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Time derivatives of integrals and functionals defined on varying volume
and surface domains

H. PETRYK and Z. MROZ (WARSZAWA)

. THE EXPRESSIONS are derived for the first and second time derivatives of integrals and functionals

whose volume or surface domains of integration vary in time. As an example, the time de-
rivative of the potential energy in non-linear elasticity in the case of varying body domain is
determined. A moving strain and stress discontinuity surface is also considered and the associa-
ted energy.derivatives are obtained. The derivatives of functionals with additional constraint
conditions are finally discussed by using the primary and adjoint state fields.

Wyprowadzono wzory na pierwsze i drugie pochodne czasowe calek i funkcjonaldéw, ktérych
dziedzina catlkowania stanowi amienny w czasie obszar obj¢tosciowy lub powierzchniowy. Jako
przyklad, okreslono pochodna czasowa energii potencjalnej dla ciala nieliniowo spre¢zystego
w przypadku zmiennego obszaru ciala. Rozpatrzono takze ruchoma powierzchni¢ nieciaglosci
odksztalcen i naprezen oraz otrzymano odpowiednie wyrazenia na pochodne energii. Badano
takze pochodne funkcjonaléw przy dodatkowych warunkach ograniczajacych, wykorzystujac
pola zmiennych pierwotnych i sprz¢zonych.

BriBenenr! dopmysrbl I nepBoit 1 BTopoil BPEMEHHBIX IPOM3BOAHBIX HHTErpajioB M ¢yHK-
IMOTaJIOB, KOTOPHIX O0JIaCTh MHMTETPHPOBAHMA COCTABJISIOT IIEpEMEHHbIE BO BPEMEHH 00LeM-
Hasg WM NOBEPXHOCTHaA obnact#. Kak mpumep ompesenena BpemeHnasi MPOM3BOAHAA TIOTEH-
LHaJIbHOM 3HEPTHMH JUIA HEJIMHEMHO yImpyroro Tejia B ciiyyae IepeMeHHoi obmnactm Temna. Pac-
CMOTpEHa ToKe IOJBIYKHAs NOBEPXHOCTh pasphiBa Aedopmammii ¥ HaIpsHKEHUI, IOIyueHbI
COOTBETCTBYIOILE BBIPAYKEHHS [JIA NPOM3BOAHBIX SHepruu. lccieloBaHbl NPOH3BOAHBIE
(hYHKIMOHAIOB NPH JIONOJHHUTENIBHBIX OTPAaHMUMBAOIIUX YCJIOBHSAX, MCIONb3Ys 110N Mep-
BHYHBIX U COIIPSYKEHHBIX IepeMEHHbIX.

1. Introduction

THE PRESENT paper is concerned with derivation of the expressions for first and second
time derivatives of integrals and functionals defined on volume or surface domains which
vary in time. Such derivatives are essential in sensitivity analysis associated with shape
variation, cf. [1-7], when the variations of stress, strain and displacement fields or of
integral functionals with respect to the shape transformation field are needed. The deriva-
tives of integral functionals defined on varying domains are of importance in studying
stability conditions for damaged structures, cf. DEMs and MROz [4], in the analysis of phase-
transformation processes or propagation of discontinuity surfaces, cf. ESHELBY [8], ABEY-
RATNE [9], etc. However, our analysis is intended to be sufficiently general to be applicable
in various contexts of continuum or structural mechanics and applied mathematics.
Whereas the expression for the first derivative of volume integral is well known in the
context of continuum mechanics, cf. for instance PRAGER [10] or MALVERN [11], this
is not the case for the surface (or line) integrals, especially when the surface is composed
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of several smooth sections intersecting along edge lines. A derivation of the expression
for the first derivative of the surface integral defined over a regular moving surface can
be found e.g. in the book by KosiNskI [12]. However, the result presented in this paper
is somewhat more general as it pertains to piecewise regular surfaces and contains the edge
terms. The second time derivatives of volume or surface integrals or functionals defined
on varying domains do not seem to be studied in the literature, to the authors’ knowledge.
They are essential in generating stability conditions in phase transformation [13, 14]
or damage [4] problems and also in deriving strong optimality condition in optimal shape
design of structures [I, 2].

In Sect 2 the expressions for first and second time derivatives of volume and surface
integrals will be derived, while in Sect. 3 the derivatives of integral functionals will be
considered. Some applications related to continuum mechanics will be presented in Sect.
4. In Sect. 5 the derivative of a functional with an additional constraint condition will
be examined by using the concept of an adjoint system.

2. Time derivatives of volume, surface and line integrals

2.1. Fundamental definitions and relatidns

Consjder a domain V; in three-dimensional Euclidean space E; bounded by a closed
surface S;, which is composed of a finite number or regular surface sections S; intersecting
along piecewise smooth edges L,, Fig. 1. It is assumed that the angle of intersection of

FiG. 1. Varying volume domain with piecewise regular boundary surface.

the surface sections or edges tends nowhere to zero. The subscript ¢ indicates that the
shape of the corresponding domain varies with a time-like parameter ¢, called time for
simplicity. The reference shape corresponds to ¢ = 0 and is indicated by the subscript 0.
The shape transformation can be defined by specifying the transformation vector field
w = x—E, where x and § denote the position vector of a typical point of the domain after
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the shape transformation and at ¢# = 0, respectively. Let the indices i, j, k ranging from
1 to 3 denote the vector or tensor components in a fixed rectangular Cartesian coordinate
system in E;. We assume that the fields w; = wi(;, #) are functions of class C? specified
on the product 2, of an open region in E; containing the closure ¥, of ¥, and of an
open time interval 7 containing O and that for each ¢ from J the mapping§ —» x = E+w
of V, onto V, is one-to-one with non-vanishing Jacobian. The scalar function f = f(x;, ¢)
considered below is assumed to be of class C? on a four-dimensional neighbourhood £,
of ¥, x {t} for arbitrary t e D,

The shape transformation can naturally be defined by specifying the transformation
vector field on the reference surface §o only. Let each of the regular surface sections S,
be parametrized by curvilinear coordinates y*, a, §, ¥ = 1, 2, such that the pairs (y*, y?)
belong to the corresponding (fixed) open subset 2y of R2. A surface point of coordinates
(™ has the spatial coordinates £;()*) at ¢t = 0 and the spatial coordinates

Q1 x= F 0% 1) = E0D+w, (E0m. 1)

at a typical instant ¢t € 7 during the shape transformation process. The functions x;()% t)
describing geometry of a regular transformed surface section S, are assumed to be of class
C? and such that the matrix (8%;/9y*) has always rank two.

A surface function of the variables ()%, t) and generated by a spatial field (i.e. being
the restriction of a spatial field to the surface S,) is distinguished by a tilda, for instance
FO° 1) = f(ZiGA, 1), t). The partial differentiation with respéct to the curvilinear surface
coordinates y* or Cartesian spatial coordinates x; is denoted by the corresponding index
preceded by a comma, viz.

a(-)
o
The usual summation convention for repeated indices is used throughout the paper. It is
convenient to introduce the following notation: for any unit spatial vector %, the directional
derivative of any spatial field f and the component of any spatial vector v, both in the
direction of ), are written respectively as

23) , : : f.n = £, Uy = Ui

We recall some standard formulae of differential geometry of surfaces. Consider
a regular oriented surface parametrized by y*. Covariant components of the metric tensor g
of the surface (i.e. coefficients of the first fundamental surface form) are specified as follows :

2C)

2.2 (x= g (Da=5

2.4 8up = X1,a%1,p.

The contravariant components g* of g are defined by

(2.5 ' 8ap8” = 0%,

where 6} = 4,, 1§ the Kronecker symbol, and satisfy the relationship
(2.6) g%, 4%, = Oy;—mn;,

(') When calculating the first time derivatives of integrals, the assumed order of differentiability of all
functions ‘considered may by reduced by one.
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where n is the unit normal to the surface. The surface covariant derivative is denoted by
(+),«. For instance, we have the formula

2.7) cip = gt Iip,

where c¢* are contravariant cdmponents of a surface vector ¢ and I are the Christoffel
symbols. of second kind determined by.the metric on the surface. Also, there is

2.8) Zapiy = 0.

The components of the second fundamental surface form are defined by
(2.9) bys = Xi,08m

and satisfy the formulae of Gauss and Weingarten:

(2.10) Fruip = Xiap = bugmis

2.11) nyo = —8bupXy, .

The mean curvature K,, and the Gauss curvature K, of the surface are defined by
2.12) K, = %baﬁg“ﬁ = _;—bgg,

@.13) = %g{g% — det(8g).

Any spatial vector ¢ can be decomposed at a point on the surface as follows:
.19 ‘ ¢ = Cyty+C*Xy,4,

where

(.15 ca=cn and ¢* = g¥c, = g%, 5.

For any unit vector 7 tangential to the surface we may write
2.16) = 9T |

where @ is any function specified over the surface. If a surface vector field € is generated
by a differentiable spatial vector field ¢, then, by using Eqgs. (2.15), (2.10), (2.6) and (2.12),
we obtain

(2.17) E?a= C,'j(tsij—nin_,)+20,,Km.
The area of a surface element is expressed as follows:
2.18) da = VZdy'dy?, g = det(gup).

The Green theorem for a continuous and continuously differentiable surface vector field ¢
specified on a regular surface S bounded by a piecewise smooth closed curve L reads

A A

L L

(2.19) [¢tuda = § Ppudi = § c,dl,
) S

where the line integral is taken with respect to the arc length /, and p. denotes the unit
vector normal to L and tangent to S and pointed towards the outside of S.
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Now, consider the moving regular surface S; during the shape transformation process
described by a field w(g, ¢). Define the transformation velocity v and the normal welocity
v, of the transformed surface as follows:

ow,

— Dwi
ot

Dt

(2.20) 4 v = Up = Uil

E=const
In general, the tangential components v* of v do not vanish. The derivative

D _a() _ (")
—DT(')_ ot T ot

(2.21) +(*). 1%,

X =const

g=const

also when evaluated at a point on the surface, is thus dependent (though v, is not) on the
choice of the particular field w used to describe a geometrically given shape transformation
process. To construct an invariant time derivative relative to the moving regular surface
S;, introduce on S; the convected coordinate system (2*) such that the trajectory in space
of a surface point with constant coordinates z* is normal to S, at each ¢, that is,

ox;
ot

(2.22) = o,n;.

z¥=const

Any scalar, vector or tensor field W specified on the moving surface S; can be expressed
as a function W(z% t). The transformation derivative §/dt is defined as the time derivative
following the normal trajectory of the moving surface, viz.

0¥ ¥

(2.23) S = o

.
2%=const

The transformation derivative is thus the usual partial derivative but for the special choice
of independent variables. This derivative was used by THOMAS [15, 16] and called by him
“¢ time derivative” though the form (2.23) was given explicitly later by BOWEN and WANG
[17] (who employed the term “total displacement derivative”). The transformation deriva-
tive of a spatial field f(x;, t) is given by (cf. THoMAS [15, 16])

(2.29) _ %{- = —gé+f,,,v,,, fon = %nt.

More generally, the transformation derivative defined by Eq. (2.23) of any scalar, vector
or (mixed) tensor field'¥(x;, y* t) is expressed by the formula (cf. BOWEN and WANG [17])

¥ _ ¥ 0¥ ¥
5t 9t " ox T gye

(4

(2.25)

The transformation derivative defined above in general differs from the “displacement
derivative” defined by TRUESDELL and ToUPIN [18] but coincides with it if W is any scalar
field or a spatial vector field (cf. BoweN and WANG [17)).

It can be shown that (cf. THoMAS [15, 16])

(2.26) o= =%, %, p,
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and (cf. TRUESDELL and ToupIN [18])

ok, 1
(2.27) &'" =5 Vs 0p 8 + (2KZ— K,)0,.
For further relations holding on moving surfaces or interfaces, we refer the reader to the

book by KosiNski [12].

2.2. First derivative of volume and surface integrals

Consider the volume integral
(2.28) L= [fav
Vi

over the variable domain V,. The time derivative of /- is given by the classical Reynolds
formula expressed in three equivalent forms, cf. for instance PRAGER [10] or MALVERN

[11], . .
d Df 3f
(2.29) E—Iy = V‘f( +fv;, ,)d‘lf f{ +(fv), } ) d“//+ ff-v da.

This can be proved by reducing first the integral (2.28) over the variable domain to an

integral over a fixed domain through an appropriate change of variables, then performing

differentiation in the standard manner and finally returning to the original integration

domain. Such a procedure will be applied below to surface and line integrals.
Consider the surface integral

(2.30) ‘ Is = [fda
Se

over the moving regular surface S,. By using the relations (2.1) and (2.18), the integral Ig
can be equivalently written as an integral over the fixed plane domain X, viz.

(231) Is = fff(i‘(yd’ t)’ t)]/gzya’ t)dy1 dyz
Zo
By performing standard calculations and substituting Eq. (2.6), we obtain
D = 1 — D » =
(2.32) Dr l/g =7 l/gg“ﬂ "Et—gaﬂ = ¥ 89, ;(6;;—mny).

By differentiating the right hand side of Eq. (2.31) with respect to ¢, using Eq. (2.32) and
returning to the actual area measure, we arrive at the result

2.33) %Iﬁ f {Df +for, (B —men )}da.
St

This can be written equivalently as (cf. e.g. KosiNskI [12])

(2.34) %ls f { by +/(2", ~2v,,K,,,)}da= f {%{- +(fv:0;a—2fv,.K,,,}da.
St : St
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The former expression in Eq. (2.34) follows from Eq. (2.17), while the latter results from
the identity (cf. Eq. (2.25))

D ) of -
(2.35) f f +f RACTSE N —f~ +f, 0%
Dt ot
Now, by using the Green theorem (2.19), we finally obtain
(2.36) —gt—ls = %jt:da—z ffv,.K,,,da+ §fv,,dl,
S[ St 2

where i, is (the piecewise smooth) closed boundary line of S, and v, = v*u, = v;y; is the
component of the transformatlon velocity vector v in the dll‘CCthIl of the unit vector g
which is normal to L, and tangent to S; and is pointed towards the outside of S,.

To calculate the time derivative of the surface integral over a piecewise regular moving
surface, we may directly apply the formula (2.36) to each of the regular surface sections
and add the results. In particular, the time derivative of the integral over the closed piece-
wise regular surface S, takes the form

(2.37) —‘?t—gffda = 3f—gj‘%a'a——2§ff‘t),,K,,,d¢z+ Zi[(f’“‘vf{ +fvz)dl,

where the sum of the line integrals is taken over all edges of the surféce S;. The (+) and
(—) signs refer to the quantities evaluated on the two regular surface sections intersecting
along an edge L,. The result (2.37) pertains to the cases where the function f is defined for
each regular surface section S, separately so that in Eq. (2.37) we may have f* # f~.
Note that the pair (v, ;) of the “tangential surface velocities” at an edge point is, by
simple geometry, uniquely defined by the pair (v;}, v;) of the normal surface velocities' at
that point, provided that the intersection angle is not equal to x nor to 0 (Fig. 2). Hence
the expression (2.37) involves, in effect, only the normal component of the transformation
velocity vector (as it could be expected from a geometric argument).

F1G. 2. Decomposition of transformation velocity vector at the edge of intersection of two regular surfaces.



704 H. PETRYK AND Z. MROZ

2.3. First derivative of line integral

Consider a line integral with respect to the arc length /,
(2.38) 1= [fa,
L

taken along a smooth curve L, moving in space with varying ¢ and contained in 2,. The
motion is described by the transformation vector field w(&;, t) as above. The curve can
be parametrized by a scalar variable y such that a line point has the space coordinates
El(y) at ¢t = 0 and the space coordinates

(2.39) x, =%y, 1) = E@+wi((EO). 1)

at an instant ¢ € 7. The line integral (2.38) can be equivalently written down as an integral
over the fixed interval (y4, %),

yB
(2.40) I = y[ fG, 1), )5, t)dy,

where y4 and y® are the fixed values of y at the ends, 4 and B, of the curve L,, and
1

. 0%, 9%\ ‘

2‘ ; = |— — l= d .
(2.41) s (3y 3y) #0, di=sdy
Denote by A the unit vector tangent to the curve L., of the components

: 1 9%
2.42 =7t
( 4 ) Ai s ay
It can easily be shown that

Ds as

(2.43) D—t = -—éTy=const = Svi'jli Aj.

By differentiating the right hand side of Eq. (2.40) with respect to ¢, using Eq. (2.43) and
returning to the arc length variable, we obtain

d D
2.44) <, = Lf (—Dé +fv,,,-l,l,) dl.

According to the notation (2.3), (), coincides with the derivative d/d/ with respect to the
arc length along the curve L . We have

E]

oA
2.45 =2 =
(2.45) a7 = kx |
where k is the curvature of L, and x is the unit prindpal normal to L,. The expression
(2.44) can be rearranged as follows:

(2.46) %IL = f{% —-ﬁ,'vz—fkv:+—§—l(fvl)}dl.
Ly .
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The last term of the integrand in Eq. (2.46) can be integrated and we finally obtain

.47) ,gt—l,, = 5Lf dl— f jk-v,,dl+(fvz)
L,

In the above expression we have introduced the following time derivative of a function
f(x;, t) relative to a moving curve

8 a
(248) L Y gt = fm,
where
(2.49) Vi = v—o,

is the vector component of v orthogonal to the curve. The derivative 6,/d¢ plays here an
analogical role as the derivative 6/d¢ in the analysis of moving surfaces. It can easily be
checked that 8./d¢ represents the time derivative following the normal trajectory of the
moving curve. Therefore, this derivative can be more generally defined, in analogy to
(2.23), as the partial derivative with respect to time while the appropriately chosen “con-
vected coordinate” of a line point is held fixed.

If the moving curve constitutes (a part of) the boundary of a moving regular surface,
then the derivative (2.48) can be expressed equivalently as

of &
2.50) &f { +f Vs

where the unit vector w is orthogonal to A and to the surface normal n. This follows from
the decomposition

(2.51) V = U0+ 0+ V.

The expression (2.47) will be needed to determine the second time derivative of a surface
integral.

2.4. Second derivative of volume integral

Similarily as the first derivative of I,, the second time derivative of volume integral
can also be expressed in several alternative forms. Starting from the first express:on in Eq.
(229) and applying the differentiation once more, we obtain

e L - ( br +fv,.,) v

dt? dt ‘
D*f Df 2y
= J{th +2 By Ve .+f(('vi )°+ Dt ('vu)))} ‘/ﬁ/‘

However, since

D 0v;. Do
(2.53) "5[(’01,:) = (Tt‘)’i'i'vi.ij‘vj = ( Dti ),i_'vi,fvj.i?

14 Arch. Mech. Stos. nr 5—6/86
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the eXpression (2.52) takes the form

259 dtz b= f‘th +2_§))ffvi”+f((v;")2+ (%%) l_vi.fvl,i)l av.

Starting from the second form of Eq. (2.29), we obtain
£ oo~ [l
(255) WI dt { +(f'vi) }d'V 712 ot Ui ’i+ f——ai ’i+

+((fv,),i'vj)_j}d“// = f 3{5 av + f{ Ut 3t n,+(fv,) ,v,,} da.
Ve v

The surface integral in Eq. (2.55) involves all components of the transformation velocity
vector on S;. To express the second time derivative of I, in terms of the normal velocity
v, only, let us start from the third form of Eq. (2.29) and apply the formula (2.37). The
result is

d? d of f , 32f f : o
(2.56) -Iz— I, = E (V W arv+ . fv,,da) 6t2 5 ad¥ +
t St

S

8 | 92
+—E(fv,,)—2f~v,%K,,,}da+ 2!f(v,fv;f+v;v;)dl= f 3t{ av:

+ f{ 57 Pathin ,?+f( v K, )}da+2 ff(v+v++v.. v)dl,

where the sum of the line integrals is taken over all edges of the surface S., and the (+)
and (—) signs refer to the quantities evaluated on the two regular surface sections intersec-
ting along an edge L; (cf. the comment following the formula (2.37)).

In view of Egs. (2.24), (2.26) and (2.11), the transformation derivative dv,/dt is expressed
as follows:

v, 0v; on v
(2-57? TR = 5t n+v; 6; = ( 3; +9;,,0; vn)ni_vigaﬂvn X, 8
Dy
= D; ny—20,, (0" — b 0P,

From the definitiops of v, and the transformati on derivative, it follows that 0v, /ot
coincides with the second time derivative of length of the corresponding normal trajectory
of the moving surface. The value of the expression (2.57) is thus invariant with respect
to the choice of the analytic description (e.g. of the surface parametrization or transforma-
tion field w) of a geometrically given shape transformation process.

On substituting f = const = 1 in the expression (2.56), we obtain as a corollary the
following formula for the second time derivative of volume of the domain V,:

(2.58) dt2 fd“/f f(——2v2K)da+2 f(w + 4o om)dl.
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2.5. Second derivative of surface integral

Consider again the integral (2.30) over the moving regular surface S;, and denote
by C a typical corner point on the piecewise smooth boundary line i, of S;. As in the
case of the volume integral, we can obtain several alternative forms for the second time
derivative of the surface integral by the repeated use of one of the expressions for its first
derivative. We explore here one possibility only, namely, by differentiating Eq. (2.36) and
substituting Eq. (2.47). This yields

d? 6 [ of | of
(2.59) | art Is = f:—;g (—g —2fz;,,Km) ——2(-;57 ——va,,K,,,) «v,,K,,,} da

St

+ f {(—gj{ -—2fv,,K,,,) U+ —g—‘;— (fo.) —ﬂw,,v,,} dl+ X {(vivf +vz97)f e

L

At a point C, the symbols (+) and (—) refer to the quantities evaluated on the two smooth
segments of the curve L, which intersect at C. The unit vectors A* and A~ tangent to the
segments at C are chosen to point towards the outside of the corresponding segments
(Fig. 3). Note that the pair (v, v7) is uniquely defined by the pair (v}, v;), irrespective

Fi1G. 3. Decomposition of transformation velocity vector at a comer point.

of the value of v,, provided the angle of intersection of the segm‘ents is not equal to 0
nor to z. By substituting Eqs. (2.27) and (2.50) in Eq. (2.59), we obtain

@ ([ ¥ 2y é“L)}
(2.60) W—Is— f:w —4Tt—v"Km+f(2ng"_g v,,mﬂv,,—2K,, 5t da

t

8
+f=26—{v,,+f,,‘vi+f(

L,

53?“ —2Kmvnvp—k%”*)}d’ +Z{(@i vt +oa oS e

14+
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By using Egs. (2.24) and (2.26), the second transformation derivative of a spatial ﬁeld
f(x;,t) can be expressed, explicitly as follows:

f _ 8 (of\_ o, o, &
5tz = Tt‘(_‘) = 27 P2 Guax, O Gx o X

of  du, of .

_J .z B,
+ ox; M5 dx; Xi,p8 " Un.a¥n-

(2.61) ninj'v,%

We can rearrange the expression (2.60) to eliminate the derivatives of fin the directions
tangent to S;, appearing in the surface integral on account of the last term in Eq. (2.61).
From Egs. (2.19) and (2.8) we have

(2'62) - f{fvnvn;uﬁgaﬁ'*'j;iii,ﬂgaﬁ'vn.avn}da = ffvnvn,ydl%n.avn.ﬂgupda-
St 2: St

By substituting Eqs. (2.61) and (2.62) in Eq. (2.60), we obtain

Q&) 4og- f‘azf ((_3{) A )v +(f, o yuny = 4f, K

712 o) %o
d
a+ § {CRAREr

Upp, /A)}dl_'-z{(vﬁ v{+v;v;)f}]c

+2ny)v£+(.f'n_2me) 61‘ +fg°‘5'v,, «¥Un, 8

0,9,
—2me'v,,—ﬂcv,,) v,,+f:,,'v,2,+f( 6t

If we substitute f = const = 1 in Eq. (2.60), then we arrive at the following formula
for the second time derivative of area of the moving regular surface:

d2 2 62}"
(264) —?Jt—zsf‘da = f(ngvn_gaﬂvn;a n m T8 )da

St

+ f (%f" _2K,..v,.v,.~kvp‘vn)dl+2(”,+”f + 2 0)c.

L:

3. Time derivatives of volume and surface functionals

3.1. Derivatives of volume functional

Consider the functional of a field u and of a domain V%,

3.1) Jo) = [ h(x,u, Va)dy",
Ve

where V, is the variable domain considered above, u = (u,, ..., uy) = u(x, t) is a vector
- function of class C* on the four-dimensional region 2, containing ¥, Vu is the space
gradient of u in the components (Vu);; = du;/dx; = uy,;, I =1, ..., N, and A is a real-
valued function of class C3, specified for x from an open region in E; containing V.
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By using the last expression in Eq. (2.29) for the derivative of volume integral and identi-
fying f with A, so that
fx, 1) = h(x,u(x, 1), Vu(x, 1)),

(3.2) of  oh . oh . N O)
or T ow Mt

we obtain

d . .
(3.3) *—Zit— Jy(ll) = f ( oh u;+ oh ul,j) ay’ -+ f h‘v,, da
V‘ S

 Ouy a(uy, )

= f{au, (3(u, ,)) }u,dV+J{hv +—a—%n-ﬁ,}da

fA,u,d"V+ va da+ fc, %1 a,

where
4o Oh 2 ( oh \)
1 du; o(uy) |’
(3.4) B = h—CIuI',,,
)
C, = oh oh

3ury) T Oy,

The expression (3.3) is equivalent to that derived e.g. by GELFAND and FomiN [19] for the
first (weak) variation of the functional (3.1).

When the field u corresponds to the extremum of the functional (3.1) for the fixed
domain ¥V, (within the class of smooth fields u unconstrained on the boundary S‘, of V),
then from Eq. (3.3) it follows that

(3.5) 4, =0 in V,, C;=0 onS,,

and the derivative is simply expressed by

. d _ f
(3.6) 27 = | hode,
St

that is, in terms of the boundary flux of 4 through the normal component of the transforma-
tion velocity vector.

The second time derivative of the functional (3.1) can be calculated by using any of the
expressions (2.54), (2.55), (2.56) and identifying f with 4 as in the expressions (3.2). An
alternative way is to differentiate the last expression in Eq. (3.3) with the help of Egs.
(2.29) and (2.37), which yields

(®») When writing the derivative dh/d(u;, , Jat a surface point, 4 is regarded as a function of the variables
(X, u,u,, 1 q), and the last equality in Eq. (3.4) results then. from the chain rule of differentiation.
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2 . B
(3.7) —‘:;F JV(“) = f (Alil.l +A1ilj)d7)+ f{Aﬂ'll‘v,,+B (i;)tﬁ‘ —ngKm) .
Ve At

0%u; duy B 6Cy Ou;
+C’(—6t2 —2————6t 1),,K,,,)+6—tv,,+——6t T da

Su
+ 2 Lf {(B””C’ 5

3.2. Derivatives of the volume functional with discontinuity surface

* . dup \~
‘U.u+ BY),,'I"CI"‘(‘S?— Uy dl.

Consider now a fixed domain ¥, = V, in E; composed of two variable subdomains
VY and V® separated by a regular moving interfacé S? (Fig. 4). The shape transformation
of the subdomains is due to the motion of the surface SP alone. All the assumptions con-

Fi6. 4. Moving discontinuity surface SP within a volume domain bounded by piecewise regular surface

cerning the domain V, are now supposed to hold for each of the subdomains VD and
V%) considered separately. Denote by n the unit outward normal to the exterior surface
So, while on the surface SP we introduce the notation

(3.8) ' n=n"=—-n? g, =9 =—0?,
where the supeiscripts (1) and (2) refer to the quantities defined on S? (directly or in the

limit sense) regarded as a boundary of V§! and V{2, respectively. A jump across SP is
denoted by [ -], viz.-

3.9 [f] = f@—ro.

We introduce the restriction that the field u is continuous across S ateach ¢, i.e. {[u]] =0,
[6u/ét] = 0, etc. According to the assumption introduced above, the field u(x, ¢) is of class
C3 except on S?P. The well known compatibility conditions require that the jump across
S? of the gradient and of the time derivative of u are necessarily of the form

(3-10)‘ I[ul. j]] = I]:ul,n]]n.l’ [[{‘1]] = —[[uz,n]]‘vn-
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Our aim is to derive expressions for the first and second time derivatives of the func-
tional ;
G.11) o) = [ B, u, vodv+ [Kix,u, Vayar,
V;l) V‘(Z)

_ where A and A® are regl—valued functions of class C3, specified for x from-open domains
containing V? and V{2, respectively. The functions #*> and h‘® need not be related
to each other.

By applying the last expression in Eq. (3.3) separately to each of the subdomains V¥
and V{® and combining the results, we obtain

612 L= f AVidy + f AP dv + J Cyityda

dt
P p

— f[[C,]] 6:; da— [[[B]]v,da,
S? St

where A? in V", r=1,2 and C; on §0 as well as B™ and C§” on both sides of SP are
defined by Egs. (3.4) with A replaced by the respective A, with the assumed convention
(3.8) for n on SP.

If the field u corresponds to the stationary value of the functional (3.11) with respect
to arbitrary (weak) variations within the considered class of fields u for the fixed position
of SP, then the derivative (3.12) must vanish identically provided v, = 0 over SP. Itfollows
that in that case we have
(3.13) AP =0 in VY, A‘,” =0 inV®, C;=0 onsS,,

| -

3.14) [Ci] = ‘ 0 onS?,

[ O(ur,n) 1l

and the expression (3.12) reduces to

(3.15) - 717@,@)‘: - f[[B][v,,da.
sP?

If, moreover, the field u renders the functional Jp(u) a weak relative extremum ¢ value
within the considered class of u for the variable position of SP as well, then the integral
in Eq. (3.15) must vanish for all v,, so that

(3.16) [] = [#]- 3—(2?—)[@,...]] =0 on SP.

‘The derivative dh/d(u,,,) can be regarded here as the limit value from either side of SP
on account of Eq. (3.14). o :

The conditions (3.14) and (3.16) are the multidimensional analogs of the classical
‘Weierstrass—Erdmann corner conditions for piecewise-smooth one-dimensional extremals
{cf. e.g. GELFAND and FoMIN [19]).

(® That is, the relative (local) minimum or maximum with respect to the norm stép(]u|+ |Val).
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On account of continuity of u, the jump across S? of the second partial derivatives
of u(x, t) must satisfy the following compatibility conditions (cf. THoMAs [15, 16]).

I[u1 Jk]] [[ul nn]]njnk"'g{xﬁ[[ul n]] oy X, ,8+nk i\ B) — I[“! n]]b xj « Xk, B

I[i‘!.j]] = _I[u!.nn]]vn+ —5;‘I[ul.n]])nj_ggﬁ(l[ul,n]]vn).aij,ﬂs
(3.17)

. 2 i) 00,
|[u!]] = |[u1.m.]]'”n —2v, 5t I[ut. n]] - [[ur, n]] o’

Ur,mm = ui,jknjnk, 54.1 = azu,/atz.

The expression for the second time derivative of the functional (3.11) is obtained by
applying the formula (3.7) separately to the regions V" and V(® and combining the results.
In view of the assumptions made, we arrive at

G.18) 2 _ Iy = f AV + AV i) dy + f (AP + AP ) dV

1)
( Vr(z)

+I(C,i2,+(f,iz,)da— f{[[A;u;]]'vﬁl[B]](

So st

0%u ou ou
+|[C']](75T2'—2a_t' K)+v,, 57 B+, & [ci] ’} a

- f{([[B]]v +[ci] 6"') vy +|[C,sa,]]vﬁ}dl.

d?
“darr

—2v2K,, )

In the above expression, LD denotes the boundary of SP obtained as the 1ntersectlon
curve of the surfaces S? and So The quantities appearing in the line integral along LD
and dlstmgulshed by the superscript D or S denote the limit values evaluated on the surface
SP or So, respectively, with the notation vp = 92 = ¢0® and 9§ = oV = —o§?,
Note that the tangential surface velocities v and v; at a point on a smooth segment LD
of LD result uniquely, by simple geometry, from the value v, = 92 at that point (Fig. 4).

If the conditions (3.13) and (3.14) are satisfied, then the expression (3.18) reduces to

(3 19) ddtz JD(“) = fA“’u,d“//'+ fA‘z’u,d“/"+ fC’,u,da

V(l) V(z)

- f {[[B]](év" ~20%K, )+v,. 57 [Bl+ - 6t [c:] 5“’}da— Jf [B®]e.Rdl.

'3.3. First derivative of the sum of volume and surface functionals

Consider a functional of the field u in the form of the sum of the volume and surface
functionals

(320) - J = J,(u)+Jsu) = f h(x, u, Vu)d¥ + f g(x, u, Vu)da,

St
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with the assumptions concerning ¥;, u and h as in the point 3.1 above. The function g
may be prescribed over regular sections S, of the surface S, independently of each other.
For each regular section S,, g is assumed to be of class C2 specified for x from a neighbour-
hood of S,. From the relation (2.24) and the chain rule, we have

0g  og . dg .
(3.21) —~6—t— == auI u1+ a(ul,j) ul,j+g,,,‘v,,,
where

_ g % . Jg ‘
(3.22) g&n= axj j+ 3111 a(u—l'j)ul,jknk.

By using the second form of Eq. (3.3) and the formula (2.37) and substituting Eq. (3.21),
we obtain

(3 23) ———J(ll) = fA,u,d“//+ f{CIuI+ aag u; j+(h+g,.

t

3( 5
\ |
—2K, v,,}da+ Z f (" of +g-7)dl.
L’

Over a regular surface section, we may regard g also as a function of the independent
variables (x,u,u,,, u,,) with the relationships

g . __98 Z A
o(ur,j) i o(ur,n) o(uty,q) foor
dg _ og og og
urn)  OGury) G | O, ,) %.08%
With the help of the Green theorem (2.19), the expression (3.23) can thus be rearranged
as follows:

;‘I,n"'
3.24)

(3.25) —J(u)— f Ayiyd¥ + f {c,+ £ (a%):u}d,da

t

dg . f
+ | - + +¢o —20K )v,da
Af a(uI, ) ur, nda (h+8.n—28Kn)0n

t

5 5
+oyt L g—m— 98 — !
+2Lfl(g veTe ”ﬂ)+((a(u,,u)) +(a(uz u)) )""‘”’

dg dg
(3.26) = )
s, oGy M
Suppose now that the field u corresponds to the stationary value of J(u) with respect
to arbitrary (weak) variations of u (unconstrained over the boundary) for the fixed bound-
ary of V,. By standard argument of the calculus of variations, from Eq. (3.25) it follows
that in that case we must have

where
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A=0 in ¥,
Jg g 3g' A
= ——— v Eamared d ——— =
G-27 ="t (a(u,.a))m M Sy 0 om S
i) =) on e
] = | on every L.,
(a(u,,,,) s, ) R
and Eq. (3.25) reduces then to
d . + + - -
(3.28) I = f(h+g,,,—2gK,,,)'v,,da+Af(g v} +g vg)dl.
St L

t

4. Example: time derivatives of the potential energy in nonlinear elasticity

The general results of the preceding sections can now be applied to various particular
problems of mechanics. To illustrate this application, consider a nonlinear elastic body
occupying a region ¥V, in its undeformed state and assume this region to undergo a shape
transformation process with varying ¢. This transformation process may correspond, for
instance, to body growth, phase transformation, or to conceptual redesign procedure
where some material domains are added to or removed from the body. The deformation
process described by a displacement field u;(x, ¢) corresponds also to a change of body
configuration but transformation and deformation fields are regarded as separate fields,
coupled through governing equations for the body.

The Cartesian coordinates x; are interpreted as the material coordinates, and the disp-
lace ment field u(x, ¢) is assumed to be of class C? in the four-dimensional domain £, conta-
ining ¥,(4). The deformation gradient F is defined by F = I+ Vu, that is F;; = 8y+uy, ;.
The material is assumed to be hyperelastic, obeying the constitutive relations of the form

W
~ OF,’

(4.1 oy

where o is the first (nonsymmetric) Piola—-Kirchhoff stress tensor (related to the symmetric
Cauchy stress 6° by the formula o;; F,; = det(F) ¢%,), and W is the specific strain energy
(per unit volume in the undeformed state), assumed to be a given function of (x, F) of class
C? specified for x from an open domain containing ¥;. The nominal body forces b, (per
unit undeformed volume) are assumed to be continuously differentiable functions of x.
The body surface is composed of two piecewise regular parts §,“ and .§',T . Over §,“ the dis-
placements u = U are specified as the restriction to S* of a given spatial vector field a(x)
of class C? defined in a neighbourhood of S:“ . Over each regular section ST of S‘," (possibly,
independently of each other) the nominal tractions T = T (per unit undeformed area)
are prescribed as the restriction to ST of a given spatial vector field T(x) of class C! defined
in a neighbourhood of ST.

(*) Physically, u may be defined only over the body domain V;, but the smooth extension of u on the
domain 0, is assumed to exist.
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Consider the potential energy functional

@2 a@) = [{Wx, VutD)—b,i}d¥ — [ Tuda,
A 5T

which is assumed to vanish in the undeformed state (4; = 0) for any shape of V,. Now,
we can identify (for N = 3) the function W —b;u; with h and the function equal to — T,
on §,T and zero on S‘,“ with g in Eq. (3.20). From Egs. (3.23), (3.22), (3.4) and (4.1), the
following expression for the time derivative of m(u) is obtained:

(4.3) %ﬂ(u) = - f(o'”,j‘i‘bi)l.l,d"//‘{‘ f(o‘”nj—i)l'l,da+ f{W—b,u,—(ﬁu,),,,
v 57 ' s ;

+2.’I_}u1Km}v,.da+ f {(W=b,u)v,+o,nu,}da
8¢

- f(f,-"v,}“+1—'fv;)u,dl— fﬁu,v,’}dl.
i AN

In the above expression, I:,T and f,,T ¥ denote the set of the edges of intersection of the regular
surface sections ST+ with ST~ and ST with S¥, respectively, with the corresponding meaning
of the symbols (+), (=) and (7) in the integral expressions. The condition u = u on S}
yields ]

ouy  Ouy ouy

5t = ot = Uy, pOn, U= _(St——ui'"v" = (Ui, n=Ui,n)Vn-

The last expression can be substituted in Eq. (4.3) to eliminate #; from the integral over
A

Suppose that the derivative (4.3) is calculated when the body is in equilibrium, that is
when

4.4)

0'(1,_1+bi =0 in Vi,
4.5) — oy
oy =T, on ;.

The conditions (4.5) are equivalent to vAanishing of the derivative (4.3) with respect to
kinematically admissible fields @ with S, held fixed, that is

d ~ . o
(4.6) (‘?d?)sﬂ:(u) = —,J (Uij,j+bg)uldv+A.1[ (Uijnj—T()uida = 0.
t St
» In view of Eq. (4.6), the expression (4.3) takes the form

@) L= () m0 = [0~ Ot o = 20K T Yorde
s&

+ [ {W—bi— (u,u—ity, Y oyn}vada— [ (Trop+Troudl— [ Tiaoldl.

& £ ir
This expression provides a generalization of the result of DEmMs and MRrOz [2]. Let us
note that the total derivative (4.3) can be presented as a sum of the state and domain
derivatives, (4.6) and (4.7). In view of stationarity of the potential energy with respect
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to the state field u, the state derivative (4.6) vanishes and the total time derivative equals
the domain derivative expressed by the surface and line integrals explicitly in terms of the
state field u and normal transformation velocity v, (since v on the edges are definite
functions of v3).

Consider now the case when the external body surface S, is fixed(®) but the elastic
body is composed of two variable subdomains V! V(? separated by the moving regular
interface SP. The displacement field u(x, ) is assumed to be continuous on S? and twice
continuously differentiable elsewhere but its derivatives may be discontinuous across S?,
satisfying Eqs. (3.10) and (3.17). The process of shape transformation with moving inter-
face SP can be regarded, for instance, as a phase transformation process, damage pro-
gression, or redesign of an elastic composite structure with different material properties
within V¢ and V(®. The strain energy functions W’ and W on both sides of SP are
of class C? and are in, general, independently specified for x from open domains containing
V@ and V@, respectively. Similarily, we regard the body forces in V" and V(? as two
independently specified spatial fields b(i’ (x) andb® (x) of class C'. The boundary condi-
tions on the fixed body surface S; = S, are identical as in the previous case. The potential
energy functional is taken in the form
(48) 2P(w) = [ (WOX, Va+D—bDu}dv + [ (WP(x, Vu+1)

p p®

—b@uydv — [ T,uda.
5

The term T;u; on SJ is assumed, for simplicity, to be continuous across a moving edge L?
of intersection of SP with S3 so that no line integral appears in the expression for the Aﬁrst
time derivative of the sqrface integral in Eq. (4.8). From the condition u = u on S§ it
follows that @ = 0 on Sj. Identifying the function W@ —b{u; with A® in Eq. (3.11)
(r =1,2) and using Egs. (3.12), (3.4), and (4.1) with W and ¢ in place of W and o,
we arrive at the following expression for the time derivative of the potential energy:

49 Law) =~ [(op+byinay~ [ @RrbPyndy

“ i o
=\ é
+ f(o'unj—T‘)uida_ f[[a'u]]nj%da— f{IIW]]—njl[a'uui'n]]—I[bi:ﬂud?),,da.
K s? s?

Suppose that the derivative (4.9) is calculated at the equilibrium state of the body, -
that is when the conditions (4.5) (with ¢ replaced by the respective ¢() are satisfied except
on S? and there is

@4.10) = [o:]Jn, =0 on SP.
The conditions (4.5) and (4.10) are equivalent to vanishing of the state derivative of 7" (u)

with respect to kinematically admissible fields u and with fixed S" The expression (4.9)
becomes now the domain derivative in the form

- A A
(%) In the sense that there is no shape transformation of S;, that is, v, = 0 on S, but the displacements
need not vanish on S;.
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(4.11) —aP(u) = ( ) aPu) = — f{[[W]] 055w, ] — [b:]ui} vnda.

If the potential energy functional (4.8) is reqwred to attain a stationary value (or a weak
relative minimum) for varying S? as well, then from Eq. (4.11) (or from Eq. (3.16)) it
follows that .

4.12) [W]l-ounfui,.]—[b:Ju; =0 on SP.

This relation can be written down in two other gguivalent forms, on account of Eq. (3.10).
The relationships (4.11) and (4.12) reduce to those derived and discussed by ESHELBY [8],
KNowLEs [20], JAMEs [13], ABEYRATNE [9], GURTIN [14] and DeEMs and MRrOz [2, 3).

Let us now discuss the second time derivative of the potential energy (4.8) at the equi-
librium state. The assumed order of differentiability in V" and V{? of all functions involved
is now increased by one with respect to that assumed previously. It is possible to apply the
general expression (3.18) with appropriate identification of the integrand functions. An
alternative way is to differentiate the expression (4.9) with the help of Eq. (3.23) and

~ substitute the equilibrium conditions. The result is

2
(4.13) ;2 2P(u) = f&g},’,i:,d“/f— f 52, iudV + fa,,n,;z,da

v v 58

f{ (51» 2K)+'v,. 5{ 57 ([o]ns) }da— va,,vgdz

.D = ﬂ:W]]—l[O'Uu,,n]]nj—ﬂ:bi]]ui.
This form is convenient in applications when u satisfies the incremental conditions of
equilibrium since it contains explicitly the terms appearing in these conditions. An alterna-
tive expression (not given here) can be obtained from Eq. (4.13) by using the divergence
theorem and rearranging with help of the differentiation rule (2.24).

where

S. Derivative of a volume functional with constraints imposed on the state field

The general results presented in Sect. 3 shall now be applied in the case when the time
derivative of a functional of a state field u defined over a variable domain V;,

(5.1) J) = [ g(x,u, Vuydr",
Vt
is to be determined in the presence of certain constraints imposed upon the field u. For
simplicity, the boundary S, of V, is assumed to be regular and the vector u is taken to be
three-dimensional, of the components #; (though an extension to N-dimensional u is
immediate). The function g is of class C? and is specified for x from some neighbo-
urhood of V,. :

We begin with general considerations, not pretending to be completely rigorous in
a mathematical sense. Suppose that the field u is constrained by an operator equation
within the domain V,,

(5.2) AW =0 inV, (or 4(w(x) =0 for xeV,)
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and by the so-called essential boundary conditions

(5.3) Gu)=0 onsS, (or G =0 for xeS),

where A and G are nonlinear operators (with functions as their arguments and values),
assumed to be (Gateaux) differentiable. We shall proceed in a formal way, leaving the
corresponding function spaces unspecified. In general, the surface operator G defined
on the varying boundary surface can be regarded either as specified by or as specifying
the operator G defined in a neighbourhood of the surface S;, such that é(u) x) = G(u)(x)
for x € S;. A form of the operator G depends on the shape transformation process; however,
in the course of differentiation we may regard this process and this operator as specified.
The derivatives d(G(u))/dt and (G(u)),, refer to the time-dependent spatial field obtained
as the value of the operator G acting on the field u which varies in time. The distinction
between G and G will be illustrated in the subsequent discussion of the particular case.

Following the usual technique, consider an augmented functional

(5.4) @ = [gx,u, Vu)a¥ — [ 2 4,@av — [ 2,6 w)da,
v vV, . S,

where A is the Lagrange multiplier field, assumed continuous and continuously differen-
tiable. In Eq. (5.4), the field u is regarded as nonconstrained, however, the derivative
of J%u) shall be evaluated at the (known) state u which satisfies the conditions (5.2) and
(5.3). The total time derivative of J%(u) corresponds to variation of u, 4 and of the domain
V:, so that, in analogy to Eq. (3.23) and on substituting the conditions (5.2) and (5.3),

3.5 —gt— Ju) = (%) J* () + (-gt—)d.f “(n),

where the state derivative equals

' d\ .. og ag\ . d
(5.6) (—617);1 w= | {3ui —(m)'j}u,d‘lf— Vf b (Aw)d¥

V, .

g . d
+ Sf {————a(ui'j) ity — A e (G,-(u))}da
and the domain derivative is expressed by
d a
5.7 (—Jt-)dJ () = s{ {g—li(Gi(u)),@qda.

Denoting the (Gateaux) derivatives of the operators A and G by A’ and G, respectively,
we can write ‘

58) 22 (4@) = AW E), 2 (GW)ls, = Gl @

The operators A’ and G’ are, by definition, linear with respect to the second argument.
Suppose that we are able to determine the adjoint operators (A")* and (G')* such that for
all fields wu, A

5.9 [ ad@@do+ [ 2,6 @da = [iA) @M@+ [ 1@ @R)da.
V‘ S: St

Ve
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On substituting Eqs. (5.8) and (5.9), the expression (5.6) takes the form

d\ yon _ og og " .
(5.10) (E‘_),J () = f {—az—(m),j—m)i (u)(l)}uid"lf

Vt
P .
+ f {—3—@% = @O ida.

Now we require the state derivative (5.10) to vanish identically for all fields u, and obtain
in that way the following. l/inear equations for the field A:

(s.11) Wi =& - () v,
(12 - (G)*(W)(A) = ;ﬂ%)_nj on S,.

Suppose that the system of equations (5.11) with the boundary conditions (5.12) has
a solution A. For that field A the total time derivative of J(u), at u satisfying the constraints
(5.2) and (5.3), reduces to the domain derivative (5.7). In turn, the functional J%(u) has
been so constructed that for any field W compatible with the constraints, that is, for u
satisfying ‘

(5.13) % (A()) = A’(w)() =0 in V,,

(G.14) "_—(%(G(u)) = G'(W(W)+(GM)),,z,=0 on S,

the derivative (5.5) of J°(u) coincides with the time derivative of the original functional
(5.1). This can be verified by substituting Egs. (5.11), (5.12) and (5.9) in the expression
of type (3.3) for the derivative of the relation (5.1) which leads to the right hand side
expression in Eq. (5.7), on account of the relations (5.13) and (5.14). Hence the time
derivative of the functional (5.1) in the presence of the constraints (5.2) and (5.3) is expressed
by

(5.15) ‘ ( T;i? )cJ(u) = sf lg—4,(G(w)), | vada

provided that the field A satisfies Eqs. (5.11) and (5.12). Note that in this formula the
field @ has been eliminated, and that the normal derivative (G(w)),, depends in general
on the shape transformation process as does the operator G itself.

The equations (5.11) and (5.12) can be regarded as definition of the adjoint field u*(x) =
= A(x) within the same domain ¥, but satisfying different field equations and boundary
conditions. It is seen that in order to determine the time derivative (5.15), we need a solu-
tion of the primary problem defined by Eqgs. (5.2) and (5.3) and of an adjoint problem
defined by Egs. (5.11) and (5.12).

Consider now a-particular case when the functional (5.1) is considered with the con-
straining conditions of the form
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_ oh on \
A = G~ (awi.j) ) =0 Ve
. oh
(5.16) Gi(u) = F%) ,) -T;=0 on S,‘,

where A = A(Xx, u, Vu) = I?(x, u)+ i?(x, vu) with the functions 4 and 4 of class C? and C3,
respectively, specified for x from some neighbourhood of V,. T = T(x) is the continuously
differentiable spatial vector field prescribed in a neighbourhood of S,, and @ is a surface
field of the unitnormal vector.

To identify the operator G discussed previously, let S; be a surface configuration in
a shape transformation process with nonvanishing normal transformation’ velocity v,.
Each point x from a neighbourhood of S, lies at some instant ¢t = 7 on the moving surface
S, therefore, we can construct the spatial field n = n(x) by assigning to x the unit vector
normal to that S/ at x. The operator G is defined by the second formula in Eq. (5.16) in
which the surface field @ is replaced by the spatial field n. Evidently, the field n and thus
also the operator G are dependent on the shape transformation process. However, in any
specified process with non-vanishing v,, the derivatives

=0 and n.'nz———-nj= ;1—___=—$_A_.

(517) at x=const axj n 6t n 0

are well defined and therefore the derivatives 0(G(u))/ot and (G(u)),, have a clear sense.
Of course, on S, we have i = n and in the following the tilda will be in many cases omitted.

From Egq. (5.15) we immediately obtain the following expression for the time derivative
of the relation (5.1) in the presence of the constraints (5.16)

(5.18) (dt)w"‘) f{ (a(,,) )”’T""}”""“’

and there remains to determine the adjoint operators (A’)* and (é’)* which occur in Eqgs.

(5.11) and (5.12) for the adjoint field A. However, it is preferable (and instructive) to repeat

the whole derivation procedure outlined previously with a slight modification which

allows to avoid construction of the operator G and to remove the restriction v, # 0.
The argmented functional has now the form

(519)  J) = f g(x, u, Vu)dy "~ f ﬂ{%’u(a—(f,%) .:d“’”
v V‘ i i, oJ

|
_f).i{a( l]) T,lda,

where the field A is assumed to be of class C2. The time derivative of Eq. (5.19) is calculated
with help of Egs. (3.3), (237) and (2.2) but the decomposition (2.24) is not applied
to the vector fi. At a state u satisfying the constraint conditions (5.16), the time derivative
of Eq. (5.19) takes the form (5.5) with
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£

R \da_fag _(ag). Coth T,
(5.20) (zt—)s.] () = ; {aui u; i) - ———-*aujaui u;

J%h . 3g . 92k
(3(uk m) O(u;, J,) ) }d“//_p fi——*a(u,,,) nyu;— IWW ) u, ,,,nj}d

and

. n—T, o oh  n
(>:21) ( T = f y€ (a(u”) T»” My o

By applymg twice the drvergence theorem to the last term in the volume integral in Eq.
(5.20), we can rearrange this expression as follows:

d\ .. (log [ o8 \ & 9*h
G2 (E)s”f') -J o (,a(u,.,)).,, dudy (a(ui ey ) fit”

da.

&% .
+ f{ 3(u, j) 3("1 j)a(uk m) Ak.m}nju,da.

Requiring th1s expression to vamsh 1dentlcally for all u, we obtam the equatlons for the
adjoint problem - :

(A )*(u)(;\) 32h l ( 9%h j. ) = _?i_(i_) in Vt"

Bu uy 'J a(uy, J)a(uk m) ou,  \o(u,y) /.,

9%h - g .
e Mymly = 55— R
o(uy, 1) O(thi,m) ko™ 0, y) i
By the same argument as is the general case, the time derivative of the functional (5.1)

in the presence of the constraints (5.16) is equal to the domain derivative (5.21) of the
argumented functional, and is thus on account of Eq 2. 26) expressed by

(5.23)
G @@ =

on S,.

(5 24): ( J(“) = f% ( 3( j) Tt.n)w +}'i a(i?j) xJ ﬁg ZJ,, qlda

provided that the field A satisfies Eq. (5. 23) For v, # 0, the equlva]ence of Eqs (5 24)
and (5.18) follows from the formulae (5.17) and (2. 26)

The case considered above can easily be interpreted in the context of the nonhnear
theory of elastlclty Identrfymg u with a displacement field and assuming that the first
Piola-Kirchhoff stréss tensor o and the body force vector b are generated by the potential A,
that is

- Oh . oh.
5.25 Gy = ——, by =———,
(525) T A, ) ! u,
Egs. (5.16) can be regarded as equilibrium equations and traction boundary conditions.
In turn, the adjoint field A may be identified with a field u® of displacements of the adjoint
body. The adjoint body problem is similar to that occurring when-small displacements-u®
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are superposed on the initial field u. The correspondmg stress ¢ is linearly related to the
gradient of u® by

0%h
o(uy, ;) O, m)
where C&um = Cim are the tangential stiffness moduli at the state u. The term

ah , _ ab, , _ ob,
(5.27) - aui auj }sj = aui i = a—uj-u_'

(5.26) ojy = Meom = Cliim(VO)ug,

represents the linearized increment of the displacement-sensitive body forces b. Denote
by b® and o® the (artificially superposed at the state u) fields of additional body forces
and initial stresses (induced, e.g. by an initial distortion field), defined by

. og g
§‘) = - ¢ = __°
(5°28) , Gij s bl au,- .

Eqs. (5.23) for the adjoint problem can be rewritten in the form of equilibrium conditions:

(5.29) (0{,"}"0’ )J+"g—b_uj+ba =0 in Vr,

(64 +0)n;, =0 on §,.
The interpretation of the adjoint system is similar to that discussed by Dems and MROz
[2] who started from the virtual work principle deriving the variation of an arbitrary
functional associated with the boundary transformation. To show that their result (93)
is in agreement with the present formula (5.24), we use the identity

(5.30) f{lt 0155, 68 0n,at+ (A1,001,%), 58 + 2,101y,0 %, 8%

S

+ A oyynbepg™)v, Y da = J (V44015 %),8%);0da = 0
S'

which results from the relations (2.8) and (°2. 10) and from the Green theorem (2.19) applied
to a regular closed surface S;. By substituting Egs. (5.25), (5.30), (2.12) and 1 = u® the
expression (5.24) can be rearranged as follows:

d . '— v < «, a a
(5.31) (—c?t_) J(u) = f{g'*' ui Ty, n—uf, 201X, 58 ﬂ*zux"iJ"JKm_ut(Uu;‘"J
c st

+o'u_aféj'pg°‘p)}v,,da = f{g"‘“?Tt.n"“?dau"'“?,no'unj‘zu‘i"’uanm
s, .

—u{ 0y, ;}Vada.

Substitution of the equilibrium conditions (5.16) yields

d _ _
(5.32) (ﬁ) J@) = [ {8+t T),a—uf 0y —2u5 T, Kn+ufby Yo, da.
| Jw=)

The final formula is in agreement with the result derived by DEMS and MRrOz [2].



TIME DERIVATIVES OF INTEGRALS AND FUNCTIONALS ... 723

6. Concluding remarks

The present paper provides a systematic derivation of expressions for time derivatives
of surface and volume integrals and functionals defined over varying domains. There are
numerous physical applications of such derivatives and here we have presented some
examples in the context of the nonlinear theory of elasticity. The previous results are
extended by considering piecewise regular boundary surfaces with edges and corners
of intersection. The extended application in sensitivity analysis and optimal shape design
has been discussed recently in the literature [1-7]). The application of such derivatives
in phase transformation problems was discussed in [8, 9, 13, 14]. We hope that the present
paper can provide the foundation for systematic treatment of a variety of problems where
the deformation process is accompanied by a shape transformation process,
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