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We present a novel and simple method to numerically calculate
Fisher informationmatrices for stochastic chemical kinetics models.
The linear noise approximation is used to derive model equations
and a likelihood function that leads to an efficient computational
algorithm. Our approach reduces the problem of calculating the
Fisher information matrix to solving a set of ordinary differential
equations. This is the first method to compute Fisher information
for stochastic chemical kinetics models without the need for Monte
Carlo simulations. This methodology is then used to study sensitiv-
ity, robustness, and parameter identifiability in stochastic chemical
kinetics models. We show that significant differences exist be-
tween stochastic and deterministic models as well as between
stochastic models with time-series and time-point measurements.
We demonstrate that these discrepancies arise from the variability
in molecule numbers, correlations between species, and temporal
correlations and show how this approach can be used in the ana-
lysis and design of experiments probing stochastic processes at the
cellular level. The algorithm has been implemented as a Matlab
package and is available from the authors upon request.

Understanding the design principles underlying complex bio-
chemical networks cannot be grasped by intuition alone (1).

Their complexity implies the need to build mathematical models
and tools for their analysis. One of the powerful tools to elucidate
such systems’ performances is sensitivity analysis (2). Large
sensitivity to a parameter suggests that the system’s output can
change substantially with small variation in a parameter. Similarly
large changes in an insensitive parameter will have little effect on
the behavior. Traditionally, the concept of sensitivity has been ap-
plied to continuous deterministic systems described by differen-
tial equations to identify which parameters a given output of the
system is most sensitive to; here, sensitivities are computed via
the integration of the linearization of the model parameters (2).

In modeling biological processes, however, recent years have
have witnessed rapidly increasing interest in stochastic models
(3), as experimental and theoretical investigations have demon-
strated the relevance of stochastic effects in chemical networks
(4, 5). Although stochastic models of biological processes are
now routinely being applied to study biochemical phenomena
ranging from metabolic networks to signal transduction pathways
(6), tools for their analysis are in their infancy compared to the
deterministic framework. In particular, sensitivity analysis in a
stochastic setting is usually, if at all, performed by analysis of a
system’s mean behavior or using computationally intensive
Monte Carlo simulations to approximate finite differences of a
system’s output or the Fisher information matrix with associated
sensitivity measures (7, 8). The Fisher information has a promi-
nent role in statistics and information theory: It is defined as
the variance of the score and therefore allows us to measure
how reliably inferences are. Geometrically, it corresponds to the
curvature around the maximum value of the log likelihood.

The interest in characterizing the parametric sensitivity of
the dynamics of biochemical network models has two important
reasons. First, sensitivity is instrumental for deducing system
properties, such as robustness (understood as stability of behavior
under simultaneous changes in model parameters) (9). The con-

cept of robustness is of significance, in turn, as it is related to
many biological phenomena such as canalization, homeostasis,
stability, redundancy, and plasticity (10). Robustness is also rele-
vant for characterizing the dependence between parameter values
and system behavior. For instance, it has recently been reported
that a large fraction of the parameters characterizing a dynamical
system are insensitive and can be varied over orders of magnitude
without significant effect on system dynamics (11–13).

Second, methods for optimal experimental design use sensitiv-
ity analysis to define the conditions under which an experiment is
to be conducted to maximize the information content of the data
(14). Similarly, identifiability analysis uses the concept of sensi-
tivity to determine a priori whether certain parameters can be
estimated from experimental data of a given type (15).

We use the linear noise approximation (LNA) as a continuous
approximation to Markov jump processes defined by the chemi-
cal master equation (CME). This approximation has previously
been used successfully for modeling as well as for inference
(16, 17, 18). Applying the LNA allows us to represent the Fisher
information matrix (FIM) as a solution of a set of ordinary dif-
ferential equations (ODEs). We use this framework to investigate
model robustness, study the information content of experimental
samples and calculate Cramér–Rao (CR) bounds for model
parameters. Analysis is performed for time series (TS) and time
point (TP) data as well as for a corresponding deterministic (DT)
model. Results are compared with each other and provide novel
insights into the consequences of stochasticity in biochemical
systems. Two biological examples are used to demonstrate our
approach and its usefulness: a simple model of gene expression
and a model of the p53 system. We show that substantial differ-
ences in the structure of FIMs exist between stochastic and
deterministic versions of these models. Moreover, discrepancies
appear also between stochastic models with different data types
(TS, TP), and these can have significant impact on sensitivity,
robustness, and parameter identifiability. We demonstrate that
differences arise from general variability in the number of mole-
cules, correlation between them, and temporal correlations.

Chemical Kinetics Models
We consider a general system of N chemical species inside a fixed
volume and let x ¼ ðx1;…;xNÞT denote the number of molecules.
The stoichiometric matrix S ¼ fsijgi¼1;2…N;j¼1;2…R describes
changes in the population sizes due to R different chemical
events, where each sij describes the change in the number of mo-
lecules of type i from Xi to Xi þ sij caused by an event of type j.
The probability that an event of type j occurs in time interval ½t;tþ
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dtÞ equals f jðx;Θ;tÞdt. The functions f jðx;Θ;tÞ are called transition
rates and Θ ¼ ðθ1;…;θLÞ is a vector of model parameters. This
specification leads to a Poisson birth and death process with tran-
sition densities described by the CME (see SI Appendix). Unfor-
tunately, the CME is not easy to analyze and hence various
approximations have been developed. As shown in refs. 16–19,
the linear noise approximation provides a useful and reliable
framework for both modeling and statistical inference. It is valid
for systems with large number of reacting molecules and is an ana-
logy of the central limit theorem for Markov jump processes de-
fined by CME (20). Biochemical reactions are modeled through a
stochastic dynamic model that essentially approximates a Poisson
process by an ODEmodel with an appropriately defined noise pro-
cess. Within the LNA a kinetic model is written as:

xðtÞ ¼ φðtÞ þ ξðtÞ [1]

_φ ¼ SFðφ;Θ;tÞ [2]

dξ ¼ Aðφ;Θ;tÞξþ Eðφ;Θ;tÞdW; [3]

where

Fðφ;Θ;tÞ ¼ ðf 1ðφ;Θ;tÞ;…;f lðφ;Θ;tÞÞ [4]

fAðφ;Θ;tÞgik ¼ ∑
R

j¼1

sij
∂f j
∂ϕk

[5]

Eðφ;Θ;tÞ ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðFðφ;Θ;tÞÞ

p
: [6]

Eq. [1] divides the system’s state into a macroscopic state,
φðtÞ ¼ ðϕ1ðtÞ;…;ϕNðtÞÞ, and random fluctuations, ξðtÞ. Themacro-
scopic state is described by anODE [2], the macroscopic rate equa-
tion (MRE), which in general needs to be solved numerically.
Stochastic fluctuations ξ are governed by a Wiener process (dW )
driven linear stochastic differential Eq. [3] with an explicit solution
readily available (see SI Appendix). The varianceV ðtÞ of the system’s
state x can be explicitly written in terms of an ODE

dV ðtÞ
dt

¼ Aðφ;Θ;tÞV ðtÞ þ V ðtÞAðφ;Θ;tÞT þ Eðφ;Θ;tÞEðφ;Θ;tÞT;
[7]

which is equivalent to the fluctuation-dissipation theorem. Similarly,
temporal covariances are given by

covðxðsÞ;xðtÞÞ ¼ V ðsÞΦðs;tÞT for t ≥ s; [8]

where Φðs;tÞ is the fundamental matrix of the nonautonomous sys-
tem of ODEs

dΦðs;tÞ
dt

¼ Aðφ;Θ;tÞΦðs;tÞ; Φðs;sÞ ¼ I: [9]

Eqs. [1]–[9] are used to derive the likelihood of experimental data.
To account for different experimental settings we consider three
types of data: time-series (TS), time-point (TP), and deterministic
(DT). For TS measurements are taken from a single trajectory (fol-
lowing the same cell) and therefore are statistically dependent; in
practice TS data are usually obtained using fluorescent microscopy.
TP measurements at each time point are taken from different tra-
jectories (end time points of trajectories following different cells)
and are thus independent. These data reflect experimental setups
where the sample is sacrificed and the sequence of measurements
is not strictly associated with the same sample path (e.g., flow-cyto-
metry, quantitative polymerase chain reaction). DT data are defined
as a solution of MRE [2] with normally distributed measurement
error with zero mean and variance σ2ϵ and refer to measurements
averaged over population of cells.

Suppose measurements are collected at times t1;…;tn. For
simplicity we consider the case where at each time point ti all
components of xi are measured. In the SI Appendix, we demon-
strate that the same analysis can be done for a model with unob-
served variables at no extra cost other than more complex
notation. First let xQ ≡ ðxt1 ;…;xtnÞ be an nN column vector that
contains all measurements of type Q, where Q ∈ fTP;TS;DTg. It
can be shown (see SI Appendix) that

xQ ∼MVNðμðΘÞ;ΣQðΘÞÞ [10]

where MVN denotes the multivariate normal distribution,

μðΘÞ ¼ ð ~φðt1Þ;…; ~φðtnÞÞ; [11]

and ~φðtÞ is a solution of the MRE [2] such that ~φð0Þ ¼ φ0 and
ΣQ is a ðnNÞ × ðnNÞ symmetric block matrix ΣQðΘÞ ¼
fΣQðΘÞði;jÞgi¼1;…;N;j¼1;…;N such that

ΣQðΘÞði;jÞ ¼

8>>><
>>>:

~V ðtiÞ for i ¼ j Q ∈ fTS;TPg
σ2ϵI for i ¼ j Q ∈ fDTg
0 for i < j Q ∈ fTP;DTg
~V ðtiÞΦðti;tjÞT for i < j Q ∈ fTSg

; [12]

and ~V ðtÞ is a solution of Eq. [7] for a given initial condition
~V ð0Þ ¼ V 0. The MVN likelihood is a result of our LNA and is
analogous to the central limit theorem for the CME. It is valid
under the assumption of large number of molecules reacting
in the system (20).

Fisher Information Matrix
To calculate the FIM† for the model [1]–[3], first, suppose that
a random variable X has an N-variate normal distribution with
density ψ , mean μðΘÞ ¼ ðμ1ðΘÞ;…;μNðΘÞÞT , and covariance
matrix ΣðΘÞ. The FIM is then defined (21) as IðΘÞ ¼
fIðΘÞk;lgk;l¼1;…;L, where

IðΘÞk;l ¼ EΘ

��
∂
∂θk

logðψðX;ΘÞÞ
��

∂
∂θl

logðψðX;ΘÞÞ
��

: [13]

Then IðΘÞi;j can be expressed as

IðΘÞk;l ¼
∂μT

∂θk
ΣðΘÞ ∂μ

∂θl
þ 1

2
trace

�
Σ−1 ∂Σ

∂θk
Σ−1 ∂Σ

∂θl

�
: [14]

The above formula shows that, to calculate FIM for a multivariate
normal distribution, it is enough to calculate the covariance
matrix ΣðθÞ, parameter derivatives of mean ∂μ

∂θk
and parameter

derivatives of the covariance matrix ∂Σ
∂θk
.

In the LNA Eqs. [11] and [12] describe mean and variance,
respectively, of experimental measurements, xQ. The mean is
given as the solution of an ODE, and the variance is either given
as a product of solutions of ODEs (TS), directly as a solution of
an ODE [7] (TP), or is simply constant (DT). Hence, to calculate
the FIM we calculate the derivatives of the solutions of an ODE
with respect to the parameters (22). For illustration, consider an
N dimensional ODE

_z ¼ vðz;θ;tÞ; [15]

where θ is a scalar parameter. Denote by ~zðz0;θ;tÞ the solution of
Eq. [15] with initial condition z0 and let ζðt;θÞ ¼ ∂~z

∂θ. It can be
shown that ζ satisfies (22)

_ζ ¼ Jð~zðtÞ;θ;tÞζ þ ∂
∂θ

vð~z;θ;tÞ; [16]

†In the paper we are interested in the expected FI that under standard regularity
conditions is equivalent to the expected Hessian of the likelihood. The expected FI is
different from observed FI defined as Hessian of the likelihood of given data.
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where Jð~zðtÞ;Θ;tÞ is the Jacobian ∂
∂z vð~z;θ;tÞ. We can thus calculate

derivatives ∂ ~φ
∂θk
, ∂ ~V
∂θk
, and ∂Φðti ;tjÞ

∂θk
that give ∂μ

∂θk
and ∂Σ

∂θk
needed to com-

pute FIM for the model [1]–[3] (see SI Appendix).
The FIM is of special significance for model analysis as it con-

stitutes a tool for sensitivity analysis, robustness, identifiability,
and optimal experimental design as we will show below.

The FIM and Sensitivity. The classical sensitivity coefficient for an
observable Q and parameter θ is

S ¼ ∂Q
∂θ

:

The behavior of a stochastic system is defined by observables that
are drawn from a probability distribution. The FIM is a measure
of how this distribution changes in response to infinitesimal
changes in parameters. Suppose that ℓðΘ;XÞ ¼ logðψðX;ΘÞÞ
and ℓðΘÞ ¼ −E½ℓðΘ;XÞ�. Then,

IðΘÞk;l ¼ −E
�
∂2ℓðΘ;XÞ
∂θk∂θl

�
; [17]

i.e., the FIM is the expected Hessian of ℓðΘ;XÞ. Therefore, if
Θ� is the maximum likelihood estimate of a parameter there is
a L × L orthogonal matrix C such that, in the new parameters
θ0 ¼ CðΘ − Θ�Þ,

ℓðΘÞ ≈ ℓðΘ�Þ − 1

2∑
L

i¼1

λiθ
02
i ; [18]

for Θ near Θ�. From this it follows that the λi are the eigenvalues
of the FIM and that the matrix C diagonalizes it. If we assume
that the λi are ordered so that λ1 ≥ ⋯ ≥ λL, then it follows that
around the maximum the likelihood is most sensitive when θ01 is
varied and least sensitive when θ0L is varied, and λi is a measure of
this. Because θ0i ¼ ΣL

j¼1 Cijðθj − θ�j Þ, we can regard Sij ¼ λ1∕2i Cij as
the contribution of the parameter θj to varying θ0i and thus

S2
j ¼ ∑

L

i¼1

S2
ij [19]

can be regarded as a measure of the sensitivity of the system to
θj. It is sometimes appropriate to normalize this and instead con-
sider

Tj ¼
S2

j

∑
L

i¼1
S2

i

: [20]

Robustness.Related to sensitivity, robustness in systems biology is
usually understood as persistence of a system to perturbations to
external conditions (23). Sensitivity considers perturbation in a
single parameter whereas robustness takes into account simulta-
neous changes in all model parameters. Near to the maximum Θ�
the regions of high expected log-likelihood ℓðΘÞ ≥ ℓðΘ�Þ − ε are
approximately the ellipsoids NSðΘ�;εÞ given by the equation

NSðΘ�;εÞ ¼ fΘ: ðΘ − Θ�ÞTIðΘ�ÞðΘ − Θ�Þ < εg: [21]

The ellipsoids have principal directions given by eigenvectors C
and equatorial radii ðλiÞ−1

2. Sets NS are called neutral spaces
as they describe regions of parameter space in which a system’s
behavior does not undergo significant changes (10) and arise
naturally in the analysis of robustness.

Confidence Intervals and Asymptotics. The asymptotic normality of
maximum likelihood estimators implies that if Θ� is a maximum
likelihood estimator then the NS describe confidence ellipsoids
for Θ with confidence levels corresponding to ε. The equatorial ra-
dii decrease naturally with the square root of the sample size (24).

Parameter Identifiability and Optimal Experimental Design. The FIM
is of special significance for model analysis as it constitutes a clas-
sical criterion for parameter identifiability (15). There exist var-
ious definitions of parameter identifiability and here we consider
local identifiability. The parameter vector Θ is said to be (locally)
identifiable if there exists a neighborhood of Θ such that no other
vector Θ� in this neighborhood gives raise to the same density as
Θ(15). Formula [18] implies that Θ is (structurally) identifiable if
and only if FIM has a full rank (15). Therefore the number of
nonzero eigenvalues of FIM is equal to the number of identifiable
parameters, or more precisely, to the number of identifiable lin-
ear combinations of parameters.

The FIM is also a key tool to construct experiments in such a
way that the parameters can be estimated from the resulting
experimental data with the highest possible statistical quality.
The theory of optimal experimental design uses various criteria
to asses information content of experimental sampling methods;
among the most popular are the concepts of D-optimality that
maximizes the determinant of FIM, and A-optimality that mini-
mize the trace of the inverse of FIM (14). Diagonal elements of
the inverse of FIM constitute a lower-bound for the variance of
any unbiased estimator of elements ofΘ; this is known as the Cra-
mér–Rao inequality (see SI Appendix). Finally, it is important to
keep in mind that some parameters may be structurally identifi-
able, but not be identifiable in practice due to noise; these would
correspond to small but nonzero eigenvalues of the FIM. Max-
imizing the number of eigenvalues above some threshold that
reflects experimental resolution, may therefore be a further cri-
terion to optimize experimental design. But all of these criteria
revolve around being able to evaluate the FIM.

Results
To demonstrate the applicability of the presented methodology
for calculation of FIMs for stochastic models we consider two
examples: a simple model of single gene expression, and a model
of the p53 system. The simplicity of the first model allows us to
explain how the differences between deterministic and stochastic
versions of the model as well as TS and TP data arise. In the case
of the p53 system model the informational content, as well as
sensitivities and neutral spaces are compared between TS, TP,
and DT data.

Single Gene Expression Model. Although gene expression involves
numerous biochemical reactions, the currently accepted consen-
sus is to model it in terms of only three biochemical species
(DNA, mRNA, and protein) and four reaction channels (tran-
scription, mRNA degradation, translation, and protein degrada-
tion) (e.g., refs. 12 and 25). Such a simple model has been used
successfully in a variety of applications and can generate data with
the same statistical behavior as more complicated models (26,
27). We assume that the process begins with the production of
mRNA molecules ðrÞ at rate kr . Each mRNA molecule may
be independently translated into protein molecules ðpÞ at rate kp.
Both mRNA and protein molecules are degraded at rates γr and
γp, respectively. Therefore, we have the state vector x ¼ ðr;pÞ, and
reaction rates corresponding to transcription of mRNA, transla-
tion, degradation of mRNA, and degradation of protein.

FðxÞ ¼ ðkr;kpr;γrr;γppÞ: [22]

Identifiability Study. In a typical experiment, only protein levels are
measured (17, 28). It is not entirely clear a priori what parameters
of gene expression can be inferred; it is also not obvious if and
how the answer depends on the nature of the data (i.e., TS, TP, or
DT). We address these questions below.

We assumed that the system has reached the unique steady
state defined by the model and that only protein level is measured
either as TS

Komorowski et al. PNAS ∣ May 24, 2011 ∣ vol. 108 ∣ no. 21 ∣ 8647

A
PP

LI
ED

M
AT

H
EM

AT
IC
S

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015814108/-/DCSupplemental/Appendix.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1015814108/-/DCSupplemental/Appendix.pdf


yTS ¼ ðpt1 ;…;ptnÞ; [23]

or as TP

yTP ¼ ðpð1Þt1 ;…;pðnÞtn Þ; [24]

where the upper indices for TPmeasurements denote the number
of trajectories from which the measurement have been taken to
emphasize independence of measurements. Results of the analy-
sis are presented in Table S2. For TS data we have four identifi-
able parameters whereas time-point measurements provide
enough information to estimate only two parameters. To some
extent this makes intuitive sense: TS data contain information
about mean, variance, and autocorrelation functions, which can
be very sensitive to changes in degradation rates; TP measure-
ments reflect only information about mean and variance of pro-
tein levels therefore only two parameters are identifiable. On the
other hand, TP measurements provide independent samples that
is reflected in lower Cramér–Rao bounds. Table S2 also contains
a comparison with the corresponding deterministic model. As
one might expect in the deterministic model only one parameter
is identifiable as the mean is the only quantity that is described by
the deterministic model, and parameter estimates are informed
neither by variability nor by autocorrelation.

Perturbation Experiment. To demonstrate that identifiability is not
a model specific but rather an experiment specific feature, we
performed a similar analysis as above for the same model with
the same parameters but with the fivefold increased initial mean
and 25-fold increased initial variance. Results are presented in
Table S3. Some of the conclusions that can be made are hard
to predict without calculating the FIM. The amount of informa-
tion in TS data is now much larger than in TP data (higher de-
terminant) and also CR bounds are now much lower for TP than
for TS data. CR bounds for TS and TP are substantially lower
than for the steady state data (except kr). Interestingly, all four
parameters can be inferred from TS and TP data, but not in the
deterministic scenario. For steady state data all parameters could
only be inferred from TS data (Table S3).

Maximizing the Information Content of Experimental Data. The
amount of information in a sample does not depend solely on
the type of data (TS, TP), but also on other factors that can
be controlled in an experiment. One easily controllable quantity
is the sampling frequency Δ. We consider here only equidistant
sampling and keep number of measurements constant. Therefore
we define Δ as time between subsequent observations Δ ¼
tiþ1 − ti. To show how sampling frequency influences informa-
tional content of a sample for the model of gene expression
we used four parameter sets (Table S1) and assumed that the data
have the form [23]. The amount of information in a sample was
understood as the determinant of the FIM, equivalent to the pro-
duct of the eigenvalues of the FIM. Results in Fig. 1 demonstrate
that our method can be used to determine optimal sampling
frequency, given that at least some rough estimates of model
parameters are known. It is worth noting that equidistant sam-
pling is not always the best option and more complex strategies
have been proposed in experimental design literature.

Differences in Sensitivity and Robustness Analysis in TS, TP, and DT
Versions of the Model. TS, TP, and DT versions of the model differ
when one considers information content of samples, and such dis-
crepancies exist also when sensitivity and robustness are studied.
First, deterministic models completely neglect variability in mo-
lecular species. Variability, however, is a function of parameters,
and like the mean, is sensitive to them. Second, deterministic
models do not include correlations between molecular species.
Third, temporal correlations are neglected in TP and DT models.

To understand these effects we first analyze the analytical form
of means, variances, and correlations for this model (see SI
Appendix). We start with the effect of incorporating variability.
Suppose we consider a change in parameters; e.g., kp, γp by a
factor δ ðkp;γpÞ → ðkp þ δkp;γp þ δγpÞ. The means of RNA and
protein concentrations are not affected by this perturbation,
whereas the protein variance does change (see formulas [33]–[37]
in SI Appendix). This result is related to the number of nonzero
eigenvalues of the FIM. The FIM for the stationary distribution
of this model with respect to parameters kp, γp has only one
positive eigenvalue for the deterministic model and two positive
eigenvalues for the stochastic model.

To study the effect of correlation between RNA and protein
levels ρrp we first note that formulas [33]–[37] in the SI Appendix
demonstrate that at constant mean, correlation increases with
γp when accompanied by a compensating increase in kp. Fig. 2
(left column) presents neutral spaces (21) for parameter pairs for
different values of correlation, ρrp. The differences between DT
and TS are enhanced by the correlation.

Similar analysis reveals that taking account of the temporal cor-
relations also changes the way the model responds to parameter
perturbations. Fig. 2 (right column) shows neutral spaces for three
different sampling frequencies and indicates that the differences
between stochastic and deterministic models decrease with Δ.

Model of p53 System.Themodel of single gene expression is a linear
model with only four parameters and a simple stationary state and
illustrates how the methodology can be used to provide relevant
conclusions and investigate discrepancies between sensitivities of
TS, TP, and DT models. Our methodology, however, can also be
used to study more complex models, and here we have chosen
the p53 signalling system, which incorporates a feedback loop be-
tween the tumor suppressor p53 and the oncogene Mdm2, and is
involved in regulation of cell cycle and response to DNA damage.

We use the model introduced in ref. 29 that reduces the system
to three molecular species, p53, mdm2 precursor, and mdm2, de-
noted here by p, y0 and y, respectively. The state of the system is
therefore given by x ¼ ðp;y0;yÞ, and the deterministic version of the
model can be formulated in terms of macroscopic rate equations
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Fig. 1. Determinant of FIM plotted against sampling frequency Δ (in hours).
We used logarithms of four parameter sets (see Table S1). Sets 1 and 3
correspond to slow protein degradation ðγp ¼ 0.7Þ; and sets 2 and 4 describe
fast protein degradation ðγp ¼ 1.2Þ. We assumed that 50 measurements
ðn ¼ 50Þ of protein levels were taken from the stationary state. Observed
maximum in information content results from the balance between indepen-
dence and correlation of measurements.
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S ¼
1 −1 −1 0 0 0

0 0 0 1 −1 0

0 0 0 0 1 −1

0
@

1
A [25]

_ϕp ¼ bx − axϕp − akϕy
ϕp

ϕp þ k
[26]

_ϕy0 ¼ byϕp − a0ϕy0 [27]

_ϕy ¼ a0ϕy0 − ayϕy: [28]

Informational Content of TS and TP Data for the p53 System. In the
case of the single gene expression model we have argued that TS
data are more informative due to accounting for temporal corre-
lations. On the other hand, TP measurements provide statistically
independent samples, which should increase informational con-
tent of the data. Therefore it is not entirely clear what data type is
better for a particular parameter. If, for instance, a parameter is
entirely informed by a system’s mean behavior than TP data will
be more informative because TP data provide statistically inde-
pendent samples about the mean. Whereas if a parameter is also
informed by temporal correlations, then TS data will turn out to
be more informative. It is difficult to predict a priori which effect
will be dominating. Therefore calculation of FIM and compari-
son of their eigenvalues and diagonal elements is necessary.
Eigenvalues and diagonal elements of FIMs calculated for para-
meters presented in Table S4 are plotted in Fig. S1 and Fig. 3,
respectively. Eigenvalues of the FIM for TS data are larger than
for TP data. Similarly, diagonal elements for all parameters are
larger for TP than for TS data for most parameters difference is
substantial. This indicates that temporal correlation is a sensitive
feature of this system and provides significant information about
model parameters. The lower information content of the TP data
can, however, be compensated for by increasing the number of
independent measurements, which is easily achievable in current

experimental settings (see Fig. S2). For deterministic models the
absolute value of elements of FIM depends on measurement
error variance and therefore FIMs of TS and TP data can not
be directly compared with the DT model.

Sensitivity. The sensitivity coefficients Ti for TS, TP, and DT data
are presented in Fig. 3. Despite differences outlined previously,
here sensitivity coefficients are quite similar for all three types sug-
gesting that the hierarchy of sensitive parameters is to a consider-
able degree independent on the type of data. The differences exist,
however, in contributionsC2

ij (see Fig. S3), suggesting discrepancies
in neutral spaces and robustness analysis that we present below.

Neutral Spaces.Comparison of the neutral spaces [21] for each pair
of data types and for each pair of the parameters are given in Fig. 4
and Figs. S4–S6. The conclusion we can draw from these figures is
that NSs for TS, TP, and DT model exhibit substantial differences;
these differences, however, are limited to certain parameter pairs.

Fig. 2. Neutral spaces for TS and DT versions of the model of single gene
expression for logs of parameters kr and γp. (Left) Differences resulting
from RNA, protein correlation: ρrp ¼ 0.1 (Top) ρrp ¼ 0.5 (Middle), ρrp ¼ 0.9
(Bottom). Correlation 0.5 corresponds to parameter set 3 from Table S1
and was varied by equal-scaling of parameters kp, γp. (Right) Differences
resulting from temporal correlations. We assumed n ¼ 50 and tuned correla-
tion between observation by changing sampling frequency Δ ¼ 0.3 h (Left)
Δ ¼ 3 h (Center) Δ ¼ 30 h (Right). Set 3 of parameters was used (Table S1).
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Fig. 3. (Left) Diagonal elements of FIM for TS and TP versions of p53 model.
Values of FIM for DT verison are not presented as they can not be compared
with those for stochastic models. (Right) Sensitivity coefficients Ti for TS, TP,
DT version of p53 model. FIMs were calculated for parameters presented in
Table S4.

Fig. 4. Neutral spaces for TS, TP, and DT versions of p53 model for logs of
two parameter pairs ða0;akÞ and ðbx;ayÞ. The left column presents differences
resulting form general variability, correlations between species and temporal
correlation (comparison of TS and TP models). The right column shows dif-
ferences due to variability and correlation between species (comparison of TS
and TP models). The top row is an example of parameters for which differ-
ences are negligible, bottom row presents a parameter pair with substantial
differences. FIM was calculated for 30 measurements of all model variables
and Δ ¼ 1 h.
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Differences between NPs of TS and DT models are exhibited in
pairs involving parameters bx, ay; between TS and TP in pairs in-
volving bx; and between TP and DT also pairs involving bx.

This suggests that parameter bx is responsible either for the
variability in molecular numbers or the correlation between spe-
cies, as these are responsible for differences between TP and DT
models. Similarly the lack of differences in pairs involving ay in
comparisons of TP and DT, and their presence in comparison
of TP and TS indicates that parameter ay is responsible for reg-
ulating the temporal correlations. This analysis agrees with what
one might intuitively predict. Parameter bx describes the produc-
tion rate, and therefore the mean expression level of p53, and also
the variability of all components of the system. It is difficult, how-
ever, to say how this parameter influences correlations between
species. Parameter ay, on the other hand, is the degradation rate
of mdm2 and therefore clearly determines the temporal correla-
tion of not only mdm2 but also of p53, because mdm2 regulates
the degradation rate of p53. While heuristic, our analysis of the
neutral spaces nevertheless clearly demonstrates the differences
between the three types ofmodels and creates a theoretical frame-
work for investigating the role of parameters in the stochastic
chemical kinetics systems and without the need to performMonte
Carlo sampling or other computationally expensive schemes.

Discussion
The aim of this paper was to introduce an innovative theoretical
framework that allows us to gain insights into sensitivity and robust-
ness of stochastic reaction systems through analysis of the FIM.We
have used the linear noise approximation (16, 17, 30) to model
means, variances, and correlations in terms of appropriate ODEs.
Differentiating the solution of these ODEs with respect to para-
meters (22) allowed us to numerically calculate derivatives of
means, variances, and correlations, which combined with the nor-
mal distribution of model variables implied by the LNA gave us the
representation of the FIM in terms of solutions of ODEs. To our
knowledge, noothermethod computes FIM for stochastic chemical
kinetics models without the need for Monte Carlo simulations.

Given the role of the FIM in model analysis and increasing
interest in stochastic models of biochemical reactions, our ap-
proach is widely applicable. It is primarily aimed at optimizing or
guiding experimental design, and here we have shown how it can

be used to test parameter identifiability for different data types,
determine optimal sampling frequencies, examine information
content of experimental samples and calculate Cramér–Rao
bounds for kinetic parameter estimates. Its applicability, how-
ever, extends much further: it can provide a rationale as to which
variables should be measured experimentally, or what perturba-
tion should be applied to a system to obtain relevant information
about parameters of interest. Similar strategies can also be em-
ployed to optimize model selection procedures. As demonstrated
here, stochastic data incorporating information about noise struc-
ture are more informative and therefore experimental optimiza-
tion for stochastic models models may be advantageous over
similar methods for deterministic models.

A second topical application area is the study of robustness of
stochastic systems. Interest in robustnesses results from the ob-
servation that biochemical systems exhibit surprizing stability
in function under various environmental conditions. For determi-
nistic models this phenomenon has been partly explained by the
existence of regions in parameter space (neutral spaces) (10), in
which perturbations to parameters do not result in significant
changes in system output. We have demonstrated that even a
very simple stochastic linear model of gene expression exhibits
substantial differences when its neutral spaces are compared with
the deterministic counterpart. Therefore a stochastic system may
respond differently to changes in external conditions than the
corresponding deterministic model. Our study presents examples
of changes in parameters that do not affect behavior of a deter-
ministic systems but may substantially change a probability distri-
bution that defines the behavior of the corresponding stochastic
system. Thus for systems in which stochasticity plays an important
role random effects can not be neglected when considering issues
related to robustness. More information regarding applicability
of our method is available in the SI Appendix and Figs. S7–S13.
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