-

ification leads to the Chemical Master Equation (see Supporting Material).

Unfortunately, for many tasks such as inference, the Chemical Master Equa-

tion is not a convenient mathematical tool and hence various types of

approximations have been developed. As shown in Komorowski et al.

(30), the linear noise approximation provides a useful and reliable inference

framework. The linear noise approximation models biochemical reactions

through a stochastic dynamic model that essentially approximates a Poisson

process by an ordinary differential equation model with an appropriately

defined noise process. Using the linear noise approximation, our model

equations are (see Supporting Material for derivation)

dr ¼ ðkrðtÞ � grrÞdt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðtÞ þ grfrðtÞ

p
dW1; (1)

dp ¼
�
kpr �

�
gp þ kf

�
p
�
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kpfrðtÞ þ gpfpðtÞ

q
dW2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kf fpðtÞ

q
dW3; ð2Þ
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� � � � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

dpf ¼ kf p� gp þ km pf dt þ kf fpðtÞdW3

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpfpf

ðtÞ
q

dW4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmfpf

ðtÞ
q

dW5;
(3)

dpm ¼
�
kmpf�gppm

�
dt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmfpf

ðtÞ
q

dW5 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gpfpm

ðtÞ
q

dW6;

(4)

where r, p, pf, and pm are the concentrations of mRNA, unfolded protein,

folded protein, and mature protein, respectively; {dWi}(i¼1,., 6) expressions

denote increments of independent Wiener processes; t(t) is the mean tran-

scription rate at time t; and variables fr, fp, fPf, and fPm are macroscopic

concentrations of mRNA, unfolded protein, folded protein, and mature

protein, respectively, described by the following ordinary differential equa-

tions (see Supporting Material for derivation):

_fr ¼ tðtÞ � grfr; (5)

_fp ¼ kpfp �
�
gp þ kf

�
fp; (6)

_fpf
¼ kf fp �

�
gp þ km

�
fpf
; (7)

_fpm
¼ kmfpf

� gpfpm
: (8)

The macroscopic variables describe the behavior of the system in the

thermodynamic limit. This is the limit of an infinitely large number of react-

ing molecules, where fluctuations average out, leading to a deterministic

behavior (34).
Extending the standard model by extrinsic noise

Genetically identical cells exhibit significant diversity even when exposed to

the same environmental conditions. Recent studies concluded that this noise

has intrinsic and extrinsic sources that could be distinguished by placing two

independent gene reporters in the same cell to partition observed variability

into these two categories (11,17). Noise sources that create differences

between the two reporters within the same cell are called intrinsic noise.

Extrinsic noise, on the other hand, refers to sources that affect the two

reporters equally in any given cell but create differences between two cells.

Noise arising from the stochastic events of births and deaths of mRNA and

proteins molecules can be identified as intrinsic. Differences between cells,

either in environment or in the concentration of any factor that affects gene

expression, will result in extrinsic noise (see (12) for more details).

This definition of the two sources of variability implies that in the derived

model (Eqs. 1–8), intrinsic noise due to the birth and death events is modeled

by diffusion terms (terms that include dWi).

The sources of extrinsic variability are defined less clearly. Here we focus

on the stochasticity arising from fluctuations in the overall transcription rate,

as it is argued in the literature (9,25,38), that it dominates over other sources

of extrinsic noise. As proposed by Chabot et al. (9) and Shahrezaei et al.

(38), transcriptional extrinsic noise can arise from multiplicative factors in

the transcription rate. In this case

krðtÞ ¼ DðtÞtðtÞð1 þ zðtÞÞ; (9)

where t(t) is a macroscopic transcription term (deterministic function which

typically varies smoothly with time) and z(t) is a stochastic perturbation

representing the extrinsic noise. The random process D(t) expresses the

changing transcriptional environment due to binding and unbinding of tran-

scription factors to the regulatory region of the gene and changes in activity

due to chromatin modification. In many situations, the former process is

highly dynamic, with fast on- and off-rates. In this case, it follows from

Eq. 10 in Rausenberger and Kollmann (32) that the fluctuations are small
and can be ignored. On the other hand, changes in transcription due to chro-

matin modification tend to be on a much larger timescale. It is therefore

reasonable to ignore the fluctuations in D, and replace it by a constant. In

this case, we obtain

krðtÞ ¼ D0tðtÞð1 þ zðtÞÞ (10)

If these assumptions do not hold, then, in the linear approximation

zðtÞ ¼ z1ðtÞ þ z2ðtÞ;
where z1(t) is the extrinsic noise and z2(t) is due to the fluctuations in D(t).
In this case, we cannot separate the extrinsic noise and that in z2(t). Never-

theless, measurement of the combined noise is extremely interesting.

Moreover, it is likely that further experiments could be used to separate

the effects. For example, it is possible to reduce or eliminate chromatin

modification.

To allow for a potential memory of the extrinsic factor, z(t) is modeled as

an Ornstein-Uhlenbeck (OU) process:

dz ¼
�
�gzz

�
dt þ szdW7: (11)

This form of transcriptional extrinsic noise has been indicated by experi-

mental data (9). The OU process has an exponentially decaying autocorrela-

tion function (ACF) of the form (39)

ACFzðtÞ ¼
s2

z

2gz

exp
�
�gzt

�
: (12)

The parameter gz can be thus interpreted as a decay rate of the extrinsic

fluctuations and log(2)/gz constitutes the half-life of the extrinsic noise in

the rate kr . Small values of gz correspond to slow transcriptional fluctua-

tions and a slowly decaying ACF. In this case, we say that transcription

has long memory. The stationary variance of the OU process is given by

s2
z=2gz (39) and this quantity describes the strength of the extrinsic fluctu-

ations. The model that incorporates protein maturation dynamics and

extrinsic noise and for which we construct an inference method is given

by Eqs. 1–11.
Analysis of the fluorescent protein fluctuations

Before we present our inference method, we examine how the model param-

eters determine the memory of fluorescence fluctuations and how they affect

the filtering of the stochasticity arising from the different reactions consti-

tuting the expression process. We are particularly interested in how tran-

scriptional memory and the strength of transcriptional fluctuations are

masked by translation and protein maturation processes.

To understand how memory is determined by model parameters we

analytically calculate the autocorrelation function for the fluctuations of

matured proteins pm in the stationary state. We assure existence of the steady

state by assuming that the macroscopic component of transcription is

constant t(t) ¼ b and obtain (see Supporting Material for derivation)

ACFpmðtÞ ¼ a1exp
�
�gzt

�
þ a2expð�grtÞ þ a3exp

�
�gpt

�
þ a4exp

�
�
�
gp þ kf

�
t
�
þ a5exp

�
�
�
gp þ km

�
t
�
;

(13)

where a1, ., a5 are time-independent functions of model parameters. We

say that the observed fluctuations have long memory (are slow) if the

ACF is a slowly decreasing function of time when compared to the timescale

of an experiment. Equation 13 shows that there are five main parameters that

determine how the ACF depends on time and therefore jointly determine the

total memory of the observed fluctuations. These parameters are: decay rate

of transcriptional fluctuations gz, mRNA rate gr, protein degradation rate gp,

kinetic parameter of protein folding kf, and kinetic parameters of protein

maturation km.
Biophysical Journal 98(12) 2759–2769
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Therefore, estimates of all these parameters are necessary to understand

the origins of the observed fluorescence fluctuations.

The Fourier transform of the ACF (13) gives the power spectrum of the

fluorescent protein fluctuations. Analysis of the spectrum (see Supporting

Material) reveals that the variability generated at the transcriptional level

undergoes low pass filtering. Therefore, fast transcriptional fluctuations

(large gx) will be filtered out. The strength of the filtering depends on gr,

gp, kf, and km. For large values of these parameters, high frequencies have

a smaller contribution to the observed variability.

The above analysis, similar to the more detailed studies (21,23,40), is

important from the point of view of inference. It shows that the filtering

effect influences the identifiability of model parameters. Fast transcriptional

fluctuations will not be present in the fluorescent signal and therefore the

precision of estimates for gz and sz
2 will be limited. In further sections,

we demonstrate that our inference framework can detect this effect and

account for it so that estimates of other model parameters are not affected.
INFERENCE FROM FLUORESCENT MICROSCOPY
EXPERIMENTAL DATA

In this section, we present a method for estimating parame-

ters of the model (Eqs. 1–11) from sequences of single cell

fluorescent microscopy measurements

u ¼ ðut0 ;.; utnÞ: (14)

Let y denote values of the process pm evaluated at times

t0, ., tn,

y ¼
�
pmt0 ;.; pmtn

�
: (15)

Because the linear noise approximation implies Gaussian

distribution, it can be shown (see Supporting Material) that

PðyjQÞ ¼ jðyjmðQÞ;SðQÞÞ; (16)

where Q is a vector of all unknown parameters from

Eqs. 1–11, and j($jm(Q), S(Q)) is a multivariate Gaussian

density with mean vector m(Q) and covariance matrix

S(Q) whose elements can be calculated numerically in a

straightforward way (see Supporting Material).

To find the distribution of the measurements u we define

the relation between the time series of protein concentration

y and the measurements u, assuming that the fluorescent

signal is proportional to the number of fluorescent molecules

with additional measurement error as

uti ¼ lpmti þ eti ; (17)

where l is an unknown proportionality constant and eti is a

measurement error. For mathematical convenience, we

assume that the joint distribution of the measurement error

is normal with mean 0 and known covariance matrix Se, i.e.,

ðet0 ;.; etnÞ� Nð0;SeÞ:

If measurement errors are independent with a constant

variance se
2, then Se ¼ se

2I.
Equations 16 and 17 and the normality of the measure-

ment error imply that the likelihood of the vector u is

Gaussian:
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PðujQÞ ¼ j
�
ujlmðQÞ; l2SðQÞ þ Se

�
: (18)

Henceforth l is an element of vector Q and will be esti-

mated from experimental data. Equation 18 provides the

joint distribution of a single time series. Often not only single

but also many isogenic cells are simultaneously observed

under a fluorescent microscope. In this case, the data matrix

comprises l time series

U ¼
�
uð1Þ;.; uðlÞ

�
: (19)

Because the time series corresponding to different cells is

independent, the likelihood function takes the form

PðUjQÞ ¼
Yl

i¼ 1

j
�
uðiÞ
��lmðQÞ; l2SðQÞ þ Se

�
: (20)

Because the likelihood is given explicitly, both maximum

likelihood and a Bayesian approach can be used in a straight-

forward way. To account for prior information on parame-

ters, our methodology is embedded in the Bayesian paradigm

where the posterior distribution P(QjU) satisfies (41)

PðQjUÞfPðUjQÞpðQÞ: (21)

Equations 20 and 21 allow us to use the standard Metrop-

olis-Hastings algorithm (41) to generate samples from the

posterior P(QjU).
RESULTS

In this section, we show that parameters of extrinsic noise

can be inferred from single-reporter fluorescent microscopy

time series, in contrast to currently available methods that

require double-reporter gene experimental data (3,9). In

addition, we estimate the kinetic parameters of gene expres-

sion such as the transcription profile and the translation rate.

Also, the scaling factor l that relates the fluorescent signal to

the number of matured fluorescent proteins can be inferred

from data.

The estimation of the model parameters is possible under

the assumption that informative prior distributions for degra-

dation rates gr and gp are obtained in additional experiments.

These experiments are often not difficult to conduct (42).

Similarly, we use informative prior distributions for the

parameters of the protein maturation process. These values

are not gene- or promoter-dependent but characterize the

fluorescent reporter. They can either be found in the literature

(22) or estimated in experiments similar to those used to

obtain degradation rates (42).

Because the transcription and translation rates and the

parameters of extrinsic noise (decay rate and variance)

provide the insightful explanation of the observed fluores-

cent variability, our method can be seen as a quantification

of different types of stochastic behaviors. To demonstrate

its applicability we consider two examples—the first is an



TABLE 1 Parameter values that correspond to the four

different noise characteristics
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inference from steady-state fluctuations, and the second is

based on oscillatory, out-of-steady-state expression.

Parameter A B C D Prior distributions

gr 0.44 0.44 0.44 0.1 G(0.44, 0.01)

gp 0.52 0.52 0.52 0.52 G(0.52, 0.01)

b 100 200 200 0.5 Exp(1000)

kp 1 0.5 0.5 30 Exp(1000)

gz 5 0.5 0.01 5 Exp(10)

sz 1 0.1 0.002 1.25 Exp(10)

l 1 1 1 1 Exp(10)

km 4.16 4.16 4.16 4.16 G(4.16, 0.01)

kf 0.74 0.74 0.74 0.74 G(0.74, 0.01)

All rates given are per hour. These values give rise to the four different types

of stochastic behavior (Fig. 1) and have been used to generate data to obtain

the estimates presented in Table 2 and Fig. 2. Last column contains prior

distributions used for estimation.
Stationary fluctuations

In this section, we consider a gene that is expressed at steady

state by assuming that the deterministic component of the

transcription rate is constant (i.e., t(t)¼ b). Using a modified

version of Gillespie’s algorithm (38) that allows for fluctua-

tion in reaction rates (see Supporting Material for details), we

generated 50 time series for parameter values that give rise to

four different types of stochastic fluctuations. The parame-

ters values are given in Table 1 and the corresponding fluo-

rescence signals are plotted in Fig. 1.

Type A represents fast transcriptional fluctuations (half-

life 8 min) that, due to the low-pass filtering effect, have rela-

tively small impact on the observed signal. In addition, the

mRNA and protein degradation rates gr and gp are relatively

large so that the observed variability demonstrates rather

homogeneous, short memory behavior.

Types B and C demonstrate the effect of long (half-life

83 min) and very long (half-life 69 h) transcriptional

memory. The degradation rates of mRNA and protein gr

and gp are large (similarly to type A) so that the observed

long-term memory behavior at the fluorescent protein level

is a result of the slow transcriptional fluctuations.

As the ACF in Eq. 13 indicates, slow fluorescence fluctu-

ations may appear which are not necessarily due to long

memory in transcription but are, for instance, due to a low

mRNA degradation rate. This regime of behavior is reflected

in type D where long-term memory of fluorescence appears

despite short-term memory of the transcriptional fluctuations

(half-life 8 min).

The results of the inference are presented in Table 2,

Figs. 2 and 3. All kinetic parameters of gene expression,

particularly the transcription and translation (b, kp) rates as

well as the proportionality constant l, can be estimated

with reasonable precision. For the cases with slow extrinsic

fluctuations (B and C), the parameters of the extrinsic noise

gz and s2
z have been estimated from data. In cases A and D

where extrinsic fluctuations are fast the obtained posterior

distribution are not much different from the uninformative

prior distributions (Fig. 3). This is due to a lack of informa-

tion about these parameters in the data, which results from

low-pass filtering predicted by the analysis of the power

spectral density (Supporting Material). Although we cannot

precisely estimate the values of gz and s2
z, we can detect

the filtering effect that is revealed by the similarity of the

prior and posterior distributions. This is presented in

Fig. 3, where prior and posterior distributions for these

parameters are plotted. We used uninformative exponential

priors (see Table 1). In contrast to cases A and D, the poste-

riors and prior distributions are significantly different for

cases B and C as the slow extrinsic fluctuations are displayed

by the data.
This example demonstrates that our method can detect the

influence of extrinsic fluctuations on observed variability,

and that if enough information is present in the data, the

half-life and variance of the extrinsic fluctuations can be

accurately estimated.

The separation of slow and fast fluctuations can be

achieved by fitting a two-component autocorrelation func-

tion as shown in Rosenfeld et al. (3). Nevertheless, such an

ad hoc procedure will not provide information about the

kinetic parameters of gene expression and cannot distinguish

between the sources of fast and slow fluctuations. Moreover,

Eq. 13 shows that fluorescent fluctuations can contain more

than two timescales. Therefore, our method provides a more

insightful quantification method. However, its application

requires prior knowledge about degradation and maturation

rates.
An oscillatory gene

Most often, experimental data exhibit nonequilibrium

behavior (9,31). Theoretical models of gene expression

have focused on analysis of steady-state distributions

(4,6,7) with relatively little work done to analyze nonequilib-

rium protein fluorescent trajectories (9,32). In this section we

demonstrate that our method can be applied to a system that

never reaches a steady state. Although we draw similar

conclusions to those in the previous section, this study

demonstrates that the method can be applied to a variety of

biologically relevant experiments (9,31). We use oscillatory

dynamics (similarly as in (9)) as an example of nonequilib-

rium expression. In this case the deterministic component

t(t) of the transcription process kr(t) is modeled as

tðtÞ ¼ b0sin

�
2p

24
ðb1t þ b2Þ

�
þ b3: (22)

Both slow (half-life 3.5 h) and fast (half-life 21 min)

regimes of transcriptional fluctuations are considered (see

Table S1 in the Supporting Material for all parameter
Biophysical Journal 98(12) 2759–2769



FIGURE 1 Different noise characteristics ex-

hibited in the fluctuations of fluorescent signal.

(A) Fast extrinsic fluctuations. (B) Medium extrin-

sic fluctuations. (C) Slow extrinsic fluctuations.

(D) Fast extrinsic fluctuations and long mRNA

half-life. Data has been generated using the

Gillespie algorithm (see Supporting Material) with

parameters presented in Table 1.
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values). Fig. 4 shows data generated using Gillespie’s algo-

rithm (see Supporting Material). As presented in Table S1

and Fig. 5, the parameters of transcription and translation

processes are estimated with accurate precision. For the

case of slow extrinsic fluctuations, the parameters gz and

s2
z are also inferred precisely. In the case of fast extrinsic fluc-

tuations, the inferred posterior distributions of gz and s2
z are
TABLE 2 Posterior medians and 95% credibility intervals

Parameter Estimate A Estimate B

gr 0.46 (0.34–0.58) 0.38 (0.27–0.51

gp 0.49 (0.36–0.61) 0.54 (0.37–0.7)

b 95.61 (32.90–599.35) 223 (24.18–143

kp 0.93 (0.07–2.94) 0.46 (0.04–2.09

gz 14.34 (4.23–30.24) 0.61 (0.36–1.23

s2
z 5.17 (0.21–19.11) 0.15 (0.05–0.59

l 1.04 (0.78–1.29) 0.95 (0.69–1.25

km 4.16 (3.98–4.31) 4.16 (3.97–4.31

kf 0.75 (0.57–0.90) 0.69 (0.54–0.85

Estimates A–D each corresponds to inference from 100 independent time serie

Data were extracted every 15 min and 101 point per trajectory were collected. In

to each data point. For estimation, variance of the measurement error was assume

20,000 iterations of a run of 30,000 MCMC iterations. To ensure identifiability of

maturation parameters, kf and km informative prior distributions are available (se

noninformative.

Biophysical Journal 98(12) 2759–2769
not much different from the uninformative prior distributions,

which demonstrate the detection of the filtering effect.
Necessity of all model components

We find that all the components of the model (1–11,22) are

necessary to ensure reliable interpretation of the fluorescent
Estimate C Estimate D

) 0.44 (0.27–0.6) 0.1 (0.07–0.11)

0.54 (0.42–0.68) 0.5 (0.38–0.61)

3) 336 (92–1255) 0.44 (0.28–0.91)

) 0.38 (0.04–1.3) 26.20 (10.37–43.8)

) 0.01 (0.006–0.014) 6.36 (0.9–25.44)

) 0.002 (0.001–0.003) 7.016 (0.30–25.3)

) 0.99 (0.73–1.20) 1.07 (0.82–1.32)

) 4.16 (3.96–4.31) 4.16 (3.97–4.305)

) 0.73 (0.55–0.87) 0.71 (0.54–0.85)

s generated using Gillespie’s algorithm with parameters given in Table 1.

dependent and normally distributed error with variance s2
e ¼ 1 was added

d to be known. Rates given are per hour. The estimates are based on the final

all model parameters, we assumed that, for both degradation rates and protein

e Table 1). Prior distributions for all other parameters were specified to be



FIGURE 2 Posterior distributions corresponding to estimates presented in Table 2. (Solid lines) Kernel density estimators of the posterior distributions

obtained from MCMC samples. (Solid points) True value of the parameters.
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FIGURE 3 Detection of extrinsic noise in

steady-state data. Prior distributions (red line) and

posterior distributions (black line) of parameters

gz (top row) and s2
z (bottom row). Posterior distri-

butions correspond to estimates given in Table 2.

For fast extrinsic fluctuations (A and D), prior and

posterior distribution are similar, demonstrating

that extrinsic fluctuations have been filtered out.

In contrast, posterior distributions for slow extrinsic

fluctuation (B and C) are significantly different

from prior distributions and represent information

about extrinsic fluctuations contained in the data.
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signal. To show this, we consider two submodels of model

(1–11,22). The first submodel assumes immediate matura-

tion, i.e., we assume that we observe

uti ¼ lpti þ eti and kf ¼ km ¼ 0:

The second submodel assumes immediate maturation and

lack of extrinsic noise, i.e.,

gz ¼ s2
z ¼ 0

We have generated 400 independent trajectories from

the full model using Gillespie’s algorithm (see Supporting

Material), assuming that the deterministic part of transcrip-

tion is oscillatory, as given by Eq. 22. We intentionally simu-

lated a large data set in this example to minimize uncertainty

about the model parameters arising from any shortage of

data. Then we used the full model (1–11,22) and both sub-

models to perform inference from the generated data. The

results are presented in Table 2 in the Supporting Material.

As already demonstrated, estimation using models from

Eqs. 1–11 and 22 provides accurate values. Because a large

data set has been used, this demonstrates that application of

the linear noise approximation does not result in any signif-

icant estimation bias. Inference using submodel 1 results in

substantial bias in the estimates of the translation rate kp
Biophysical Journal 98(12) 2759–2769
and of the phase shift parameter b2. This demonstrates that

the incorporation of the protein maturation process is neces-

sary to obtain the underlying transcription profile.

Estimates of all model parameters were subject to substan-

tial bias if submodel 2 was used. As intuitively expected, this

bias decreases as both protein maturation process and

extrinsic fluctuations become fast enough (data not shown).

Nevertheless, fast maturation and fast extrinsic fluctuations

are not common (3,20,22,38) and therefore our method

provides a much needed and convenient tool to interpret a

fluorescent signal in the presence of slow extrinsic noise

and slow maturation.

DISCUSSION

The aim of this article is to suggest a reliable framework for

the interpretation of fluorescent reporter gene, single-cell,

steady-state, and out-of-steady-state data. We have devel-

oped a model that shows how the observed variability

depends on the kinetic parameters of a fluorescent reporter

expression. The model is combined with a statistical infer-

ence framework that allows us to explain the behavior

observed in an experiment in terms of the underlying param-

eter values. Apart from stochasticity resulting from random-

ness of transcription, translation, and degradation events, our



FIGURE 4 Different noise characteristics exhibited in the fluctuations of

the fluorescence level for out-of-steady-state expression. (Top) Fast extrinsic

fluctuations. (Bottom) Slow extrinsic fluctuations. Data generated using

Gillespie’s algorithm using parameters presented in Table S1 of Supporting

Material.

FIGURE 5 Detection of extrinsic noise in out-of-steady-state data. Prior

distributions (red line) and posterior distributions (black line) of parameters

gz (top row) and s2
z (bottom row). Distributions correspond to the estimates

for an oscillatory gene given in Table S1 in Supporting Material. Fast

extrinsic fluctuations are not exhibited in the data, therefore prior and poste-

rior distributions are similar. In case of slow extrinsic fluctuations, posterior

distribution is significantly distinct from prior distribution and contains

information about extrinsic noise present in the data. Prior distributions

used in both cases are the same, but look merely different due to the different

y-axis scales.
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approach accounts for variability arising from the kinetics of

fluorescent protein maturation as well as extrinsic noise.

Because the sources of extrinsic variability are currently

unknown, we modeled it as fluctuations in transcription.

Although this assumption may be or may not be true for

any particular experimental system, the methodology pre-

sented here may be used to build analogous models with

different extrinsic noise sources and can be combined with

the statistical model selection framework (43) to investigate

origins of extrinsic variability. In the context of this article,

the method allows us to infer properties of extrinsic noise

such as strength and half-life from single reporter-gene

time-lapse data, whereas other established methods require

double reporter-gene experiments.

To perform parameter inference we used the linear noise

approximation to derive an explicit formula for the likeli-

hood of fluorescent reporter gene data measured with error.

The procedure suggested here is implemented in a Bayesian

framework using Markov chain Monte Carlo (MCMC)

simulation to generate posterior distributions. We assure

identifiability of model parameters by assuming that infor-

mative prior distributions for mRNA and protein degradation

rates as well as maturation parameters of fluorescent reporter

are available and also that the variance of measurement error

is known. Therefore, the disadvantage of this approach is

that it requires additional prior experiments to determine
these parameters; nevertheless, they can be measured in

a relatively straightforward way described in Gordon et al.

(42). For some fluorescent proteins such as GFP, maturation

rates can be found in Tsien (22). We have successfully tested

our approach using data simulated with Gillespie’s algorithm

and demonstrated that protein maturation and extrinsic noise

must be taken into account to reliably interpret the fluores-

cent signal.

We also investigated how the maturation process and

transcriptional extrinsic noise influence the dynamic proper-

ties of the fluorescence fluctuations as characterized by the

ACF and the power spectral density. These investigations

revealed that both processes significantly affect the rate at

which the ACF decays. Furthermore, they showed that the

maturation process works as a low-pass filter that filters

out fast fluctuations in the transcription rate.

In the field of quantitative gene expression, promoter-fluo-

rescent-protein fusions are commonly used as reporters of

transcriptional activity. This technique is used to address

many important questions, particularly to investigate the

ability of a living cell to grow, divide, sense, and respond

to its environment in the presence of spontaneous
Biophysical Journal 98(12) 2759–2769
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fluctuations in their biochemical machinery. Experiments

focused on establishing the origins of variability in gene

expression observed from isogenic cell populations have

influenced the view of how genes are regulated and how

variability between cells arises (3,11,24). Recent investiga-

tions draw attention to the assumption in the current studies

that the fluorescent protein expression reflects the endoge-

nous protein expression (21,23,44), potentially leading to

errors in interpretation. Here we confirm these findings indi-

cating that to accurately explain the magnitude, origins, and

temporal dynamics of variability in gene expression from

fluorescence measurements, a mathematical model is

required that accounts for the properties of the reporter

protein. Our novel inference framework accounts for this

factor and therefore allows us to reliably obtain a dynamical,

detailed picture of the noise in terms of the model parame-

ters.
SUPPORTING MATERIAL

Supporting Material containing derivation of theoretical results and details

about algorithm implementation is available at http://www.biophysj.org/

biophysj/supplemental/S0006-3495(10)00365-6.
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29. Heron, E. A., B. Finkenstädt, and D. A. Rand. 2007. Bayesian inference

for dynamic transcriptional regulation; the Hes1 system as a case study.

Bioinformatics. 23:2596–2603.
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