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( )A semi-implicit finite element method FEM is presented for the two-dimensional computer

simulation of solid-liquid phase change controlled by natural con vection and conduction.

( )The algorithm is based on a combination of 1 a projection method to uncouple velocity

( )calculations from pressure calculations for incompressible fluid flow, 2 the backward Euler

and explicit Adams-Bashforth schemes to effecti vely integrate diffusion and ad vection in

( )time, and 3 an enthalpy-porosity approach to account for the latent heat effect on a fixed

finite element grid. Credibility of the obtained numerical predictions is in vesti-

gated through computation al model verification and validation procedures. Commonly used

benchm ark problems are employed to verify the algorithm accuracy and performance. The

natural con vection of freezing pure water is studied experimentally through the use of

sophisticated full-field acquisition experimental techniques. The measured velocity and

temperature fields are compared with the pertinent calculations. The range of congruity of

the experimental and numerical results is thoroughly studied, and potenti al reasons of some

disparity in a local structure of the natural con vection flow and in the interface shape are

discussed.

INTRODUCTION

s .The cost-effectiveness of finite element method FEM calculations continues

to be significant in the computer simulation of coupled fluid flow and heat transfer

problems. It is commonly known that the finite difference method is superior in

terms of computer storage and CPU time requirements when compared with FEM

analysis. This results from a less sparse form of FEM matrices, due to the use of

irregular grids and high-orde r polynomial interpolations of the unknown field
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NOMENCLATURE

c specific heat of liquid T temperaturel

c specific heat of solid T vector of nodal values of temperatures

C porosity constant v velocity ve ctor componenti

C heat capacity matrix v given ve locity on boundaryi b

D divergence matrix v vector of nodal values of ve locityi

f volumetric liquid fraction component

F right-hand side of momentum W weighting functioni

equation x global coordinatei

F right-hand side of energy equation G domain boundaryT

g component of gravity ve ctor D t time stepi

G gradient matrix z local coordinatei

h convective heat transfer coefficient q kinematic viscosity

H specific total enthalpy m dynamic viscosity

H vector of nodal values of enthalpy r density

K conductivity of mixture F Lagrange multiplier of projection
cK adve ction matrix method
cK convection matrix C stream functionh
dK diffusion matrix V volume of analyzed domain
dK conduction matrixT

L latent heat Subscripts

M shape function for geometryp

M mass matrix b boundary value

N shape function for velocity and c cold wallk

temperature env pertinent to environment

NP number of pressure nodes in e lement h hot wall

NP number of geometric nodes in e lement i , j coordinate directiong

NV number of ve locity nodes in e lement k, l, p local node number in e lement

p motion pressure l pertinent to liquid

p vector of nodal values of pressure ref reference state

P shape function for pressure s pertinent to solidl

Pr Prandtl number G pertinent to boundary G
R residuum of partial differential V pertinent to domain V

equation

Ra Rayleigh number Superscripts

Re Reynolds number

S additional source term m current iterationv i

t time n current time step

property. But it also comes from the application of simultaneous solution algo-

rithms, where a whole set of continuity, Navier-Stokes, and energy equations is

solved concurrently, as commonly used in the early FEM analysis of incompressible
s w x.fluid flows e.g., 1, 2 . Therefore, ove r the last decade, attempts have been made

to improve the computational efficiency of FEM simulation of fie ld theory prob-
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lems through the use of various sophisticated acceleration techniques. Most of

these techniques take their origin from the finite difference methods, specifically,

the following.

v Approximate solution to the Navie r-Stokes equations for an incompressible

w xfluid can be found by the use of the projection method 3, 4 , where ve locity

is uncoupled from pressure. The keyword here is `̀ sequential,’ ’ which

means first ve locity is solved and then pressure, rather than simultaneously

solving the coupled set of equations.
v A semi-implicit time marching scheme can be applied where viscous rdiffu-

sion terms are treated implicity, whereas advection terms are treated

w xexplicitly 4 ] 6 . The main attribute of this approach is that it allows

replacement of a set of the coupled fluid flow and heat transfer equations

by seve ral smalle r symmetric line ar systems where effective algebraic
s w x.solve rs can be used e.g., 7 .

v In numerical modeling of solid-liquid phase change transition, the energy

conservation can be analyzed via an enthalpy approach on a fixed grid

w x8 ] 11 . With a correctly defined enthalpy-temperature relation, the full

effect of the latent heat can be accurately modeled without the need to

know an exact position of the phase interface. And thus a cumbersome

front tracking algorithm is avoide d.

In this paper the FEM model, based on the combination of all aforemen-

tioned techniques, is presented for coupled fluid flow and heat transfer with

solid-liquid phase change phenomena occurring in a one-component or a binary

system.

It is well established that an efficient computer simulation can, in many

engine ering problems, be a reasonable alte rnative to the laborious and often

prohibitive ly expensive laboratory testing of a new product. But first the credibility

of these numerical predictions must be proved. This consists of two processes: code

verification and validation. Much effort has been generally focused on accuracy of

numerical mode ls. This verification procedure is based on grid refinement studies

and comparison with other available solutions of some benchmark problems.

Although such a study is obviously necessary, this by itse lf is not sufficient to

establish confidence in the numerically obtained predictions. Indeed, for engine ers

and scientists, nature is the final jury. This means that the degree to which

inevitable simplifications of physical and mathematical models reflect reality should

be established. This code validation procedure is carried out by extensive ly compar-

ing numerical results with trustworthy detailed expe rimental measurements. Both

these issues are addressed in this paper in the context of the presented FEM model

and its algorithm. Commonly used benchmark problems are solved to verify the

algorithm accuracy and performance . Next, natural convection in pure and freezing

water is studied expe rimentally, through the use of sophisticated full-field acquisi-

tion expe rimental technique s. The measured velocity and temperature fields are

compared with the pertinent calculations in the code validation analysis. The paper

concludes with a discussion of the scope of congruity and potential reasons for

some disparity between the calculated results and experimental findings.
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MATHEMATICAL MODEL AND NUMERICAL ALGORITHM

Under the assumptions that the fluid is incompressible and Newtonian and

the flow is laminar, the transport of mass, momentum, and energy is governed by
s .the following set of partial differential equations PDEs :

- v i
s 0

- xi

- v - v - - v - pi i i
s . s .r q r v s m qg r y r y q S 1j i ref v it /- t - x - x - x - xj j j i

s . s .- r H - r H - - T
q v s Kj t /- t - x - x - xj j j

s .The buoyancy forces g r y r are defined relative to some reference state r .i re f re f

w xThis means that p is the so-called motion pressure 12 . To account for the latent

heat effect in the phase change , occurring over a finite range of temperatures or at

w xa fixed temperature, the general enthalpy method of Swaminathan and Voller 11

is adopted.

The total enthalpy

s . s .r H s 1 y f r H q f r H 2s s l l

is given by the weighted sum of sensible enthalpies of the solid and liquid phases

and the latent heat effect L, where

T
s .H s c T dTHs s

Tr ef

s .3
T

s .H s c T dT q LHl l
Tr ef

The theory of mixtures is used to define the thermophysical properties in a

two-phase region through a volumetric liquid fraction f, where 0 ( f ( 1. This

gives

s .r s 1 y f r q f r
s l

s .4

s .K s 1 y f K q fKs l

w xThis region, called a mushy zone, is treated as a porous medium 10, 11 . In this

enthalpy-porosity model an additional source term S appears in the momentumv i
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equation, where

2
s .1 y f

s .S s y C v 5v i3i f

This mimics the Carman-Kozeny model of flow and thus, gradually, reduces
w xve locity in the solidifying zone 10 .

s .To obtain a discrete form of Eqs. 1 , two consecutive discretization steps are

carried out. First, the FEM spatial discretization, defined by the piecewise interpo-

lations of the domain geometry and field unknowns, is used:

s . s .x z s M z x p s 1, 2 , . . . , NPi p i p g

s . s . s .v x, t s N x v ti k ik
s .6

s . s . s .T x, t s N x T t k s 1, 2 , . . . , NVk k

s . s . s .p x, t s P x p t l s 1, 2 , . . . , NPl l

w xalong with the weighted residual approach 13 . The global error minimization

technique is used where the residual R and R of the PDE and pertinentV G

boundary conditions are weighted within a whole domain V and its boundary G
through weighting functions W , defined in a local element basis:k

s .W R d V y W R d G s 0 7H Hk V k G
V G

This le ads to a set of ordinary differential equations in the semidiscrete FEM

model, which in a commonly used matrix notation has the form

D ? v s 0

d vi c dw s . x s .M ? q K v q K ? v s y G ? p q F i s 1, 2, 3 8i i
dt

d H
c ds .C ? q K v ? H q K ? T s Fh T T

dt

Polynomials N and P are of the same order in the equal-orde r interpolation andk l

w xare of different orders in the nonequal one 13 . In the Gale rkin method, applied in

the presented model, the weighting functions W coincide with the pertinentk

interpolation polynomials. M, C, K c , K c , K d , K d , G, and D are the mass, heath T

capacity, advection, convection, diffusion, conduction, pressure gradient, and diver-

gence matrices, respective ly. Here, v , p , H, T, and F , F stand for vectors of nodali i T

unknowns and the right-hand sides of the momentum and energy equations,

respective ly.
s .The second discretization step is integration of Eq. 8 in time by use of time

marching finite difference schemes to obtain a set of algebraic equations for a fully
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discrete FEM model:

D ? v n q1 s 0

v n q1 y v n
i i d n q1M ? q K ? v1D t

3 1
n q1 c n n c n y 1 n y 1s . s . s .s F y G ? p y K v ? v y K v ? v 9i t /2 2

H n q1 y H n

d n q1C ? q K ? TTD t

3 1
c n n c n y 1 n y 1s . s .s F y K v ? H y K v ? HT h ht /2 2

Pressure, which is an inherently implicit variable in an incompressible fluid

model, must be treated implicitly. So the continuity equation has to be treated as

such. We would be happy to extend this treatment to all other terms of the

momentum and energy equations. Unfortunate ly, this approach creates the need

for simultaneous solution of the whole set of fully coupled equations. In practice,

this is prohibitive ly expensive and time consuming. Therefore we have used the

semi-implicit approach where the diffusion terms are treated by the fully implicit

Euler scheme, whereas the convective terms are calculated at two previous time

steps in the explicit Adams-Bashforth method.

Further reduction of CPU time can be obtaine d by setting up an algorithm,

where velocity calculations are uncoupled from pressure ones. In the presented

w xcode the projection methods 4 are adopted where at each time step calculations

are performed in the following three-step cycle.

For a give n initial kinematic pressure and divergence-free ve locity fields,

1. Solve the momentum equation

- v n q1 - v n q1 - - v n q1 1 - p n 1Ä Ä Äi i in s .q v s q y a q S 10j p v it /t /- t - x - x - x r - x r
j j j i

with v s v on G , where a s 0 in the Projection 1 method and a s 1Ä i ib p p

w x swhen Projection 2 is used 4 to obtain the intermediate velocity fie ld not
.the solenoidal one .

2. Project this velocity vector onto the subspace of a dive rgence-free vector

fie ld. This leads to the Poisson equation for the projection Lagrange

w xmultiplie r F 4 :

- - F - v - FÄ i
s s 0 on Gt /- x - x - x - ni i i
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and to the correction of the intermediate velocity in accordance with

- F
n q1 n q1 s .v s v y 11Äi i - xi

3. Finally, the kinematic pressure is updated:

F 2
n q1 n q1 ns . s . s . s .p r r s p r r s p r r q F 12

D t D t

in Projection 1 or Projection 2, respectively.

Thus the projection cycle is completed.

The FEM counterpart of this algorithm has the following matrix form:

v n q1 y v nÄ i i d n q1M ? q K ? vÄ iD t

3 1
n c n n c n y 1 n y 1s . s . s .s F y a G ? p y K v ? v y K v ? v step 1i p t /2 2

GT M
y1 G ? F s y GT ? v n q1Ä i

s . s .step 2 13
n q1 n q1 y 1 5v s v y M G ? FÄ i

F 2
n q1 n q1 n s .p r r s or p r r s p r r q F step 3

D t D t

The energy equation is nonline ar due to temperature dependence of both the

total enthalpy and thermophysical properties in the mushy zone. Therefore, follow-

w xing Swaminathan and Voller 11 , an iterative process is constructed at each time

step, where

d s m .1. Using the previous approxim ation of temperature, matrices K T andT

s m .C T are calculated.

2. The unknown current iteration of the total enthalpy is replaced by its

Taylor series expansion:

dHkm q1 m m q1 m m y 1 ms . s . s .H s H q T y T T s H H 14k k k k k kt /dT m
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to give the linearized energy equation

1 d H
d m m m q1s . s .K T q C T ? ? TT t /D t d T m

1 d H
m n m ms .s C T ? H y H q ? Tt /D t d T m

3 1
c n n c n y 1 n y 1s . s . s .q F y K v ? H y K v ? H 15T h ht /2 2

It solution gives a new evaluation of temperature, which is next used to
s .update enthalpy through Eq. 14 .

3. The process is repeated until a relative difference between two consecutive

iterations of the total enthalpy are less than a give n tolerance; i.e .,
v w s m q1 m . m x4 y4max abs H y H rH - 10 .i i i

MODEL VERIFICATION

To check the fluid mechanics part of the algorithm, the problem of recirculat-

ing flow in a closed square cavity, caused by the upper lid movement at constant

ve locity U, is calculated using the Projection 1 algorithm. This commonly used

benchmark is analyze d on two different finite element grids for various Reynolds

numbers, Re s UL r q , where L is the height of the cavity. First, a nonuniformc c

s .grid of biline ar elements 30 = 30 for Re s 100 or 1000 and 50 = 50 for Re s 5000

is taken, where both ve locity and pressure are approxim ated by biline ar Lagrange
spolynomials. Next, we analyze a nonuniform grid of biquadratic elements 15 = 15

.for Re s 100 or 1000 and 25 = 25 for Re s 5000 , where the velocity field is

interpolated by biquadratic Lagrange polynomials, whereas the pressure fie ld, only

by biline ar ones. The results obtaine d are given in Figure 1 in terms of streamline s
s .and pressure contours a reference point at the middle of the bottom wall at

chosen early times of the process and at the final steady state. The dimensionless
s . 2time used in Figure 1 is calculated as t s Ut rL s q Re t rL . Both discretizationc c

cases are almost graphically undistinguishe d. Transient and steady state solutions

w xare in good agreement with the results reported by others 5, 6, 14 . Indeed, the

ve locity and pressure predictions for Re s 100 at dimensionle ss time t s 5.0 are

very close to those obtaine d through the use of an equal-orde r FEM interpolation

on a triangular grid along with explicit Euler calculations of an intermediate
w xve locity and implicit scheme for final ve locity and pressure fields 5 . Steady state

ve locity profile s along vertical and horizontal centerlines and extrema of the

stream function of the primary vortex are also in good agreement with those give n

w x s .in Refs. 6, 14 see Figure 2 and Table 1 . Moreover, Figure 1 shows that no

spurious pressure mode is observed. Therefore one can conclude that the severe

w xrestrictions of Babuska Brezzi stability criteria 13 can be sidestepped in this

algorithm, where the pressure gradient is completely discarded in the computation

of the intermediate ve locity fie ld.
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Figure 1. Lid-driven cavity problem: streamlines and pressure contours for various Re

at e arly times of the process and at steady state.

To verify the algorithm in the case of a coupled fluid flow and heat transfer

problem, the laminar natural convection in a square enclosure is solved for various
s .Rayle igh numbers Ra with Prandtl number Pr s 1.0 and with the assumption

w xthat the Boussinesq approxim ation 12 is valid. The lower and upper walls are

considered adiabatic, whereas the vertical walls are kept at uniform but different
Ätemperatures. The le ft hot wall is at T s 0.5, and the right cold one is ath

Ä Ä Ä s .T s y 0.5, where T is dimensionless temperature defined as T s T y D T r
c av

s . s .T y T with D T s T q T r2. The domain is covered with an irregular gridh c av h c

s .denser near the walls of 40 = 40 biline ar elements. The obtaine d steady state

flow pattern, pressure, and dimensionle ss temperature fields are presented in
sFigure 3. They are in good agreement with calculations published elsewhere e.g.,

w x.6 .
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Figure 2. Profiles of dimensionless horizontal and ve rtical velocities

along centerlines of the cavity.

CODE VALIDATION ANALYSIS

To find out how closely the real problem is represented by the physical model
s incompressibility assumption, the method of modeling phase change and buoyancy

.effects and by its computer simulation, natural convection in freezing water in a

differentially heated cube-shaped enclosure is studied expe rimentally. The empiri-

cal results are then compared with calculations.

Two opposite vertical walls, made of black anodized metal, are kept at

uniform but different temperatures. The hot wall is at 10 8 C, whereas the cold one

is at 0 8 C in the case of natural convection and at y 10 8 C when water solidification

driven by convection and conduction is studied. The remaining four walls, made of

6 mm Plexiglas, are considered as thermal insulators of low conductivity and

thermal diffusivity comparable to that of water.

Table 1. Extrema of the primary vortex stream function

2 3 3Re s 10 Re s 10 Re s 5 = 10

Present method y 0.103 y 0.119 y 0.119

Ramaswamy y 0.103 y 0.118 y 0.117

w xet al. 5, 6

w xGhia et al. 14 y 0.013 y 0.118 y 0.119
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Figure 3. Streamlines, pressure contours, and isotherms for steady state natural

convection in a square cavity.

Water is a fluid that does not obey the Boussinesq approxim ation, for its
s .density near 4 8 C is a nonline ar function of temperature Figure 4 a . Moreover, the

water density anomaly, with its maximum at 4 8 C, creates a complex flow pattern

that contains two different circulation regions, one of clockwise and the second of
s .counterclockwise circulation Figure 4 b . Fortunate ly, the assumption of incom-

pressibility can be accepted here, as the density change of water is negligible
s . s .- 0.03% in the analyze d temperature range 0 8 ] 10 8 C . This means that the

presented FEM algorithm, valid only for an incompressible fluid, can be applie d.
sTwo different cases of thermal boundary conditions are investigated Figure

.4 c . In the first, the domain of interest is restricted to the interior of the cavity,

where natural convection and freezing of water are analyze d under the assumption

that the horizontal walls are adiabatic. In the second case, a conjugate heat

transfer model is considered: natural convection and phase change of water are

calculated simultaneously with heat conduction in the Plexiglas walls and the

convective boundary conditions shown in Figure 4 c.

The complex local flow structure necessitates application of sophisticated

full-fie ld acquisition expe rimental technique s to get local transient velocity and

temperature fields, exact and reliable enough to be a reference standard in
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Figure 4. Problem specification for natural convection of freezing water.

comparison with numerical results. The method applied in the expe rimental study
s .is based on the use of a thermochromic liquid crystal TLC suspended in water as

s .seeding. Digital particle image ve locimetry PIV combined with digital color

analysis allows simultaneous measurement of two-dimensional ve locity and temper-
w xature fie lds 15, 16 .

A sketch of the expe rimental apparatus is shown in Figure 5. The flow fie ld in

the analyzed cavity filled with distilled water is illuminated by a 2 mm thick sheet

of white light from a specially constructed halogen lamp, and observed in the
s .perpendicular direction. The 24-bit color images of 768 = 564 pixe ls from a

digital color camera are acquired using a Pentium computer. A system of three

stepping motors, controlled by the computer, allows the acquisition of images at

several horizontal and vertical cross sections. Thus a three-dimensional analysis of
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Figure 5. Test apparatus and experimental procedure.

the whole flow domain can be carried out. Thermostats control the temperature of

the isothermal walls.

To obtain the velocity field, color images of liquid-crystal tracers are trans-

formed into black-and-white intensity images. A pair of such image s taken at the
s s ..given time interval is cross correlated using fast Fourie r transform FFT to get

local displacements. After dividing them by the time interval, the local velocity is
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s .obtaine d in the two-dimensional plane Figure 5 . Temperature visualization is

based on the property of some liquid-crystal materials to reflect definite colors at

specific temperatures and viewing angle . The color change for the TLC ranges

from clear at ambient temperature, through red as temperature increases, and then

to yellow, green, blue , and finally, clear again at the highe st temperature. Tempera-

ture measurement is based on a digital color analysis of RGB red-green-blue

images of the TLCs seeded flow fie ld. Incoming RGB signals are transformed pixe l

by pixe l into hue, saturation, and intensity. Temperature is then determined by
s .relating the hue to temperature through the calibration curve Figure 5 . More

details about expe rimental arrangements and procedure can be found in Refs.

w x15, 16 .

Natural Convection of Pure Water

s .First, we consider the problem of natural convection without phase change

in the cavity filled with pure water at an initial temperature of 10 8 C. A sudden drop

of temperature of one of the lateral wall to 0 8 C causes buoyancy forces to arise .
s .The horizontal walls are considered adiabatic Figure 4, case 1 . The results

obtaine d on a regular 40 = 40 biline ar equal-order finite element grid are given in

Figure 6, in terms of temporal flow pattern and temperature fie ld at various times

of the process. Regular thermal convection, characterized by a large clockwise

circulation, is initiated when cooling of the cold wall starts. After a short time
s .about 100 s , the second, counterclockwise circulation becomes visible in the

lower, cold corner. Because of the density anomaly, the cold fluid in this corner

moves up along the cold wall. Its interaction with the hot liquid in an upper part of

Figure 6. Natural convection of pure water in enclosure with adiabatic

horizontal walls.
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the cavity reverses buoyancy forces and redirects the flow back to the bottom and

to the cold wall. This circulation, initially limited to the small region, grows in time,

penetrating deeper and deeper and into the cavity center. Within a few minutes, it

pushes the main, clockwise convection back to the hot wall region. After about 20

min of competing effects of positive and negative buoyancy forces, a steady state is

obtaine d. This is characterized by a relative ly large regular flow circulation,

transporting hot liquid from the le ft wall up to the top, and the second smalle r
scounterclockwise circulation, filling approximate ly one-fifth of the cavity Fig-

.ure 6 .

The assumption made in the calculations that lower and upper Plexiglas walls

are adiabatic is not very precise. In the experimental arrangement, these walls are

not perfectly thermally insulated. Also heat fluxes along relative ly thick walls

cannot be completely neglected. To include more realistic boundary conditions into

the presented computer simulation code, the numerical model has been further

deve loped to simultaneously calculate both natural convection in water and con-

duction in the Plexiglas walls. The results of this conjugate heat transfer analysis

are depicted in Figure 7. Comparison of the thus obtaine d flow pattern to that

given in Figure 6 shows the significant influence of thermal boundary conditions on

the ve locity and temperature fie lds in the cavity. It is seen that from the beginning

of the process the counterclockwise vortex in Figure 7 is smaller than the one

presented in Figure 6. Its shape is also closer to the one observed in the
s .expe riment Figure 8 .

This observation is confirmed in detail by studying the local vertical ve locity

distribution along the dimensionle ss X coordinate , where X s x rL and L is thec c

cavity width equal to 0.038 m. The steady state distribution of this velocity is shown

Figure 7. Natural convection of pure water in enclosure with conduction

through horizontal walls.
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Figure 8. Experimental and calculated velocity fields for steady state natural

convection of water.

in Figure 9 in three selected horizontal cross sections of the enclosure for both

cases of thermal boundary conditions. The ve locity obtaine d upon the assumption

that the horizontal walls of the cavity are adiabatic is visibly different from the

expe rimental findings, particularly in the central cross section of the analyze d

domain. On the other hand, very good agreement between measurements and
s .calculations is obtained in the case of the conjugate heat transfer analysis case 2 .

This lends strong support to the modeling of the process as a conjugate circum-

stance.

Natural Convection in Freezing Water

Next, the more challenging problem of natural convection in freezing water is

analyze d. Velocity and temperature fields of the above -discussed final steady state

convection in pure water are used as initial conditions. Numerical results are give n

in Figures 10 and 11. Sudden change of temperature of the lateral cold wall from

0 8 C to y 10 8 C causes ice creation near this wall and shifts two competing vortices

toward the hot lateral wall. The cold counterclockwise circulation at the lower

corner is crucial for the shape of the growing ice front, insulating its surface from

the hot fluid. Therefore the initially almost plane surface of the ice deforms in

time, growing faster in its lower part. As the ice laye r expands, the flow domain

changes in time. Hence both competing vortices vary in shape , and their centers

move toward the hot lateral wall.
sStreamline s, temperature fie ld, and water r ice temporal front position a

.curve where the total enthalpy is equal to half of the fusion one, and f s 0.5 at

various times of the solidification process are given in Figure 10 for the case of
s .adiabatic horizontal walls case 1 in Figure 4 . The corresponding results of the

s .conjugate heat transfer model case 2 in Figure 4 , where convection with a

liquid-solid phase change in the cavity and conduction in the Plexiglas walls are

calculated simultaneously, are depicted in Figure 11. In the latter case the

counterclockwise vortex is smalle r, and the shape of the ice is different. This means

that in the case of water solidification the impact of even minor change s of thermal

boundary conditions is more significant than in the previously analyzed convection

without phase change.
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Figure 9. Comparison of experimental and numerical results for steady state local vertical ve locity.

The conjugate heat transfer model gives results that are closer to those
s .registered by PIV and digital particle image thermometry DPIT techniques. This

is further confirmed in Figures 12 and 13. The local vertical ve locity and the ice

shape , calculated for both cases of the thermal boundary conditions, are compared
sthere with the pertinent expe rimental findings at an early time of the process after

. s .500 s and at steady state after 3000 s .

The conjugate heat transfer calculations give the flow structure that is
s .optically very similar to the one from the experiment Figure 14 . However, more

detailed comparative analysis, given in Figures 12 and 13, reve als that some

incongruity in the temporal ice shapes and local ve locitie s still occurs, particularly

in a central part of the cavity.
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Figure 10. Water solidification controlled by convection and conduc-

tion for case 1: adiabatic horizontal walls.

Figure 11. Water solidification controlled by convection and conduc-

tion for case 2: conjugate heat transfer model.
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Figure 12. Local vertical velocity comparisons: calculations versus experimental results.
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Figure 13. Ice rwater temporal front position: calculations versus experi-

mental results.

DISCUSSION AND CONCLUDING REMARKS

One of the possible reasons for this visible but not significant disparity

between measurements and calculations might be the effect of water supercooling.

This is an observed effect in the expe riment but is not included in the numerical

model. To elucidate the problem, expe rimental results are shown in Figure 15 at
sthe onset of water freezing. A sudden drop of the lateral wall temperature to

.T s y 10 8 C immediately generates a counterclockwise vortex with upward con-c

vection of the supercooled fluid. After the first 40 ] 60 s, the supercooled water

plume may even cover half the upper surface. The temperature of water drops

be low y 7 8 C, but, after about 240 s, sudden freezing of the supercooled water

occurs. Then, within the next 10 ] 15 s, the clockwise convection melts the excessive

ice at the lid and recovers the regular plane propagation of the ice front. This

effect retards the solidification process, significantly changing the flow pattern in

the cavity at early times in the process. This effect can alte r the front propagation

at longe r times. Therefore some numerical modeling of a nucle ation delay time

seems necessary.

Moreove r, when water freezes in a small cavity, high sensitivity of flow

structure and thus of the temperature field, to thermophysical properties and

boundary conditions is observed. This means that calculations can be significantly
s .dependent on such effects as: 1 inaccuracy of available thermophysical data and

s .convective heat transfer coefficient, 2 nonhomogeneity and layering of a solid
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Figure 14. Experimental results versus conjugate heat transfer calculations for water solidifica-

tion driven by convection and conduction.

s . s .structure, 3 nonide al thermal contact between ice and cold walls, 4 thermal
s .boundary layer at the phase interface, and 5 nonuniform temperature of `̀ isother-

mal’ ’ walls.

Some differences between numerical results and expe rimental data can be

also explaine d by the limitation of computational analysis to two-dimensional
s .geometry in the experiment, some side wall effects are observed as well as by

some freedom of definition of mushy region properties in the enthalpy-porosity

approach. However, the results of calculations given in Figure 16, in terms of the

streamlines and details of the local vertical ve locity and of the water r ice interface

position, show that the value of the porosity constant C is of rather minor

significance in the case of isothermally solidifying water.

Therefore one can conclude that when a detailed code validation analysis is

carried out, by comparing calculated temporal and local variable s with their

expe rimental counterparts, a crucial problem emerges: the authenticity of material
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Figure 15. Observed effect of water supercooling by the PIV technique.

data and of boundary and initial conditions, i.e ., consistency between the real and

the ide alized.

The conventional FEM formulation for the incompressible Navier-Stokes

w xequations, termed by Gresho 4 the `̀ honest GFEM,’ ’ is based on implicit schemes

applie d to fully coupled continuity and momentum equations discretized in space

w xvia mixed FEM interpolations 1, 2 . This approach, where the whole set of fluid

mechanics equations must be treated simultaneously, requires the solution of a

very large nonsymmetric matrix system by direct solve rs. Thus it demands a

substantial amount of computer storage and CPU time, even when specialized

sparse matrix solve rs are employed. Therefore explicit and semi-explicit time split

algorithms have been borrowed from the finite difference approach, and they have

been further developed in the FEM context to retain all flexibility of the FEM
w xdiscretization 4 ] 6 . It is proved that the explicit treatment of the adve ction and the

sequential solving algorithm, where a single large coupled system of equations for

ve locity components and pressure is replaced by several smalle r, symmetric line ar

systems solved sequentially, provide s considerable savings of computer storage and
s w x.computation times e.g., 4 ] 6 . The focus of this paper is on the extension of the

w xsemi-implicit projection method 4 through the combination of this solving tech-

nique with the enthalpy-porosity model on a fixed grid. Thus a computationally

efficient and robust tool is obtaine d for FEM analysis of solid-liquid phase change

phenomena driven by convection and conduction. The accuracy of the model

deve loped has been verified by solving two commonly used benchmark problems,

mainly in order to check whether low equal-order FEM grids used along with the

projection method do not produce spurious pressure modes. The results obtaine d

for the lid-driven cavity flow and for the Boussinesq natural convection in a square
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Figure 16. Influence of porosity constant C on calculated flow structure, local vertical velocity, and

shape of the interface.

enclosure show that the severe restrictions of the Babuska-Brezzi stability condi-

tion can be sidestepped in the presented algorithm. Therefore this computational

technique has been further used to solve the more challenging problem of natural

convection of freezing water. To provide a detailed analysis of the model valida-

tion, we have performed our own expe rimental study to create a new reference

standard. Based on up-to-date sophisticated full-field acquisition techniques, we

have acquired data for temporal and local ve locity and temperature fie lds both for

natural convection of pure water in the temperature range including the density

anomaly point and for pure water freezing in a cavity. Comparisons between thus

obtaine d expe rimental findings and the calculations reveal that a computationally

efficient low-order FEM model based on a combination of the projection method

and the enthalpy-porosity approach provide s results that are in very good agree-

ment with the measurements in the case of pure natural convection of water.

Moreover, in the case of water solidification, the calculated local ve locity and

temperature fie lds are close to those from the PIV and DPIV techniques, indicting

the validity and accuracy of the presented model and its numerical scheme. Further
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improvement of the congruity of measured and calculated results is possible

through more precise modeling of real initial and boundary conditions.

REFERENCES

1. C. Taylor and T. J. R. Hughes, Finite Element Programming of the Navier-Stokes

Equations, Pineridge Press, Swansea, 1981.

2. A. S. Usmani, R. W. Lewis, and K. N. Seetharamu, Finite Element Modelling of Natural

Convection ] Controlled Change Phase, Int. J. Numer. Methods Fluids, vol. 14, pp.

1019 ] 1036, 1992.

3. A. J. Chorin, Numerical Solution of Navier-Stokes Equations, Math . Comput., vol. 22,

pp. 745 ] 762, 1968.

4. P. M. Gresho, On the Theory of Semi-Implicit Projection Methods for Viscous Incom-

pressible Flow and Its Implementation via a Finite Element Method That Also Intro-

duces a Ne arly Consistent Mass matrix, Part 1: Theory, Numer. Heat Transfer, Part A,

vol. 29, pp. 49 ] 63, 1996.

5. B. Ramaswamy and M. Kawahara, An Efficient Element Finite Scheme for Incompress-

ible Viscous Fluid Flow, Indian J. Technol., vol. 126, pp. 1 ] 13, 1988.

6. B. Ramaswamy, T. C. Jue, and J. E. Akin, Semi-Implicit and Explicit Finite Element

Schemes for Coupled Fluid rThermal Problems, Int. J. Numer. Methods Eng., vol. 34,

pp. 675 ] 692, 1992.

7. O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems,

Academic Press, Orlando, Florida, 1984.

8. V. R. Voller, M. Cross, and N. C. Markatos, An Enthalpy Method for Convection rDif-

fusion Phase Change, Int. J. Numer. Methods Eng., vol. 24, pp. 271 ] 284, 1987.

9. V. R. Voller and C. Prakash, A Fixed Grid Numerical Modeling Methodology for

Convection-Diffusion Mushy Region Phase-Change Problems, Int. J. Heat Mass Trans-

fer, vol. 30, pp. 1709 ] 1719, 1987.

10. A. D. Brent and V. R. Voller, Enthalpy-Porosity Technique for Modeling Convection-

Diffusion Phase Change: Application to the Melting of a Pure Metal, Numer. Heat

Transfer, vol. 13, pp. 297 ] 318, 1988.

11. C. R. Swaminathan and V. R. Voller, General Enthalpy Method for Modeling Solidifica-

tion Processes, Metall. Trans. B, vol. 23B, pp. 651 ] 664, 1992.

12. B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Sammakia, Buoyancy Induced Flows and

Transport, Hemisphere, New York, 1988.

13. O. C. Zienkiewicz and R. L. Taylor, Finite Element Method , 4th ed., McGraw-Hill,

London, 1989.

14. U. Ghia, K. Ghia, and C. Shin, High-Re Solutions for Incompressible Flow Using the

Navier-Stokes Equations and a Multi-Grid Method, J. Comput. Phys., vol. 48, pp.

387 ] 401, 1982.

15. T. A. Kowalewski, A. Cybulski, and M. Rebow, Particle Image Velocimetry and Ther-

mometry in Freezing Water, presented at the 8th International Symposium on Flow

Visualization, Sorrento, 1998.

16. T. A. Kowalewski, Experimental Validation of Numerical Codes in Thermally Driven

Flows, in G. Vahl Davis and E. Leonardi, eds., CHT-97: Advances in Computational Heat

Transfer, pp. 1 ] 16, Begell House, New York, 1998.

http://www.catchword.com/nw=1/rpsv/0271-2091^281992^2914L.1019
http://www.catchword.com/nw=1/rpsv/0025-5718^281968^2922L.745
http://www.catchword.com/nw=1/rpsv/1040-7782^281996^2929L.49
http://www.catchword.com/nw=1/rpsv/0029-5981^281992^2934L.675
http://www.catchword.com/nw=1/rpsv/0029-5981^281987^2924L.271
http://www.catchword.com/nw=1/rpsv/0017-9310^281987^2930L.1709
http://www.catchword.com/nw=1/rpsv/1040-7782^281988^2913L.297
http://www.catchword.com/nw=1/rpsv/0021-9991^281982^2948L.387
http://www.catchword.com/nw=1/rpsv/0271-2091^281992^2914L.1019
http://www.catchword.com/nw=1/rpsv/0025-5718^281968^2922L.745
http://www.catchword.com/nw=1/rpsv/1040-7782^281996^2929L.49
http://www.catchword.com/nw=1/rpsv/0029-5981^281992^2934L.675
http://www.catchword.com/nw=1/rpsv/0017-9310^281987^2930L.1709
http://www.catchword.com/nw=1/rpsv/1040-7782^281988^2913L.297
http://www.catchword.com/nw=1/rpsv/0021-9991^281982^2948L.387

