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A semi-implicit finite element method (FEM) is presented for the two-dimensional computer
simulation of solid-liquid phase change controlled by natural convection and conduction.
The algorithm is based on a combination of (1) a projection method to uncouple velocity
calculations from pressure calculations for incompressible fluid flow, (2) the backward Euler
and explicit Adams-Bashforth schemes to effectively integrate diffusion and advection in
time, and (3) an enthalpy-porosity approach to account for the latent heat effect on a fixed
finite element grid. Credibility of the obtained numerical predictions is investi-
gated through computational model verification and validation procedures. Commonly used
benchm ark problems are employed to verify the algorithm accuracy and performance. The
natural convection of freezing pure water is studied experimentally through the use of
sophisticated full-field acquisition experimental techniques. The measured velocity and
temperature fields are compared with the pertinent calculations. The range of congruity of
the experimental and numerical results is thoroughly studied, and potential reasons of some
disparity in a local structure of the natural convection flow and in the interface shape are
discussed.

INTRODUCTION

The cost-effectiveness of finite element method (FEM) calculations continues
to be significant in the computer simulation of coupled fluid flow and heat transfer
problems. It is commonly known that the finite difference method is superior in
terms of computer storage and CPU time requirements when compared with FEM
analysis. This results from a less sparse form of FEM matrices, due to the use of
irregular grids and high-order polynomial interpolations of the unknown field
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NOMENCLATURE
4 specific heat of liquid T temperature
[ specific heat of solid T vector of nodal values of temperature
C porosity constant v; velocity vector component
C heat capacity matrix Vip given velocity on boundary
D divergence matrix v; vector of nodal values of velocity
f volumetric liquid fraction component
F, right-hand side of momentum w weighting function
equation X; global coordinate
Fy right-hand side of energy equation r domain boundary
g component of gravity vector At time step
G gradient matrix ¢ local coordinate
h convective heat transfer coefficient S kinematic viscosity
H specific total enthalpy Hn dynamic viscosity
H vector of nodal values of enthalpy P density
K conductivity of mixture 0] Lagrange multiplier of projection
K* advection matrix method
| '¢4 convection matrix b4 stream function
K¢ diffusion matrix Q volume of analyzed domain
K$ conduction matrix
L latent heat Subscripts
M, shape function for geometry
M mass matrix b boundary value
N, shape function for velocity and ¢ cold wall
temperature env pertinent to environment
NP number of pressure nodes in element h hot wall
NP, number of geometric nodes in element i, j coordinate direction
NV number of velocity nodes in element k, I, p local node number in element
P motion pressure I pertinent to liquid
p vector of nodal values of pressure ref reference state
P, shape function for pressure s pertinent to solid
Pr Prandtl number r pertinent to boundary I’
R residuum of partial differential Q pertinent to domain
equation
Ra Rayleigh number Superscripts
Re Reynolds number
S, additional source term m current iteration
t time n current time step

property. But it also comes from the application of simultaneous solution algo-
rithms, where a whole set of continuity, Navier-Stokes, and energy equations is
solved concurrently, as commonly used in the early FEM analysis of incompressible
fluid flows (e.g., [1, 2]). Therefore, over the last decade, attempts have been made
to improve the computational efficiency of FEM simulation of field theory prob-
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lems through the use of various sophisticated acceleration techniques. Most of
these techniques take their origin from the finite difference methods, specifically,
the following.

e Approximate solution to the Navier-Stokes equations for an incompressible
fluid can be found by the use of the projection method [3, 4], where velocity
is uncoupled from pressure. The keyword here is “sequential,’”’ which
means first velocity is solved and then pressure, rather than simultaneously
solving the coupled set of equations.

e A semi-implicit time marching scheme can be applied where viscous /diffu-
sion terms are treated implicity, whereas advection terms are treated
explicitly [4-6]. The main attribute of this approach is that it allows
replacement of a set of the coupled fluid flow and heat transfer equations
by several smaller symmetric linear systems where effective algebraic
solvers can be used (e.g., [7]).

e In numerical modeling of solid-liquid phase change transition, the energy
conservation can be analyzed via an enthalpy approach on a fixed grid
[8-11]. With a correctly defined enthalpy-temperature relation, the full
effect of the latent heat can be accurately modeled without the need to
know an exact position of the phase interface. And thus a cumbersome
front tracking algorithm is avoided.

In this paper the FEM model, based on the combination of all aforemen-
tioned techniques, is presented for coupled fluid flow and heat transfer with
solid-liquid phase change phenomena occurring in a one-component or a binary
system.

It is well established that an efficient computer simulation can, in many
engineering problems, be a reasonable alternative to the laborious and often
prohibitively expensive laboratory testing of a new product. But first the credibility
of these numerical predictions must be proved. This consists of two processes: code
verification and validation. Much effort has been generally focused on accuracy of
numerical models. This verification procedure is based on grid refinement studies
and comparison with other available solutions of some benchmark problems.
Although such a study is obviously necessary, this by itself is not sufficient to
establish confidence in the numerically obtained predictions. Indeed, for engineers
and scientists, nature is the final jury. This means that the degree to which
inevitable simplifications of physical and mathematical models reflect reality should
be established. This code validation procedure is carried out by extensively compar-
ing numerical results with trustworthy detailed experimental measurements. Both
these issues are addressed in this paper in the context of the presented FEM model
and its algorithm. Commonly used benchmark problems are solved to verify the
algorithm accuracy and performance. Next, natural convection in pure and freezing
water is studied experimentally, through the use of sophisticated full-field acquisi-
tion experimental techniques. The measured velocity and temperature fields are
compared with the pertinent calculations in the code validation analysis. The paper
concludes with a discussion of the scope of congruity and potential reasons for
some disparity between the calculated results and experimental findings.
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MATHEMATICAL MODEL AND NUMERICAL ALGORITHM

Under the assumptions that the fluid is incompressible and Newtonian and
the flow is laminar, the transport of mass, momentum, and energy is governed by
the following set of partial differential equations (PDEs):

Ov,
o
A o,
p?[ pv}O’)_xj_O’)_xj /uO—)_xj gl(p pref) O’)_Xl Sv,- (1)

O( pPH) O( pPH) 0 oT
+v. = — | K—
Ot J 5xj 5xj 5xj

The buoyancy forces g P — p,.;) are defined relative to some reference state PO,
This means that p is the so-called motion pressure [12]. To account for the latent
heat effect in the phase change, occurring over a finite range of temperatures or at
a fixed temperature, the general enthalpy method of Swaminathan and Voller [11]
is adopted.

The total enthalpy

pH= (1 —f)p,H, +fpH, (2)

is given by the weighted sum of sensible enthalpies of the solid and liquid phases
and the latent heat effect L, where

H = IT c(T) dT
Trcf

(3)

T
H1=f e(T) dT +L
T, f

The theory of mixtures is used to define the thermophysical properties in a
two-phase region through a volumetric liquid fraction f, where 0 < /< 1. This
gives

p=(=1p */p
(4)
K= (1—/f)K, +/K,

This region, called a mushy zone, is treated as a porous medium [10, 11]. In this
enthalpy-porosity model an additional source term S, appears in the momentum
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equation, where

(1= /)
S"i Cf—gfvi (5)

This mimics the Carman-Kozeny model of flow and thus, gradually, reduces
velocity in the solidifying zone [10].

To obtain a discrete form of Egs. (1), two consecutive discretization steps are
carried out. First, the FEM spatial discretization, defined by the piecewise interpo-
lations of the domain geometry and field unknowns, is used:

(O =m)x,  p=12,...,NP

g

(X, 1) = N(3) v (0)
vi(Xx (X)) v ©)

T(x,1) = N (T, (1) k=1,2,...,NV
p(X, 1) = P(X)p,(1) 1=1,2,...,NP

along with the weighted residual approach [13]. The global error minimization
technique is used where the residual Ry and Ry of the PDE and pertinent
boundary conditions are weighted within a whole domain € and its boundary I’
through weighting functions W,, defined in a local element basis:

fQWkRQ dQ—ferRl— dl =0 (7)

This leads to a set of ordinary differential equations in the semidiscrete FEM
model, which in a commonly used matrix notation has the form

D-v=0

dv,; B
M:— +[K°(v) Ky, = —G-p +F =123 (8)

dH
C — +K;(v)-H +K{ T =F;

Polynomials N, and P, are of the same order in the equal-order interpolation and
are of different orders in the nonequal one [13]. In the Galerkin method, applied in
the presented model, the weighting functions W, coincide with the pertinent
interpolation polynomials. M, C, K¢, K}, K¢, K‘.}, G, and D are the mass, heat
capacity, advection, convection, diffusion, conduction, pressure gradient, and diver-
gence matrices, respectively. Here, v;, p, H, T, and F,, F; stand for vectors of nodal
unknowns and the right-hand sides of the momentum and energy equations,
respectively.

The second discretization step is integration of Eq. (8) in time by use of time
marching finite difference schemes to obtain a set of algebraic equations for a fully
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discrete FEM model:

D-v' =0
ntl _ _n
Vi Vi +Kxd n +1
MA—[ K Y
. 3 | B B
=Fl__G,pn 1 _KC(vn),vn__KC(vn 1),vn 1 (9)
2 2
Hn+1 — H"

C- +Kd,Tn+l

A¢ T

3 1
- FT — (EKE(VH) ,Hn — EI(;(vnfl) ,Hnl)

Pressure, which is an inherently implicit variable in an incompressible fluid
model, must be treated implicitly. So the continuity equation has to be treated as
such. We would be happy to extend this treatment to all other terms of the
momentum and energy equations. Unfortunately, this approach creates the need
for simultaneous solution of the whole set of fully coupled equations. In practice,
this is prohibitively expensive and time consuming. Therefore we have used the
semi-implicit approach where the diffusion terms are treated by the fully implicit
Euler scheme, whereas the convective terms are calculated at two previous time
steps in the explicit Adams-Bashforth method.

Further reduction of CPU time can be obtained by setting up an algorithm,
where velocity calculations are uncoupled from pressure ones. In the presented
code the projection methods [4] are adopted where at each time step calculations
are performed in the following three-step cycle.

For a given initial kinematic pressure and divergence-free velocity fields,

1. Solve the momentum equation

0’3‘7;1 +1 O’);n +1 O’) O’);n +1 1 é)pn
N ) 5 é)xl_

1
j O —— | +—
a[ / aX- O”x. axj ) pS"i (10)

with 7,= v, on I', where a, = 0 in the Projection 1 method and a, =1

when Projection 2 is used [4] to obtain the intermediate velocity field (not
the solenoidal one).

2. Project this velocity vector onto the subspace of a divergence-free vector
field. This leads to the Poisson equation for the projection Lagrange
multiplier @ [4]:

5xi = —_ —=0on T

Ox.)  Ox.  On

1

% (a@) oy, oD
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and to the correction of the intermediate velocity in accordance with

o od
Vl_n 1 — Vl_n 1 O’)_XI (11)
3. Finally, the kinematic pressure is updated:
+ O + 2
(o= G =l + 0 )

At A¢

in Projection 1 or Projection 2, respectively.

Thus the projection cycle is completed.
The FEM counterpart of this algorithm has the following matrix form:

~n+
vl_n l_vl_n @ en
M- —— +K' -3

t

3 1
= Fi — apG .pn — (EKc(vn) Lyt — EKc(vn*I) ,vnl) (S'[Cp 1)

GTM*IG,(D — _GT,‘“;I_n +1
ntl — ~n+l1 M*IG (I) (Step 2) (13)
\ =yrrt— .

1

() 2
n +1 — n +1 — .n + (D
p"/p X or P /p=1p"/p T (step 3)

The energy equation is nonlinear due to temperature dependence of both the
total enthalpy and thermophysical properties in the mushy zone. Therefore, follow-
ing Swaminathan and Voller [11], an iterative process is constructed at each time
step, where

1. Using the previous approximation of temperature, matrices K$(T™) and
C(T™) are calculated.

2. The unknown current iteration of the total enthalpy is replaced by its
Taylor series expansion:

mtl — m de m t1 m m — -1 m
Hk _Hk + W (Tk _Tk) Tk =H (Hk) (14)
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to give the linearized energy equation

Kd(Tm) +LC(T’”)' d_H . +1
T At ar) ,,

dH
Hn —_ Hm + - 'Tm
Tt} ,

3 1
+FT_ (EKz(vn),Hn_EK;(vn1),Hn1) (15)

1
= A_[C(T )

It solution gives a new evaluation of temperature, which is next used to
update enthalpy through Eq. (14).

3. The process is repeated until a relative difference between two consecutive
iterations of the total enthalpy are less than a given tolerance; i..,
max{abs (H" "' — H")/H"]} < 107*.

MODEL VERIFICATION

To check the fluid mechanics part of the algorithm, the problem of recirculat-
ing flow in a closed square cavity, caused by the upper lid movement at constant
velocity U, is calculated using the Projection 1 algorithm. This commonly used
benchmark is analyzed on two different finite element grids for various Reynolds
numbers, Re = ULL,/19, where L, is the height of the cavity. First, a nonuniform
grid of bilinear elements (30 X 30 for Re = 100 or 1000 and 50 X 50 for Re = 5000)
is taken, where both velocity and pressure are approximated by bilinear Lagrange
polynomials. Next, we analyze a nonuniform grid of biquadratic elements (15X 15
for Re = 100 or 1000 and 25X 25 for Re = 5000), where the velocity field is
interpolated by biquadratic Lagrange polynomials, whereas the pressure field, only
by bilinear ones. The results obtained are given in Figure 1 in terms of streamlines
and pressure contours (a reference point at the middle of the bottom wall) at
chosen early times of the process and at the final steady state. The dimensionless
time used in Figure 1 is calculated as 7= UZ/LL. = (aRe)t/Lf.. Both discretization
cases are almost graphically undistinguished. Transient and steady state solutions
are in good agreement with the results reported by others [5, 6, 14]. Indeed, the
velocity and pressure predictions for Re = 100 at dimensionless time 7= 5.0 are
very close to those obtained through the use of an equal-order FEM interpolation
on a triangular grid along with explicit Euler calculations of an intermediate
velocity and implicit scheme for final velocity and pressure fields [5]. Steady state
velocity profiles along vertical and horizontal centerlines and extrema of the
stream function of the primary vortex are also in good agreement with those given
in Refs. [6, 14] (see Figure 2 and Table 1). Moreover, Figure 1 shows that no
spurious pressure mode is observed. Therefore one can conclude that the severe
restrictions of Babuska Brezzi stability criteria [13] can be sidestepped in this
algorithm, where the pressure gradient is completely discarded in the computation
of the intermediate velocity field.
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Re =100

Dimensionless time = 2.0

Streamlines Pressure contours Streamlines Pressure contours
(W inin.=-0.088) (¥ rmin=-0.103)

Re =1000

Dimensionless time = 8.0

Streamlines Pressure contours Streamlines Pressure contours
(¥ rin=-0.092}) (Wrmin=-0.118)
Re = 5000

Dimensionless time = 8.0 Steady-state

Streamlines Pressure contours Streamlines Pressure contours
(¥ min=-0.076) (¥ min=-0.120)

Figure 1. Lid-driven cavity problem: streamlines and pressure contours for various Re
at early times of the process and at steady state.

To verify the algorithm in the case of a coupled fluid flow and heat transfer
problem, the laminar natural convection in a square enclosure is solved for various
Rayleigh numbers (Ra) with Prandtl number Pr = 1.0 and with the assumption
that the Boussinesq approximation [12] is valid. The lower and upper walls are
considered adiabatic, whereas the vertical walls are kept at uniform but different
temperatures. The left hot wall is at 7, = 0.5, and the right cold one is at

T, = —0.5, where T is dimensionless temperature defined as T=(T— ATaV)/
(T, — T,) with AT, = (T, +T,)/2. The domain is covered with an irregular grid
(denser near the walls) of 40 X 40 bilinear elements. The obtained steady state
flow pattern, pressure, and dimensionless temperature fields are presented in

Figure 3. They are in good agreement with calculations published elsewhere (e.g.,

[6]).
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Re = 100

Re = 1000
Re = 5000

y-coordinate and vertical velocity

-1.0

® Ghia etal. [14]

-1.0

x-coordinate and horizontal velocity 1.0

Figure 2. Profiles of dimensionless horizontal and vertical velocities
along centerlines of the cavity.

CODE VALIDATION ANALYSIS

cal results are then compared with calculations.

thermal diffusivity comparable to that of water.

To find out how closely the real problem is represented by the physical model
(incom pressibility assumption, the method of modeling phase change and buoyancy
effects) and by its computer simulation, natural convection in freezing water in a
differentially heated cube-shaped enclosure is studied experimentally. The empiri-

Two opposite vertical walls, made of black anodized metal, are kept at
uniform but different temperatures. The hot wall is at 10°C, whereas the cold one
is at 0°C in the case of natural convection and at —10°C when water solidification
driven by convection and conduction is studied. The remaining four walls, made of
6 mm Plexiglas, are considered as thermal insulators of low conductivity and

Table 1. Extrema of the primary vortex stream function

Re = 10?2 Re = 10° Re=5X 10°
Present method —0.103 —0.119 —0.119
Ramaswamy —0.103 —0.118 —0.117
etal.[5,6
Ghia et al. [14 —0.013 —0.118 —0.119
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Tain=-0.5, Tmax=0.5, AT=0.05 Tuwin=-0.5, Twax=0.5, AT=0.05 Tonin=-0.5, Trax=0.5, AT=0.05

Figure 3. Streamlines, pressure contours, and isotherms for steady state natural
convection in a square cavity.

Water is a fluid that does not obey the Boussinesq approximation, for its
density near 4°C is a nonlinear function of temperature (Figure 4 a). Moreover, the
water density anomaly, with its maximum at 4°C, creates a complex flow pattern
that contains two different circulation regions, one of clockwise and the second of
counterclockwise circulation (Figure 4b). Fortunately, the assumption of incom-
pressibility can be accepted here, as the density change of water is negligible
(< 0.03%) in the analyzed temperature range (0°—10°C). This means that the
presented FEM algorithm, valid only for an incompressible fluid, can be applied.

Two different cases of thermal boundary conditions are investigated (Figure
4¢). In the first, the domain of interest is restricted to the interior of the cavity,
where natural convection and freezing of water are analyzed under the assumption
that the horizontal walls are adiabatic. In the second case, a conjugate heat
transfer model is considered: natural convection and phase change of water are
calculated simultaneously with heat conduction in the Plexiglas walls and the
convective boundary conditions shown in Figure 4 c.

The complex local flow structure necessitates application of sophisticated
full-field acquisition experimental techniques to get local transient velocity and
temperature fields, exact and reliable enough to be a reference standard in
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(@) Water density versus temperature () Complex flow pattern
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Figure 4. Problem specification for natural convection of freezing water.

comparison with numerical results. The method applied in the experimental study
is based on the use of a thermochromic liquid crystal (TLC) suspended in water as
seeding. Digital particle image velocimetry (PIV) combined with digital color
analysis allows simultaneous measurement of two-dimensional velocity and temper-
ature fields (15, 16].

A sketch of the experimental apparatus is shown in Figure 5. The flow field in
the analyzed cavity filled with distilled water is illuminated by a 2 mm thick sheet
of white light from a specially constructed halogen lamp, and observed in the
perpendicular direction. The 24-bit color images (of 768 X 564 pixels) from a
digital color camera are acquired using a Pentium computer. A system of three
stepping motors, controlled by the computer, allows the acquisition of images at
several horizontal and vertical cross sections. Thus a three-dimensional analysis of
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(@) Experimental Set-Up

(1) -PC (5) - three stepping motors
(2) - acquisition card controlling camera (6)  -driver

(3) - halogen lamp (7} - two thermostats

(4) - cavity (8) - mirror

B&W images =

FFT cross-correlation

= velocity field

(c) Digital Particle Image Themmometry

805 1260

Hue

600

calibration curve

RGB flow image temperature field

Figure 5. Test apparatus and experimental procedure.

the whole flow domain can be carried out. Thermostats control the temperature of
the isothermal walls.

To obtain the velocity field, color images of liquid-crystal tracers are trans-
formed into black-and-white intensity images. A pair of such images taken at the
given time interval is cross correlated (using fast Fourier transform (FFT)) to get
local displacements. After dividing them by the time interval, the local velocity is
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obtained in the two-dimensional plane (Figure 5). Temperature visualization is
based on the property of some liquid-crystal materials to reflect definite colors at
specific temperatures and viewing angle. The color change for the TLC ranges
from clear at ambient temperature, through red as temperature increases, and then
to yellow, green, blue, and finally, clear again at the highest temperature. Tempera-
ture measurement is based on a digital color analysis of RGB red-green-blue
images of the TLCs seeded flow field. Incoming RGB signals are transformed pixel
by pixel into hue, saturation, and intensity. Temperature is then determined by
relating the hue to temperature through the calibration curve (Figure 5). More
details about experimental arrangements and procedure can be found in Refs.
15, 16].

Natural Convection of Pure Water

First, we consider the problem of natural convection (without phase change)
in the cavity filled with pure water at an initial temperature of 10°C. A sudden drop
of temperature of one of the lateral wall to 0°C causes buoyancy forces to arise.
The horizontal walls are considered adiabatic (Figure 4, case 1). The results
obtained on a regular 40 X 40 bilinear equal-order finite element grid are given in
Figure 6, in terms of temporal flow pattern and temperature field at various times
of the process. Regular thermal convection, characterized by a large clockwise
circulation, is initiated when cooling of the cold wall starts. After a short time
(about 100 s), the second, counterclockwise circulation becomes visible in the
lower, cold corner. Because of the density anomaly, the cold fluid in this corner
moves up along the cold wall. Its interaction with the hot liquid in an upper part of

STREAMLINES

TIME = 100 SEC. TIME = 500 SEC.

ISOTHERMS

TIME = 100 SEC. TIME = 500 SEC. STEADY STATE

Figure 6. Natural convection of pure water in enclosure with adiabatic
horizontal walls.
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the cavity reverses buoyancy forces and redirects the flow back to the bottom and
to the cold wall. This circulation, initially limited to the small region, grows in time,
penetrating deeper and deeper and into the cavity center. Within a few minutes, it
pushes the main, clockwise convection back to the hot wall region. After about 20
min of competing effects of positive and negative buoyancy forces, a steady state is
obtained. This is characterized by a relatively large regular flow circulation,
transporting hot liquid from the left wall up to the top, and the second smaller
counterclockwise circulation, filling approximately one-fifth of the cavity (Fig-
ure 6).

The assumption made in the calculations that lower and upper Plexiglas walls
are adiabatic is not very precise. In the experimental arrangement, these walls are
not perfectly thermally insulated. Also heat fluxes along relatively thick walls
cannot be completely neglected. To include more realistic boundary conditions into
the presented computer simulation code, the numerical model has been further
developed to simultaneously calculate both natural convection in water and con-
duction in the Plexiglas walls. The results of this conjugate heat transfer analysis
are depicted in Figure 7. Comparison of the thus obtained flow pattern to that
given in Figure 6 shows the significant influence of thermal boundary conditions on
the velocity and temperature fields in the cavity. It is seen that from the beginning
of the process the counterclockwise vortex in Figure 7 is smaller than the one
presented in Figure 6. Its shape is also closer to the one observed in the
experiment (Figure 8).

This observation is confirmed in detail by studying the local vertical velocity
distribution along the dimensionless X coordinate, where X = x/L‘. and L, is the
cavity width equal to 0.038 m. The steady state distribution of this velocity is shown

STREAMLINES

T IME = 500 SEC.

ISOTHERMS

\\\@Z«“

TIME = 100 SEC. TIME = 500 SEC. STEADY STATE

Figure 7. Natural convection of pure water in enclosure with conduction
through horizontal walls.
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—
I mmfs 1 mmis

Figure 8. Experimental and calculated velocity fields for steady state natural
convection of water.

in Figure 9 in three selected horizontal cross sections of the enclosure for both
cases of thermal boundary conditions. The velocity obtained upon the assumption
that the horizontal walls of the cavity are adiabatic is visibly different from the
experimental findings, particularly in the central cross section of the analyzed
domain. On the other hand, very good agreement between measurements and
calculations is obtained in the case of the conjugate heat transfer analysis (case 2).
This lends strong support to the modeling of the process as a conjugate circum-
stance.

Natural Convection in Freezing Water

Next, the more challenging problem of natural convection in freezing water is
analyzed. Velocity and temperature fields of the above-discussed final steady state
convection in pure water are used as initial conditions. Numerical results are given
in Figures 10 and 11. Sudden change of temperature of the lateral cold wall from
0°C to — 10°C causes ice creation near this wall and shifts two competing vortices
toward the hot lateral wall. The cold counterclockwise circulation at the lower
corner is crucial for the shape of the growing ice front, insulating its surface from
the hot fluid. Therefore the initially almost plane surface of the ice deforms in
time, growing faster in its lower part. As the ice layer expands, the flow domain
changes in time. Hence both competing vortices vary in shape, and their centers
move toward the hot lateral wall.

Streamlines, temperature field, and water /ice temporal front position (a
curve where the total enthalpy is equal to half of the fusion one, and f= 0.5) at
various times of the solidification process are given in Figure 10 for the case of
adiabatic horizontal walls (case 1 in Figure 4). The corresponding results of the
conjugate heat transfer model (case 2 in Figure 4), where convection with a
liquid-solid phase change in the cavity and conduction in the Plexiglas walls are
calculated simultaneously, are depicted in Figure 11. In the latter case the
counterclockwise vortex is smaller, and the shape of the ice is different. This means
that in the case of water solidification the impact of even minor changes of thermal
boundary conditions is more significant than in the previously analyzed convection
without phase change.
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Figure 9. Comparison of experimental and numerical results for steady state local vertical velocity.

The conjugate heat transfer model gives results that are closer to those
registered by PIV and digital particle image thermometry (DPIT) techniques. This
is further confirmed in Figures 12 and 13. The local vertical velocity and the ice
shape, calculated for both cases of the thermal boundary conditions, are compared
there with the pertinent experimental findings at an early time of the process (after
500 s) and at steady state (after 3000 s).

The conjugate heat transfer calculations give the flow structure that is
optically very similar to the one from the experiment (Figure 14). However, more
detailed comparative analysis, given in Figures 12 and 13, reveals that some
incongruity in the temporal ice shapes and local velocities still occurs, particularly

in a central part of the cavity.
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Figure 10. Water solidification controlled by convection and conduc-
tion for case 1: adiabatic horizontal walls.
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Figure 11. Water solidification controlled by convection and conduc-
tion for case 2: conjugate heat transfer model.
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Figure 12. Local vertical velocity comparisons: calculations versus experimental results.
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Figure 13. Ice /water temporal front position: calculations versus experi-
mental results.

DISCUSSION AND CONCLUDING REMARKS

One of the possible reasons for this visible but not significant disparity
between measurements and calculations might be the effect of water supercooling.
This is an observed effect in the experiment but is not included in the numerical
model. To elucidate the problem, experimental results are shown in Figure 15 at
the onset of water freezing. A sudden drop of the lateral wall temperature (to
T,.= — 10°C) immediately generates a counterclockwise vortex with upward con-
vection of the supercooled fluid. After the first 40-60 s, the supercooled water
plume may even cover half the upper surface. The temperature of water drops
below —7°C, but, after about 240 s, sudden freezing of the supercooled water
occurs. Then, within the next 10—15 s, the clockwise convection melts the excessive
ice at the lid and recovers the regular plane propagation of the ice front. This
effect retards the solidification process, significantly changing the flow pattern in
the cavity at early times in the process. This effect can alter the front propagation
at longer times. Therefore some numerical modeling of a nucleation delay time
seems necessary.

Moreover, when water freezes in a small cavity, high sensitivity of flow
structure and thus of the temperature field, to thermophysical properties and
boundary conditions is observed. This means that calculations can be significantly
dependent on such effects as: (1) inaccuracy of available thermophysical data and
convective heat transfer coefficient, (2) nonhomogeneity and layering of a solid
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Figure 14. Experimental results versus conjugate heat transfer calculations for water solidifica-
tion driven by convection and conduction.

structure, (3) nonideal thermal contact between ice and cold walls, (4) thermal
boundary layer at the phase interface, and (5) nonuniform temperature of “isother-
mal” walls.

Some differences between numerical results and experimental data can be
also explained by the limitation of computational analysis to two-dimensional
geometry (in the experiment, some side wall effects are observed) as well as by
some freedom of definition of mushy region properties in the enthalpy-porosity
approach. However, the results of calculations given in Figure 16, in terms of the
streamlines and details of the local vertical velocity and of the water /ice interface
position, show that the value of the porosity constant C is of rather minor
significance in the case of isothermally solidifying water.

Therefore one can conclude that when a detailed code validation analysis is
carried out, by comparing calculated temporal and local variables with their
experimental counterparts, a crucial problem emerges: the authenticity of material
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~t=420s

Figure 15. Observed effect of water supercooling by the PIV technique.

data and of boundary and initial conditions, i.e., consistency between the real and
the idealized.

The conventional FEM formulation for the incompressible Navier-Stokes
equations, termed by Gresho [4] the “honest GFEM,” is based on implicit schemes
applied to fully coupled continuity and momentum equations discretized in space
via mixed FEM interpolations [1, 2]. This approach, where the whole set of fluid
mechanics equations must be treated simultaneously, requires the solution of a
very large nonsymmetric matrix system by direct solvers. Thus it demands a
substantial amount of computer storage and CPU time, even when specialized
sparse matrix solvers are employed. Therefore explicit and semi-explicit time split
algorithms have been borrowed from the finite difference approach, and they have
been further developed in the FEM context to retain all flexibility of the FEM
discretization [4-6]. It is proved that the explicit treatment of the advection and the
sequential solving algorithm, where a single large coupled system of equations for
velocity components and pressure is replaced by several smaller, symmetric linear
systems solved sequentially, provides considerable savings of computer storage and
computation times (e.g., [4—6]). The focus of this paper is on the extension of the
semi-implicit projection method [4] through the combination of this solving tech-
nique with the enthalpy-porosity model on a fixed grid. Thus a computationally
efficient and robust tool is obtained for FEM analysis of solid-liquid phase change
phenomena driven by convection and conduction. The accuracy of the model
developed has been verified by solving two commonly used benchmark problems,
mainly in order to check whether low equal-order FEM grids used along with the
projection method do not produce spurious pressure modes. The results obtained
for the lid-driven cavity flow and for the Boussinesq natural convection in a square
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Figure 16. Influence of porosity constant C on calculated flow structure, local vertical velocity, and
shape of the interface.

enclosure show that the severe restrictions of the Babuska-Brezzi stability condi-
tion can be sidestepped in the presented algorithm. Therefore this computational
technique has been further used to solve the more challenging problem of natural
convection of freezing water. To provide a detailed analysis of the model valida-
tion, we have performed our own experimental study to create a new reference
standard. Based on up-to-date sophisticated full-field acquisition techniques, we
have acquired data for temporal and local velocity and temperature fields both for
natural convection of pure water in the temperature range including the density
anomaly point and for pure water freezing in a cavity. Comparisons between thus
obtained experimental findings and the calculations reveal that a computationally
efficient low-order FEM model based on a combination of the projection method
and the enthalpy-porosity approach provides results that are in very good agree-
ment with the measurements in the case of pure natural convection of water.
Moreover, in the case of water solidification, the calculated local velocity and
temperature fields are close to those from the PIV and DPIV techniques, indicting
the validity and accuracy of the presented model and its numerical scheme. Further
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improvement of the congruity of measured and calculated results is possible
through more precise modeling of real initial and boundary conditions.
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