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THE CONSTITUTIVE EQUATIONS FOR RATE SENSITIVE
PLASTIC MATERIALS*

By
P. PERZYNA

Institute of Basic Technical Research, Polish Academy of Sciences

Summary. The principal aim of the present paper is to generalize the one-dimen-
sional constitutive equations for rate-sensitive plastic materials to general states of
stress. The dynamical yield conditions for elastic, visco-plastic materials are discussed
and new relaxation functions are introduced. Solutions of the relaxation equations for
such materials are given.

1. Introduction. For general types of stress and strain rate, possible constitutive
equations were first given by Hohenemser and Prager [6]f; they can be written in the
form (see Prager [9], [10])

2 vft = 2k (F) , (1)

where

(2)

is the statical yield function and s,-,- denote components of the stress deviation and
the components of the plastic or, more generally, the anelastic strain tensor, t) is a coef-
ficient of viscosity, and k the yield stress in simple shear, J2 represents the second in-
variant of the stress deviation, and the dot denotes differentiation with respect to time.
The symbol (F) is defined as follows:

{F}_ jo fop F< 0 (3)
[F for F > 0.

Taking the elastic strains into consideration, and denoting by e,-f the components
of the strain deviation, and by p. and K elastic constants, we obtain the relations

i i _ b T~1/2
e'u = ~ + 1   sti , if J1/' > k,

eh = ^ si,- , if JY2 < k, (4)

IK
which were studied by Freudenthal [5].

e" 3K <7'

*Received May 14, 1962. The paper was written while the author was a Visiting Research Associate
in Applied Mathematics at Brown University.

fNumbers in square brackets refer to the Bibliography at the end of the paper.
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2. New constitutive equations. To generalize (1), let us replace 2k(F) by
where 70 denotes a physical constant of the material, F is again defined by (2), and the
function $(F) satisfies the conditions

$(F) = 0 if F < 0,1
$(F) ^ 0 if F > O.J

(5)

When elastic strains are added, the following equivalent forms of the constitutive equa-
tion are obtained

e'i, = for F> 0,

e'u = ^ s'h , for F < 0,

J_ .
3 K€»* 0"it )

(6)

or

e'u = ~ + ?*(*") jp , for JY2 > k,

e'a = ^ si,- , for J\/2 < k,

e,-i 3R tu ,

(7)

where 7 = y°/2k.
The function $(F) may be chosen to represent the results of tests on the behavior

of metals under dynamic loading.
The general assumptions in Eqs. (7) are the same as those introduced by Malvern

in his nonlinear relations for one-dimensional problems [7]. The relations (7) involve
the assumption that the rate of increase of the plastic components of the strain tensor
be a function of the excess stresses above the static yield condition. The elastic com-
ponents of the strain tensor are considered to be independent of the strain rates. In
Eq. (7) the strain hardening effect is neglected. All available experimental data indicates
that strain-hardening of dynamically strained mild steel is very small (see, for instance,
Campbell's recent investigations [2] and [3] concerning the behavior of mild steel under
dynamic loading).

Consider now the anelastic part of the relations (7)

«« = yHF) Jp- (8)
Squaring both sides of Eq. (8) and denoting by Ip2 = fe 7# the second invariant of
an elastic strain rate tensor, we obtain

(^2)1/2 = 7*0F). (9)

By (9), we can write

j\>» = k[ 1 + <t>-\[IP*]U2/y)], (10)
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■y?.

Fig. 1.

where $_1 denotes the inverse function of $>, (Fig. 1). It can be seen from (10) that the
constitutive equations (7) lead to a similar result as the theory of plasticity, for isotropic
work hardening material. But in the theory of plasticity for isotropic work-hardening,
the radius R of the cylindrical yield locus in stress space depends on the strain, whereas
in the case considered here R depends on strain rate according to

R = R0[l + *-\[lT2/y)L (11)
where R0 = 21/2fc denotes the radius of the statical yield cylinder (Fig. 2).

In the theory of plasticity for isotropic work-hardening material we have three
possibilities according to whether J2 > 0 (loading), J2 — 0 (neutral loading), or J2 < 0
(unloading).

In visco-plasticity, since J2 is a function of the strain rate, the plastic flow (relaxation
effect) occurs if J2 > k2, independent of whether J'2 > 0, J2 — 0 or J2 < 0.

The condition

Stfi'u = + 2^F)J>2 > 0 (12)

gives the relation
4mtHF)JY2 > I J~2 |. (13)

Due to the relations (7), the material will be elastic on the path OP0 , but on the
path P0P1P'1P2 it will be elastic, visco-plastic, (Fig. 2).

R = ky2[n-4>

Fig. 2.
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3. Relaxation process. To discuss a relaxation process for general states of stress,
let us consider an elastic, visco-plastic body occupying the three dimensional region V
with the regular surface S and investigate the following boundary value problem.
Consider first the loading process in which the surface tractions T,■ are prescribed on the
part /Si of S and vanish on the remainder S2 ■ This loading is to be followed by a relaxation
process in which the surface velocities v{ vanish on S, , while the surface tractions Tt
continue to vanish on S2 ■ In a relaxation test that is to furnish useful information
about the constitutive equations, the states of stress and strain must be homogeneous.
A relaxation process defined in this manner we shall call an .A-process.

Let us consider the tensor r,; defined by the formula

r<; = \ J (TiVi + ?>,.) dS. (14)

During an ^.-process the tensor T,, vanishes. Thus,

r" = 2 / (T,Vi TiV^ ds = \ / ^ikUkVi + dS

= | / dk(<TikVj + <rjkVi) dV = | J (<rikdtVj + <rikdkv,) dV (15)

= I / <T'ktk^ dV = 0.

The states of stress and strain are homogeneous during this type of relaxation test;
we therefore have

§(0\i«i,' + Viki'kx) = 0. (16)

These conditions enable us to determine the state of stress as a function of time during
a relaxation process.

Assume now that a certain state of stress characterized by alf (or s-°' and a(k°k)
and J™1 = slfSi^/2 > k2 has been reached at the time t = 0 and next the relaxation
process occurs. Then by (7) and (16) we obtain a system of six differential equations
with respect to s<; and ckh

2 {(Sa + I s;' + 9^ + yHF) 7p]

+ (sik + | (TuSik) _2m Ski + 9K a"Shi + JY

(17)
= 0

By assuming in (16) i = j we have the condition

= 0. (18)

Multiplying Eq. (16) by <ru we obtain

%(<rikt'k i + <Tiktki)<Ja = <Tn<Tjke'hi = 0. (19)

Consider now the simpler boundary value problem in which the loading process is
characterized by the surface tractions T< being prescribed on the entire surface S, while
during a relaxation process the surface velocities vanish on the entire surface S.
This kind of relaxation process we shall call a ^-process.
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Because the states of stress and strain are homogeneous during a relaxation test,
we now have conditions

('a = 0. (20)
From (7) and (20) we obtain a system of five differential equations with respect to

Su in the form

si,. + 2■% = 0. (21)
J 2

The conditions (20) lead to two useful scalar conditions

Sije'u = 0, (22)

si,sike'ki = 0. (23)

It is worth noting that these conditions are valid for A-processes in incompressible
materials because then

«« = 0. (24)
The validity of (22) and (23) for an ^4.-process under condition (24) follows readily from
(18) and (19).

According to (12) and (22) during .4-processes in incompressible materials and during
/^-processes in any materials we have a relaxation equation for J2 in the following form:

j; + 4m7$(~ - 1 )j\/2 = 0. (25)

This can be written as a nonlinear Volterra integral equation of the second kind

J2 = A0) 4^7 Jo ~ l) dt. (26)
Under the assumption that the integrand J\/2 $>(J\/2/k — 1) satisfies a Lipschitz con-
dition, that is that

(J,)1/2$((££p _ i) _ _ j) < No \Jt- Ji' I, (27)

where N0 is a positive constant, the solution of Eq. (26) can be obtained by the iteration
method based on recurrence formula

= J<°> - 4My [ ~ l) dt. (28)

It is easily verified that the series

J*0) + Z Uin+l\t) - An\0] (29)
n = 0

is absolutely and uniformly convergent, and its sum

J2(t) = lim A"\t) (30)
n-» oo

is the solution of the integral equation (26), and hence of the differential equation (25).
Of course, the solution (30) is valid only in the nonelastic region J2 > k2.
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4. Generalization. It is obvious that the constitutive equations (6) are valid for any
function F representing the statical yield condition provided the assumptions concerning
the perfectly plastic materials are satisfied, i.e. that the function F does not depend
on the strains. For instance, for

Jjl _ /(■/2 , J 3) j (31)

where J3 is the third invariant of the stress deviation, and c is a constant, the equations
<(6) have the form

e:# = bs'"+ *[KJ2c Ja) if KJ2'Js) >c>

ea = 7^ sif , if /(</2 , J3) < c, (32)

. J_ .
6i, 3K <T<i ■

Considering the nonelastic part of the strain rate defined by (32) we have

(33)c L c J dan

Squaring both sides of Eq. (33) we obtain

(nr,2(34)C [_ c J do-,-,/

According to (34) we have

kj, , J,) - {1 + *-[^ </?)"*(£ 0""]}. (35)
This expression implicitly represents the dynamical yield condition for elastic, visco-
plastic materials, and describes the dependence of the yield condition on the strain rate.

If we multiply the first equation (32) by s,,- and use the identity

daa d,J2 " + dJ3 " ' (36)

where <,/ = sikski — §«/2 5,,- , we have

i Ji + 2 £ *<f)[s£ j, + IM. j,]. (37)

Similarly, multiplying the first equation (32) by sikski we find

w;, - i + 3 £ j, + jL g(J>, jj], (38)

where ^(/2 , J3) is a known function.
Consider now a relaxation process for the material characterized by the constitutive

equations (32). Assume that during loading process a certain state of stress c-f has
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been reached at the time t = 0, and that then an /I-process occurs. From (16) and (32)
we obtain the following system of six differential equations for s,-,- and <ri{ :

2 {(S<* + 3 Ski + 9K <T,lSki + c X) Ja]

+ («„ + I s'ki + ± y„Ski + I *(* - l) ^]} = 0.
(39)

During a 5-process, (20) and (32) furnish the following system of five differential
equations for s,-, :

C L c J dan (40)

During a S-process or during an A-process for an incompressible material it is useful
to study the change of the invariants J2 and J3 .

By conditions (22) and (23) and by (37) and (38) we have

(41)

Introducing the notation

&(/», J3) = J3 + g(J2,

and assuming that the functions 01 and satisfy the Lipschitz inequalities, we write

Jjr» = J(0> _ ['
Jo

J?+1) = - f j8w®, d£.
^0

(42)

(43)

The change of the function / during a relaxation process of type B or of type A for
an incompressible material is determined by the relations

oJ 3

1(J2 , Js) = lim /[J<n), J'"'}. (45)

(44>

5. Special types of the function <f>. Let us assume that the function $(F) has the
following form

/ Tw2 V$(F) = Fs = - 1) . (46)
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Then the stress-strain relations (7) can be written as

1 / rl/2 \S

6ii = Sii + y\k 1) 7F ' lf J'°/2 > k'

e'a = s]j , if JY2 < k,

J_ •
3 K

(47)

When the elastic deformations are negligible in comparison with the plastic deformations,
then for one-dimensional states of stress we obtain, by (47), the relation

-OH' (48)

where a0 = 31/2k denotes the yield stress in simple tension. The relation (48) is equi-
valent to the Cowper-Symonds-Bodner strain rate law [1].

In the case 5=1, the constitutive equations (47) are equivalent to Freudenthal's
relations (4) if we assume 2rj — k/y.

In the case of one-dimensional problems of stress with 5=1, the constitutive equa-
tions (47) give Sokolovskii's strain rate law [11].

From Eqs. (10) and (46) we have

J\n = k[ l + {[lT2h)ut]- (49)

The dependence of JY2 on (IP2)1/2 as given by (49) is plotted in Fig. 3 for various values
of 5 and y. The particular case of 5 = 1 is shown in Fig. 4 for different values of y.

Fia. 3.

With the use of Eqs. (47), the relaxation equation (25) may now be written in the
form

/ T1/2 V
j; + 4W(^ - ij JY2 = o. (50)
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■JJl

Fig. 4.

dt (51)

The solution of Eq. (50) has form* (30) where

J2C"+1> = Jl0) ~ I' ~ 1 )'

In the special case S = 1, by (50) we have

+ jp)j2 = 0. (52)

The solution of Eq. (52) (see Freudenthal [5]) may be expressed in closed form as follows:

where t~m = 2ix-y/k.
As another choice of the function $(F), consider

<P(F) = exp F — 1. (54)

*By Lagrange's mean value theorem we have

[ya"'(^ -1)' - -1)']

for 0 < 6 < 1. Since we can easily show that the derivative

ilNf-1)']
is bounded, the last result immediately gives the Lipschitz inequality.

J a ̂  J a ' + 0 (,J a' — J a'')-
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The stress-strain relations (7) can then be written

e'n = ^ si,- + ijexp  i) - 1 j , if J1/2 > k,

eh = ~ , if Jl/2<k, (55)

. J_ .
3R <Tii ■

For one-dimensional states of stress the relations (55) furnish the strain rate law

= | + ^exP(f- - 1) - If. (56)fe -- '}■
which, in slightly different form, was introduced by Malvern [7].

From (10) and (54) we have

JY2 = *[l + In (l + •

The result given by (57) is plotted in Fig. 5, for different values of y.
The relaxation equation (25) now has the following form

Jl + 4^7^exp - l) - 1 = 0,

and its solution is given* by (30) where

/<"»> = j<°> - 4/i7 £ [exp - l) - l](^n,)1/2 dt.

Let us assume 7=1 and introduce the following functions:

1^(1--0 -4
N / Tl/2 \ CL

$I1 = a? Ba\k ~ V "

Then the stress-strain relation (7) can be written

e'u = + £ A0[exp (If- - l)" - 1] , if JY2 > k,

e'u = ^ Si] , if JY2 < k,

. J_ .3K <r<i ,

*It can easily be shown that the Lipschitz inequality is satisfied for the function

(57)

(58)

(59)

(60)

(61)

(62)

(see the footnote on p. 329).
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f/r2 *

Fig. 5.

or
1 N / t1/2 \o

e« = ^ + E - l) jfo , if J1/2 > k,

e],- = ~ si, , if Jl/2<k, (63)

. _ 1 .€" 3 K Cii '

It is obvious that all functions $ discussed before can be regarded as special cases
of (60) or (61).

The solutions of the relaxation equations for the functions (60) and (61) have the
form (30) where

J?+1) = Ji0) - 4m £ (2 t Aa\exp - l)" - l] dt, (64)

(*t N [( T(n)\ 1/2 \ a

= J(0, _ 4m J (/(•>)!/» g  l) <», (65)

respectively.
To determine the constants Aa and Ba (a = 1, 2, • • • , AT) we can use the experi-

mental data performed for instance by Clark and Duwez [4]. This problem and the
problem of the selection of the constants y and S are fully discussed in the work [8].
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