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Abstract

In this study a new computational method is developed to quantify decision making errors in

cells, caused by noise and signaling failures. Analysis of tumor necrosis factor (TNF) signal-

ing pathway which regulates the transcription factor Nuclear Factor κB (NF-κB) using this

method identifies two types of incorrect cell decisions called false alarm and miss. These

two events represent, respectively, declaring a signal which is not present and missing a sig-

nal that does exist. Using single cell experimental data and the developed method, we com-

pute false alarm and miss error probabilities in wild-type cells and provide a formulation

which shows how these metrics depend on the signal transduction noise level. We also

show that in the presence of abnormalities in a cell, decision making processes can be sig-

nificantly affected, compared to a wild-type cell, and the method is able to model and mea-

sure such effects. In the TNF—NF-κB pathway, the method computes and reveals changes

in false alarm and miss probabilities in A20-deficient cells, caused by cell’s inability to inhibit

TNF-induced NF-κB response. In biological terms, a higher false alarm metric in this abnor-

mal TNF signaling system indicates perceiving more cytokine signals which in fact do not

exist at the system input, whereas a higher miss metric indicates that it is highly likely to

miss signals that actually exist. Overall, this study demonstrates the ability of the developed

method for modeling cell decision making errors under normal and abnormal conditions,

and in the presence of transduction noise uncertainty. Compared to the previously reported

pathway capacity metric, our results suggest that the introduced decision error metrics char-

acterize signaling failures more accurately. This is mainly because while capacity is a useful

metric to study information transmission in signaling pathways, it does not capture the over-

lap between TNF-induced noisy response curves.
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Author summary

Cell continuously receives signals from the surrounding environment and is supposed to

make correct decisions, i.e., respond properly to various signals and initiate certain cellular

functions. Modeling and quantification of decision making processes in a cell have em-

erged as important areas of research in recent years. Due to signal transduction noise, cells

respond differently to similar inputs, which may result in incorrect cell decisions. Here we

develop a novel method for characterization of decision making processes in cells, using

statistical signal processing and decision theory concepts. To demonstrate the utility of the

method, we apply it to an important signaling pathway that regulates molecules which play

key roles in cell survival. Our method reveals that cells can make two types of incorrect

decisions, namely, false alarm and miss events. We measure the likelihood of these deci-

sions using single cell experimental data, and demonstrate how these incorrect decisions

are related to the signal transduction noise or absence of certain molecular functions.

Using our method, decision making errors in other molecular systems can be modeled.

Such models are useful for understanding and developing treatments for pathological pro-

cesses such as inflammation, various cancers and autoimmune diseases.

Introduction

Each individual cell receives signals from the surrounding environment and is supposed to

respond properly through a variety of biochemical interactions among its signaling molecules.

Single cell studies and modeling approaches have emerged in recent years [1,2,3], to understand

the biochemical processes in each individual cell, as opposed to a large population of cells and

their average behavior. Due to signal transduction noise, a cell can respond differently to the same

input, which may result in incorrect (unexpected) cell decisions and responses [2]. Upon provid-

ing an input signal, however, it is not clear whether the cell is going to make a correct decision or

not. Due to the random nature of the transduction noise, this decision making becomes some-

what probabilistic [2]. Here we introduce a method for characterization and quantification of

decision making processes in cells, using statistical signal processing and decision theory concepts

[4] used in radar and sonar systems. The basic goal of such systems is the ability to correctly

decide on the presence or absence of an object. For example, in a radar system it is of interest to

decide if there is an object transmitting a constant signal, while noise is present. If the received sig-

nal is much stronger than noise, the system can correctly declare the presence of the object. How-

ever, if the received signal is much weaker than noise, the system will miss the presence of the

object. This erroneous decision is called a miss event. The radar system can make another type

of erroneous decision, called a false alarm event, where there is no object but noise misleads the

system to falsely declare the presence of an object. A mathematical model for this example [4],

including received signal and noise models, the decision making algorithm, probabilities for mak-

ing incorrect decisions and some numerical results are presented in Materials and Methods.

To explain the method in a practical way and in the context of molecular computational

biology, we use the tumor necrosis factor (TNF) signaling pathway [2] which regulates the

transcription factor nuclear factor κB (NF-κB) (Fig 1A). NF-κB is a nuclear transcription fac-

tor that regulates numerous genes which play important roles in cell survival, apoptosis, viral

replication, and is involved in pathological processes such as inflammation, various cancers

and autoimmune diseases. In the TNF signaling pathway (Fig 1A), the molecule A20 has an

inhibitory feedback effect, whereas TRC stands for the TNF receptor complex [2]. TNF is a

cytokine that can mediate both pro-apoptotic and anti-apoptotic signals [5]. In wild-type
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Fig 1. Cell decision making processes in the TNF—NF-κB signaling system. (A) The pathway. (B) Histograms of NF-κB
responses of hundreds of cells to low and high TNF levels after 30 minutes. (C) Gaussian probability density functions for NF-κB
responses to low and high TNF levels after 30 minutes. The blue vertical line represents the maximum likelihood decision threshold

that minimizes Pe, the overall probability of error in making decisions. Pink and gray regions around the decision threshold represent

false alarm and miss decisions. (D) Histograms of NF-κB responses of hundreds of cells after 4 hours. (E) NF-κB response curves,
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cells and upon binding of TNF ligands, NF-κB translocates to the nucleus, temporarily increas-

ing the level of nuclear NF-κB. NF-κB activation rescues the cell from apoptosis. Then due to

the negative feedback of A20, the nuclear NF-κB level decreases. This short period of NF-κB

activity is sufficient to activate transcription of the so called early genes, including numerous

cytokines and its inhibitor A20. In A20-deficient cells, the level of nuclear NF-κB remains rela-

tively high for several hours. Loss or mutation of A20 can result in chronic inflammation and

can promote cancer [6,7].

The signal transduction noise considered in our analysis encompasses all factors that make

cell responses to the same signal variable or heterogeneous. In reference [3] it is demonstrated

that both intrinsic and extrinsic noise contribute to the transduction noise in the NF-κB path-

way. Extrinsic noise results from the fact that at the time of stimulation, cells are not identical

and may have different levels of TNF receptors and other components of the signal transduc-

tion cascade. Intrinsic noise, on the other hand, results from the randomness of the biochemi-

cal reactions that involve a small number of molecules.

Results and discussion

Recent information theoretical analysis of single cell data has demonstrated that in the TNF

signaling pathway, cell can only decide whether TNF level at the system input is high or low

[2]. In other words, based on the nuclear NF-κB level, cell can only tell if there is high TNF

level at the input or not [2]. During this process, we formulate that cell can make two types of

incorrect decisions: deciding that TNF is high at the system input whereas in fact it is low, or

missing TNF’s high level when it is actually high. These two incorrect decisions can be called

false alarm and miss events, respectively, similarly to the terminology used in radar and sonar

[4]. The likelihood of occurrence of these incorrect decisions depends on the signal transduc-

tion noise. To understand how cell makes a decision on whether TNF is high or low, we first

studied two TNF concentrations of 8 and 0.0021 ng/mL, respectively (other TNF levels are dis-

cussed later). The histograms representing NF-κB responses of hundreds of cells to each TNF

stimulus after 30 minutes are shown in Fig 1B. By using a probability distribution such as

Gaussian (Fig 1C) (see Materials and Methods) for histograms, we specified the regions associ-

ated with incorrect decisions (Fig 1C) (see Materials and Methods). These regions are deter-

mined by the optimal decision threshold obtained using the maximum likelihood principle4

(see Materials and Methods), which simply indicates that the best decision on some possible

scenarios is selecting the one that has the highest likelihood of occurring [4]. The area to the

right of the decision threshold under the low TNF response curve is the false alarm region (Fig

1C), meaning that nuclear NF-κB level could be greater than the threshold due to the noise,

which falsely indicates a high level of TNF at the system input. The size of this shaded area

specifies PFA, the false alarm probability. On the other hand, the area to the left of the decision

threshold under the high TNF response curve is the miss region (Fig 1C), meaning that due to

the noise, nuclear NF-κB level could be smaller than the threshold, which results in missing

the presence of high TNF level at the system input. The size of this shaded area is PM, the miss

probability. Using the single cell experimental data we calculated PFA = 0.04 and PM = 0.1 (see

Materials and Methods). The higher value for PM can be attributed to the broader response

curve when TNF is high (Fig 1C). The overall probability of error Pe for making a decision is

given by Pe = (PFA + PM)/2 = 0.07 (see Materials and Methods), which is the average of false

alarm and miss probabilities.

maximum likelihood decision threshold, false alarm and miss decision regions after 4 hours. (F) Bivariate Gaussian curves for NF-κB
responses at the two time points 30 minutes (early) and 4 hours (late). (G) Top view of bivariate Gaussian response curves for NF-κB.

https://doi.org/10.1371/journal.pcbi.1005436.g001
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We also collected the histograms of NF-κB responses of hundreds of cells to each TNF stim-

ulus after 4 hours (Fig 1D), which seem to have more overlap, compared to the response histo-

grams collected at 30 min. This can be better understood by looking at the two response

curves and the larger false alarm and miss regions (Fig 1E). In fact, we observed higher values

for false alarm and miss probabilities, i.e., PFA = 0.2 and PM = 0.29 (see Materials and Meth-

ods). These higher values for false alarm and miss probabilities, as well as the higher overall

probability of error Pe = (0.2 + 0.29)/2 = 0.245 can be due to the negative feedback of A20 (Fig

1A), which reduced the level of nuclear NF-κB in 4 hours, when TNF was high (notice the con-

siderable shift of the TNF-high response curve to the left that we observe in Fig 1E, compared

to Fig 1C). To understand the decision making process based on both early and late responses,

we computed (see Materials and Methods) high and low TNF joint response curves of the

nuclear NF-κB at 30 minutes and 4 hours (Fig 1F). The top view of the response curves (Fig

1G) shows that while high and low TNF concentrations produce relatively distinct distribution

patterns in the early response domain, they have a higher degree of overlap in the late response

domain. Using a more sophisticated approach to determine decision thresholds and decision

probabilities based on joint early and late response data (see Materials and Methods), we calcu-

lated PFA = 0.03, PM = 0.1 and Pe = 0.065. These results turned out to be about the same as

early decision probabilities, i.e., PFA = 0.04, PM = 0.1 and Pe = 0.07. It appears that in this sig-

naling pathway, maximum likelihood decisions based on joint early/late events and early event

alone provide the same finding on whether TNF level at the system input is high or low.

In the presence of abnormalities in a cell, such decision making processes can significantly

change, compared to a wild-type cell. For example, in the absence of A20, a cell is unable to inhibit

the TNF-induced NF-κB response [2,8]. Under this condition, response curves of hundreds of

A20-/- cells to high and low TNF levels after 30 minutes (Fig 2A) show significant overlap, com-

pared to the response of wild-type cells (Fig 1C). This is because the negative feedback was no lon-

ger present in A20-/- cells, which resulted in the broadening of the TNF-low response curve and

the increase in its mean value (Fig 2A). Therefore, the false alarm and miss regions in A20-/- cells

turned out to be much larger (Fig 2A), for which we computed PFA = 0.37 and PM = 0.15 (see

Materials and Methods). Both false alarm and miss probabilities were greater than those of wild-

type cells (Fig 2B). In biological terms, the higher false alarm rate in this abnormal TNF signaling

system means perceiving more signals which in fact do not exist at the system input, whereas the

higher miss rate indicates that it is more likely to miss signals that actually exist.

Using the response curves after 4 hours in A20-/- cells (Fig 2C), we computed PFA = 0.73

and PM = 0.12 (see Materials and Methods). The increase in PFA and decrease in PM, compared

to the wild-type cells, reflected a more profound effect of the lack of negative feedback after 4

hours in A20-/- cells, which resulted in an increase in the mean nuclear NF-κB level for both

low and high TNFs (Fig 2C). Computations using both early and late response data (see Mate-

rials and Methods) revealed that in this signaling pathway, decisions based on joint early/late

events and early events in A20-/- cells provide about the same results and probabilities on

whether TNF level at the system input is high or low (Fig 2B).

To study the impact of different TNF concentrations on cell decisions, we computed the

overall probability of error Pe in making decisions after 30 minutes and 4 hours in both wild-

type and A20-/- cells (Fig 2D), after treatment with six different TNF concentrations. This

analysis shows that in wild-type cells a higher decision error rate Pe is observed over time for

all TNF concentrations. Also in wild-type cells Pe decreases as TNF concentration increases up

to about 3 ng/mL, and then becomes less sensitive to the higher concentrations of TNF.

On the other hand, depletion of A20 increases the decision error rate Pe, compared to the

wild-type cells, after 30 minute treatment (Fig 2D). Interestingly, A20-/- cells show higher Pe
after the 4 hour treatment that is nearly insensitive to the increase in TNF concentration.
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Overall, for each time course, there is a significant increase in Pe in A20-/- cells, compared to

wild-type cells (Fig 2D). This is because of the failure of the signaling pathway due to A20 defi-

ciency, where cells fail to stop TNF-induced NF-κB response. This observation further con-

firms the usefulness of the decision error rate Pe as a metric and method for modeling and

measuring cell decision making processes under normal and abnormal conditions and in the

presence of transduction noise uncertainty.

Extensions to more complex settings and broader signaling contexts

The developed approach can be extended to more complex and larger signaling networks,

where inputs could be ligands or secondary messengers, and outputs could be several transcrip-

tion factors that produce certain cellular functions [9]. Then by analyzing the concentration

Fig 2. Decisions in A20-deficient cells. (A) Gaussian probability density functions for NF-κB responses to low and high TNF levels after 30

minutes in A20-/- cells. The blue vertical line represents the decision threshold of the wild-type case after 30 minutes, considering that

A20-deficient cells are unaware of the deficiency and therefore erroneously utilize the previously used threshold (The developed method is not

limited to this choice and certainly other thresholds can be used. To reflect the fatality caused by A20 deficiency [8], in our model A20-/- cells

make decisions using an incorrect decision threshold, i.e., the threshold that was used before the occurrence of the deficiency). Pink and gray

regions around the decision threshold represent false alarm and miss decisions. The density functions are obtained from histograms of NF-κB
responses of hundreds of cells to low and high TNF levels after 30 minutes in A20-/- cells. (B) False alarm, miss and overall decision error

probabilities in wild-type (WT) and A20-/- cells. (C) NF-κB response curves, decision threshold, false alarm and miss decision regions after 4

hours in A20-/- cells. The response curves are obtained from histograms of NF-κB responses of hundreds of cells after 4 hours in A20-/- cells. (D)

Overall probability of error in making decisions to distinguish between 0.0021 ng/mL dose and higher doses, as a function of the higher dose,

after 30 minutes or 4 hours of TNF stimulation, in wild-type and A20-/- cells.

https://doi.org/10.1371/journal.pcbi.1005436.g002

Cell decision making errors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005436 April 5, 2017 6 / 17

https://doi.org/10.1371/journal.pcbi.1005436.g002
https://doi.org/10.1371/journal.pcbi.1005436


levels of these transcription factors at single or multiple time points using the proposed

approach, probabilities of various cell fates in response to the input signals can be computed.

In a broader context, one notes that in various organisms ranging from simple ones such as

viruses to bacteria, yeast, lower metazoans and finally complex organisms such as mammals,

various decisions are made in the presence of noise [10]. Depending on the concentration lev-

els of certain molecules and their changes, regulated by some intracellular molecular networks,

a cell may select from several possible fates. For example, in embryonic stem cells in mammals,

the Nanog transcription factor expression level, which might be affected by molecular noise, is

a determinant of cell differentiation, if proper signals are present [10]. In this context, one can

use the approach presented here to compute false alarm and miss probabilities at different

time instants, to better understand how precise or erroneous the decision to differentiate is

(given that noise is present), and how it changes over time. In a broader context, one may envi-

sion studying cell decision making processes in other organisms, such as those reviewed in

[10], using the developed approach.

Comparison with other approaches

Capacity

This study shows that compared to the overall probability of error Pe introduced in this paper

for signaling systems, the signaling capacity defined as the maximum amount of information

between the system input and output, may not be a convenient metric for revealing dysfunc-

tionalities in the system. The rationale is that while in the TNF—NF-κB pathway (Fig 1A) a

reduction in capacity is observed in A20-/- cells in 30 minutes, compared to wild-type cells, an

opposite effect, i.e., capacity increase, is observed after 4 hours [2]. Therefore, the impact of

A20 deficiency on the pathway capacity appears in different directions over time. The intro-

duced error probability metric, on the other hand, consistently shows the increased level of

erroneous behavior of this signaling pathway, in both short and long terms.

The difference between decision error probability and capacity in the context of dysfunc-

tionalities can be anticipated. This is because decision error probability is a metric defined

such that it directly reflects departure of the pathway from normal behavior and its expected

response. Capacity, on the other hand, is defined to measure the maximum amount of infor-

mation that can flow from the pathway input to its output. While, in general, one may expect

that a higher capacity in a pathway is a desired outcome, one can also note that the increased

capacity might be caused by an alteration or loss of some otherwise important molecular func-

tions in the pathway. In the TNF—NF-κB pathway, it has indeed been observed [2] that after 4

hours, A20-deficient cells exhibit a higher capacity, compared to wild-type cells. The point we

are making here is that the higher amount of information that can travel from TNF to NF-κB

in A20-deficient cells may not necessarily reflect biologically appropriate functioning of the

pathway. To be able to understand dysfunctionalities in a pathway and how they affect cell

decision makings, one can therefore benefit from a complementary metric and approach to

characterize cell decision making errors in abnormal pathways, which we have studied here.

In summary, capacity is a useful metric for studying information transmission in signaling

pathways, whereas the introduced metrics of false alarm, miss and overall error rates are suit-

able for modeling decision making errors caused by noise and signaling failures.

Dynamical modeling

The goal of dynamical modeling is to use tools such as differential equations or stochastic pro-

cesses, to model changes in the concentration levels of molecules with time. On the other hand,

our approach aims at statistical characterization of decision making processes in cells, based on

Cell decision making errors
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the concentration levels of certain molecules that control cell decisions, using statistical signal pro-

cessing and decision theory tools. The concentration levels can be obtained via either experiments

or stochastic simulations. As an example, in reference [3] a stochastic dynamical model is devel-

oped, which mimics nuclear NF-κB level changes with time, in response to a given TNF dose. The

model is designed to assess the kinetics of molecular activities in a representative cell, provides

information about single cell responses, and can also be used to simulate distributions of given

protein levels across a population. It does not quantify the chance of missing a signal. The pro-

posed approach provides methods to analyze single cell data in the context of cell decision mak-

ing. For example, TNF high level of 8 ng/mL indicates the presence of a strong signal. However,

due to noise, there is a chance for a cell to miss this signal. The approach presented here addresses

probabilistic decision making, and the fidelity of decision making in noisy signaling networks. In

the particular example of TNF = 8 ng/mL, our approach reveals that there is a 10% chance for a

cell not to respond to the signal, based on the measured nuclear NF-κB levels after 30 minutes.

We also note that while our approach is not meant to provide tools to model temporal

variations of concentration levels, it allows to analyze and quantify the dynamics of signaling

pathways and helps to understand cell decision making processes. In the above example, our

approach shows that based on the measured nuclear NF-κB levels after 4 hours of TNF stimu-

lation, the chance for missing the strong signal increases to 29%. This observation agrees with

the dynamics of the TNF- NF-κB pathway activity, where due to the negative feedback of A20,

the level of nuclear NF-κB decreases after 4 hours, as discussed in the paper.

To further relate the developed approach to the dynamics of signaling, here we have also

developed a more sophisticated method to determine cell decision making probabilities, if a cell

can make decisions based on the nuclear NF-κB level at the two time points jointly, compared

to deciding based on 30 minute or 4 hour levels only. Our results show that in this example,

joint decision based on the two time points has a 10% chance of missing the signal. As discussed

in the paper, for this specific pathway, our results suggest that decisions based on joint early/late

signaling events versus the early event alone show similar chance for missing the presence of the

signal. In other pathways and signaling systems, however, this does not have to be the case, and

the presented method can still be used to determine the probability of missing a signal and tak-

ing a certain cell fate road, based on multiple observations at different time points.

Overall, the approach complements dynamic modeling by providing quantitative results for

assessing the dynamical decision-making performed by a cell in the presence of an external stimu-

lus. In contrast to the more common dynamical modeling analysis, the approach presented here

does not explicitly characterize changes in the concentration levels of molecules with time. These

approaches are compatible, as a stochastic dynamical model can yield distributions of input-con-

ditioned output levels, expressed in the form of the concentration of a singling molecule of inter-

est. Then our approach can use the simulated concentration level distributions to determine

decision thresholds, false alarm and miss probabilities, etc. While it is preferred to use experimen-

tal data directly to understand cell decisions, it may be advantageous to use data generated by

dynamical models, including those that were developed to describe the TNF-stimulated NF-κB

signaling [11]. Furthermore, by perturbing kinetic parameters of a dynamical model, one can

investigate the sensitivity of both the concentration level distributions and false alarm and miss

probabilities to those parameters. This analysis may reveal that some kinetic parameters can sig-

nificantly affect cell decisions, while others may play less important roles.

Conclusion

In summary, the proposed method of the analysis of possible cellular decisions, as applied to

the TNF—NF-κB pathway, yields insights that are biologically meaningful and are in
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agreement with the known pathway functionality. NF-κB is a potent transcription factor regu-

lating expression of numerous genes controlling cell fate decisions, including those regulating

proliferation, apoptosis, or transition to the antiviral state. The accuracy of transmitting infor-

mation between TNF stimulation and NF-κB activation is therefore crucial for proper fate

decisions. Based on our analysis we found that the pathway can transmit within 30 minutes

the information about the increase of TNF concentration, from a very low level to a high value

of 8 ng/mL, with the transmission error of 0.07. Interestingly, when the NF-κB translocation is

measured at 4 hours post-stimulation, the transmission error increases to 0.245. This finding

reflects the presence of a negative feedback that attenuates the strength of the response at lon-

ger times and shifts the TNF-high response histogram to the left (Fig 1D). This causes a greater

overlap between the two response histograms after 4 hours (Fig 1D) and therefore results in a

higher decision error probability, compared to that corresponding to the lower overlap be-

tween the response histograms after 30 minutes (Fig 1B). Consistent with this result, our anal-

ysis also indicates a dramatic increase in the decision error in the feedback deficient cells,

lacking expression of A20. This implies that cells are not able to compensate for the loss of A20

feedback controlling NF-κB activity. This finding can help account for experimental observa-

tions that a loss or mutation of A20 can lead to chronic inflammation and can promote cancer

due to the persistent activation of anti-apoptotic genes induced by NF-κB [12].

The decision is expected to become less uncertain with an increasing input dose. Our

method can help analyze and quantify this effect. For instance, increasing the TNF dose from

0.2 to 0.51 ng/mL reduces the decision error probability from 0.25 to 0.11 in 30 minute data.

The same behavior is observed for 4 hour data.

The method described here can be expanded to describe the performance of more complex

and larger signaling networks, including those with multiple ligands or second messengers as

network inputs and several transcription factors involved in certain cellular functions as net-

work outputs. By analyzing the concentration levels of these transcription factors using the

proposed approach, probabilities of various cell fates in response to the input signals can be

computed. We also note that the proposed decision error metrics complement the previously

introduced analysis of the information capacity of signaling pathways and networks [2]. The

information capacity is a useful metric to study information transmission in signaling path-

ways, but it does not address how the information transmitted by a signaling network can be

converted into cellular decision making. Our results show that the introduced metrics of false

alarm, miss and overall error rates can on the other hand be used for modeling decision mak-

ing errors caused by noise and signaling failures.

Overall, our analysis presents a powerful and widely applicable methodology to evaluate the

expected fidelity of cellular decision making that can be used to further evaluate the perfor-

mance of cellular signaling and communication.

Materials and methods

A radar system example: Deciding on the presence of an object

generating a constant amplitude signal in background noise [4]

This radar example is presented for illustrative purposes to show how statistical signal processing

and decision theory concepts and tools are used in an engineering discipline. It paves the way for

understanding the proposed methods and concepts in the context of molecular computational

biology and cellular decision making. In radar systems, the system makes a decision based on

samples of the received input waveform x[n], where n is the time index. Based on the N samples

x[0],x[1],. . .,x[N−1], the system should decide between two hypotheses about x[n]: H0 which

indicates that only noise is received, i.e., no object is present, and H1 which represents that signal

Cell decision making errors
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plus noise is received, i.e., an object is present. With w[n] and A representing noise and constant

amplitude signal, respectively, these two hypotheses can be written as

H0 : x½n� ¼ w½n�; n ¼ 0; 1; . . . ;N � 1;

H1 : x½n� ¼ Aþ w½n�; n ¼ 0; 1; . . . ;N � 1:
; ð1Þ

To simplify the notation for computing the optimal decision metric, typically it is reason-

able to assume both hypotheses have the same probability, i.e., P(H0) = P(H1) = 1/2, especially

when we do not have a priori information about these probabilities (the case of non-equal

probabilities is discussed in the next section). It can be proved [4] that the optimal decision

making system which minimizes the decision error probability is the one that compares proba-

bilities of x under H0 and H1. More specifically, let p(x|H0) and p(x|H1) represent conditional

probability density functions (PDFs) of x under H0 and H1, respectively. Then the optimal sys-

tem decides H1 if p(x|H1)> p(x|H0), otherwise decides H0. This simply means that the optimal

decision making system, after observing the input data, picks up the hypothesis which is more

probable. This decision strategy is also called the maximum likelihood [4] decision, since it

chooses the hypothesis with the highest likelihood.

To compute p(x|H0) and p(x|H1), we need the PDF of noise w[n]. Upon using a Gaussian noise

model with zero mean and variance σ2 in (1), the univariate conditional PDFs of x[n] for each

n under H0 and H1 can be written as p(x[n]|H0) = (2πσ2)−1/2 exp[−(x[n])2/(2σ2)] and p(x[n]|H1) =

(2πσ2)−1/2 exp[−(x[n] − A)2/(2σ2)], respectively. These two PDFs are graphed in S1 Fig for A = 2

and σ = 1. When noise samples are independent, joint PDF of x[0],x[1],. . .,x[N−1] becomes the

product of individual univariate PDFs. This results in the following expressions for p(x|H0) and

p(x|H1)

pðxjH0Þ ¼ pðx½0�; x½1�; . . . ; x½N � 1�jH0Þ ¼ ð2ps2Þ
� N=2exp½�

XN� 1

n¼0

ðx½n�Þ2=ð2s2Þ�;

pðxjH1Þ ¼ pðx½0�; x½1�; . . . ; x½N � 1�jH1Þ ¼ ð2ps2Þ
� N=2exp½�

XN� 1

n¼0

ðx½n� � AÞ2=ð2s2Þ�:

ð2Þ

To compare the above two PDFs, we need to set them equal, to find the optimal decision

metric, as well the optimal decision threshold

pðxjH0Þ ¼ pðxjH1Þ;

! ð2ps2Þ
� N=2exp½�

XN� 1

n¼0

ðx½n�Þ2=ð2s2Þ� ¼ ð2ps2Þ
� N=2exp½�

XN� 1

n¼0

ðx½n� � AÞ2=ð2s2Þ�;

! exp½�
XN� 1

n¼0

ðx½n�Þ2=ð2s2Þ� ¼ exp½�
XN� 1

n¼0

ðx½n� � AÞ2=ð2s2Þ�;

! �
XN� 1

n¼0

ðx½n�Þ2=ð2s2Þ ¼ �
XN� 1

n¼0

ðx½n� � AÞ2=ð2s2Þ;

!
XN� 1

n¼0

ðx½n� � AÞ2 �
XN� 1

n¼0

ðx½n�Þ2 ¼ 0;

! � 2A
XN� 1

n¼0

x½n�þNA2 ¼ 0;

! N � 1
XN� 1

n¼0

x½n� ¼ A=2:
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The above equation indicates that the radar system makes an optimal decision, by compar-

ing the average of N observed samples with the optimal threshold A/2. It decides H1, an object

generating a constant signal with amplitude A is present, if the average of observed samples is

greater than A/2

�x ¼
x½0� þ x½1� þ . . .þ x½N � 1�

N
>

A
2
; decide H1: ð3Þ

Otherwise, the radar decides H0, i.e., no object is present and there is only noise.

This optimal radar system still may make mistakes in its decisions due to noise, although

the probability of its incorrect decisions is minimized. To calculate the probability of error in

making decisions, first we need to calculate probability of deciding H1 when H0 is true, false

alarm probability, and probability of deciding H0 when H1 is true, i.e., miss probability

PFA ¼ Pðdeciding H1jH0Þ;

PM ¼ Pðdeciding H0jH1Þ:

To compute the above probabilities, we need to determine the PDF of the decision variable

�x ¼ N � 1
XN� 1

n¼0
x½n� introduced earlier, under the two hypotheses. As discussed previously and

under H0, x[0],x[1],. . .,x[N−1] are noise samples, independent and Gaussian with zero mean

and variance σ2. Using properties of Gaussian random variables, it can be shown that �x here is

Gaussian with zero mean and variance σ2/N

pð�xjH0Þ ¼ ð2ps2=NÞ� 1=2exp½� �x2=ð2s2=NÞ�:

Under H1, on the other hand, x[0],x[1],. . .,x[N−1] are signal plus noise samples, independent

and Gaussian with mean A and variance σ2. Using properties of the sum of Gaussian random

variables, it can be shown that now �x is Gaussian with mean A and variance σ2/N

pð�xjH1Þ ¼ ð2ps2=NÞ� 1=2exp½� ð�x � AÞ2=ð2s2=NÞ�:

To compute PFA, we note that false alarm occurs when H0 is true, but according to Eq (3)

we have �x > �xth, where �xth ¼ A=2. This results in

PFA ¼ Pð�x > �xthjH0Þ ¼

Z 1

�xth

pð�xjH0Þd�x:

Integrating the expression for pð�xjH0Þ, derived earlier, provides us with the following formula

for the false alarm probability

PFA ¼ Q
ffiffiffiffi
N
p

�xth

s

� �

;

where Q is a commonly-used Gaussian probability function

QðZÞ ¼ ð2pÞ
� 1=2

Z 1

Z

expð� u2=2Þdu:

To compute PM, we similarly note that miss occurs when H1 is true, but we have �x < �xth. This

results in

PM ¼ Pð�x < �xthjH1Þ ¼

Z �xth

� 1

pð�xjH1Þd�x:
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Integration of the expression for pð�xjH1Þ, derived earlier, gives the following formula for the

miss probability in terms of the Q function

PM ¼ Q
ffiffiffiffi
N
p
ðA � �xthÞ

s

� �

:

The overall probability of error in making decisions by the radar system is a mixture of false

alarm and miss probabilities

Pe ¼ PðH0ÞPðdeciding H1jH0Þ þ PðH1ÞPðdeciding H0jH1Þ ¼ PðH0ÞPFA þ PðH1ÞPM:

By substituting P(H0) = P(H1) = 1/2, and PFA and PM formulas, finally the probability of error

can be written as

Pe ¼
1

2
Q

ffiffiffiffi
N
p

�xth

s

� �

þ
1

2
Q

ffiffiffiffi
N
p
ðA � �xthÞ

s

� �

:

The above formula holds true for the optimal threshold �xth ¼ A=2, as well as other choices for

�xth. To understand the importance of the decision threshold and how it affects Pe, the above

formula is graphed in S2 Fig versus �xth, for A = 2, σ = 1 and N = 4. We observe that the proba-

bility of error is minimal when �xth is the optimal threshold of A/2 = 1, and departure of the

decision threshold from the optimal value increases Pe.
With the choice of the optimal threshold, �xth ¼ A=2, the above Pe formula simplifies to

Pe ¼ Q
ffiffiffiffi
N
p

A
2s

� �

:

This formula is graphed in S3 Fig versus the signal-to-noise ratio A/σ, for N = 4. We observe

that the probability of error in making decisions decreases as signal-to-noise ratio increases, as

expected.

Optimal maximum likelihood decision, false alarm, miss and overall

decision error probabilities in a cell

Making a decision on whether TNF level at the signaling system input is high or low is a binary

hypothesis testing problem. The two hypotheses are H1: TNF is high, and H0: TNF is low. Due

to the signal transduction noise or signaling malfunctions in a cell, it can respond differently

to the same input, which may result in incorrect (unexpected) cell decisions and responses.

Cell can make two types of incorrect decisions: deciding that TNF is high at the system input

whereas in fact it is low (deciding H1 when H0 is true), and missing TNF’s high level when it is

actually high (deciding H0 when H1 is true). These two incorrect decisions can be called false

alarm and miss events, respectively.

Let x be the measured quantity based on which the decision is going to be made. With p(x|

H0) and p(x|H1) as the conditional probability density functions (PDFs) of x under H0 and H1,

respectively, false alarm and miss probabilities can be written as [4]

PFA ¼

Z

x2 false alarm region
pðxjH0Þdx; ð4Þ

PM ¼

Z

x2miss region
pðxjH1Þdx; ð5Þ

where false alarm and miss regions will be specified later. The overall probability of error Pe
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for making a decision is given by

Pe ¼ PðH0ÞPFA þ PðH1ÞPM; ð6Þ

where P(H0) and P(H1) are probabilities of H0 and H1, respectively. It can be shown [4] the

optimal decision making system that minimizes the decision error probability Pe is the one

that compares the conditional likelihood ratio L(x) = p(x|H1)/p(x|H0) with the ratio γ = P(H0)/

P(H1). The optimal system decides H1 if L(x)> γ. When H0 and H1 are equi-probable, P(H0)

= P(H1) = 1/2, the optimal decision decides H1 if L(x)> 1, which means comparing the two

conditional PDFs

pðxjH1Þ > pðxjH0Þ; decide H1: ð7Þ

This decision rule is called the maximum likelihood [4] decision, since it chooses the hypothe-

sis with the highest likelihood. The choice of P(H0) = P(H1) = 1/2 represents the case where a

priori knowledge on the probabilities of H0 and H1 is not available. This is considered just to

demonstrate the proposed method. When P(H0) and P(H1) are known, the maximum likeli-

hood decision rule simply changes to P(H1)p(x|H1)> P(H0)p(x|H0), to decide H1.

Computing false alarm and miss decision probabilities in the TNF—NF-

κB system based on early or late event data

To evaluate the performance of the maximum likelihood decision, we need to compute its

false alarm and miss probabilities in the signaling system, which according to Eqs (4) and (5)

can be written as

PFA ¼

Z

fx:pðxjH1Þ>pðxjH0Þg

pðxjH0Þdx; ð8Þ

PM ¼

Z

fx:pðxjH0Þ>pðxjH1Þg

pðxjH1Þdx: ð9Þ

In these formulas the PDFs p(x|H0) and p(x|H1) represent the response probabilities of NF-

κB nuclear translocation when TNF level is low and high, respectively. Similarly to Cheong

et al. [2] we consider the Gaussian PDF p(x) = (2πσ2)−1/2 exp[−(x−μ)2/(2σ2)] for the nuclear

NF-κB level (Fig 1C, Fig 1E), where μ and σ2 are the mean and variance, respectively. We sym-

bolically represent this by x * N(μ,σ2), where N stands for the Normal or Gaussian PDF. To

determine PFA and PM, false alarm and miss integration regions in Eqs (8) and (9) should be

specified, by solving the equation p(x|H0) = p(x|H1). Since these two PDFs are Nðm0; s
2
0
Þ and

Nðm1; s
2
1
Þ, respectively, equating them provides the following equation

ð2ps2
0
Þ
� 1=2exp½� ðx � m0Þ

2
=ð2s2

0
Þ� ¼ ð2ps2

1
Þ
� 1=2exp½� ðx � m1Þ

2
=ð2s2

1
Þ�;

!
exp½� ðx � m0Þ

2
=ð2s2

0
Þ�

exp½� ðx � m1Þ
2
=ð2s2

1
Þ�
¼
ð2ps2

1
Þ
� 1=2

ð2ps2
0
Þ
� 1=2

;

! exp½� ðx � m0Þ
2
=ð2s2

0
Þ þ ðx � m1Þ

2
=ð2s2

1
Þ� ¼ s0=s1:
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By taking the natural logarithm of both sides of the above last equation we obtain

� ðx � m0Þ
2
=ð2s2

0
Þ þ ðx � m1Þ

2
=ð2s2

1
Þ ¼ lnðs0=s1Þ;

!
s2

0
ðx � m1Þ

2
� s2

1
ðx � m0Þ

2

2s2
0
s2

1

¼ lnðs0=s1Þ;

! s2
0
ðx � m1Þ

2
� s2

1
ðx � m0Þ

2
¼ 2s2

0
s2

1
lnðs0=s1Þ;

which can be re-written in the form of the following quadratic equation

ðs2

0
� s2

1
Þx2 þ 2ðs2

1
m0 � s2

0
m1Þx þ s2

0
m2

1
� s2

1
m2

0
� 2s2

0
s2

1
lnðs0=s1Þ ¼ 0; ð10Þ

where ln(.) is the natural logarithm. As mentioned previously, Eq (10) is derived assuming P
(H0) = P(H1) = 1/2, i.e., equal probabilities for having low and high TNF levels, and consider-

ing a Gaussian model for the nuclear NF-κB level. For other prior probabilities and distribu-

tion models, the threshold can be similarly obtained, by solving the equation P(H0)p(x|H0) = P
(H1)p(x|H1) for x. The solution to the quadratic Eq (10) gives NFκBth, the threshold value of

NF-κB, such that p(NFκBth|H0) = p(NFκBth|H1) (Fig 1C, Fig 1E). By computing the integrals

in Eqs (8) and (9), as shown below, we obtain the following results for false alarm and miss

probabilities

PFA ¼

Z 1

NFkBth

pðxjH0Þdx ¼ Q
NFkBth � m0

s0

� �

; ð11Þ

PM ¼

Z NFkBth

� 1

pðxjH1Þdx ¼ Q
m1 � NFkBth

s1

� �

; ð12Þ

where Q function is defined as

QðZÞ ¼ ð2pÞ
� 1=2

Z 1

Z

expð� u2=2Þdu: ð13Þ

To measure PFA and PM, we used single cell data collected from hundreds of cells [2], to

estimate ðm0; s
2
0
Þ and ðm1; s

2
1
Þ of nuclear NF-κB readouts after 30 minutes (early events), for

low and high TNF levels, 0.0021 ng/mL and 8 ng/mL, respectively. Then using Eq (10) we esti-

mated the decision threshold NFκBth (Fig 1C) which upon substituting into Eqs (11) and (12)

resulted in the false alarm and miss probabilities PFA = 0.04 and PM = 0.1, respectively. Repeat-

ing the same steps for nuclear NF-κB readouts after 4 hours (late events) resulted in a decision

threshold NFκBth (Fig 1E) which after substitution into Eqs (11) and (12) provided PFA = 0.2

and PM = 0.29, respectively.

Overall, in this study we have made the following assumptions, which can be relaxed, as

explained below: Probabilities of having different input signals, i.e., low and high TNF levels

herein, are equal; and, concentration level of interest, which is nuclear NF-κB level in our

work, has a Gaussian distribution.

The first assumption is for cases where a priori knowledge on these probabilities is not

available. The developed method, however, is not limited to this assumption and can incorpo-

rate non-equal prior probabilities, if they become available. If a priori probabilities are not

equal, the threshold can be determined by comparing P(H1)p(x|H1) and P(H0)p(x|H0), rather

than p(x|H1) and p(x|H0). The overall probability of error in making decisions also changes

from Pe = (1/2)PFA + (1/2)PM to Pe = P(H0)PFA + P(H1)PM.

The second assumption is made following the study of Cheong et al. [2], which has consid-

ered a Gaussian model for the nuclear NF-κB level. This model reasonably represents the data.
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For other data sets and other distribution models, one can still use the developed approach,

using modified mathematical formulas for the decision threshold, false alarm and miss proba-

bilities, obtained by integrating the probability distribution of interest. More specifically, we

have obtained the decision threshold by solving the equation p(x|H0) = p(x|H1) for x. When

they are both Gaussian, the equation simplifies to the quadratic Eq (10). For a non-Gaussian

distribution, we will obtain another equation to compute the threshold, still by solving the

equation p(x|H0) = p(x|H1) for x. Additionally, integration of a non-Gaussian distribution to

obtain false alarm and miss probabilities using Eqs (11) and (12) will give us results that will be

different from the Q function. If the data is not easily characterized by a well-known distribu-

tion, one can model the data using various probability density function estimators. Alterna-

tively, one can estimate threshold value and false alarm and miss probabilities directly from

empirical histograms.

The derived formulas for false alarm and miss error probabilities in the NF-κB pathway,

Eqs (11) and (12), show some biological factors such as mean expression levels of NF-κB and

its noise-induced variances that affect decision makings. For example, since the Q function is

inversely related to its argument, we note that as variances increase, the overall decision error

probability can increase. This is biologically relevant, as larger variances broaden NF-κB

response curves, which in turn cause more overlap between the response curves, therefore

resulting in a higher decision error probability.

To understand the effect of various components of the pathway on decision making, one

can knockout or knockdown these components and calculate decision error probabilities in

the modified system, as we did in A20-/- cells.

Optimal maximum likelihood decision in the TNF—NF-κB system based

on both early and late event data, and computing its false alarm and miss

decision probabilities

Maximum likelihood decision based on the data at two time points needs the joint PDF of x
and y, which represent the nuclear NF-κB level after 30 minutes and 4 hours, respectively. The

joint Gaussian PDF is given by [13]

pðx; yÞ ¼
1

2 psxsy

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2
p exp �

1

2ð1 � r2Þ

ðx � mxÞ
2

s2
x

�
2rðx � mxÞðy � myÞ

sxsy
þ
ðy � myÞ

2

s2
y

" # !

; ð14Þ

where ρ is the correlation coefficient between x and y, whereas ðmx; s
2
xÞ and ðmy; s

2
yÞ are the

mean and variance of x and y, respectively. Upon defining the following mean vector μ and

covariance matrix S for x and y

μ ¼
mx

my

" #

; Σ ¼
s2
x rsxsy

rsxsy s2
y

" #

; ð15Þ

we succinctly represent the joint Normal or Gaussian PDF in Eq (14) for (x,y) by the notation

(x,y) * N(μ,S). To determine ρ, we used an experimentally-verified simulator [3] whose accu-

racy is verified by single cell data [3]. To evaluate the performance of the maximum likelihood

decision based on early and late event data, we need to compute its false alarm and miss
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probabilities in the signaling system, by extending Eqs (8) and (9) to two variables

PFA ¼ ∬
fx;y:pðx;yjH1Þ>pðx;yjH0Þg

pðx; yjH0Þdxdy; ð16Þ

PM ¼ ∬
fx;y:pðx;yjH0Þ>pðx;yjH1Þg

pðx; yjH1Þdxdy; ð17Þ

where the bivariate PDFs p(x,y|H0) = N(μ0,S0) and p(x,y|H1) = N(μ1,S1) represent the joint

early/late response probabilities of NF-κB nuclear translocation when TNF level is low and

high, respectively (Fig 1F). To find the integration regions in Eqs (16) and (17), we need to

solve the equation p(x,y|H0) = p(x,y|H1). The solution is a threshold curve in the (x,y) plane.

Performing the double integrations in Eqs (16) and (17), however, is not straightforward either

analytically or numerically. Therefore, we resorted to Monte Carlo integration which resulted

in PFA = 0.03 and PM = 0.1.

Computing false alarm and miss decision probabilities in the TNF—NF-

κB system for A20-/- cells

Similarly to wild-type cells, we considered Gaussian PDF for the nuclear NF-κB level in A20-/-

cells (Fig 2A, Fig 2C). Upon using the same steps and equations and thresholds as wild-type

cells, we computed PFA and PM in A20-/- cells (Fig 2B).
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