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Abstract. A numerical and experimental study of unsteady
natural convection during freezing of water is presented. The
mathematical model for the numerical simulations is based
on the enthalpy-porosity method in vorticity-velocity formu-
lation, equations are discretised on a fixed grid by means of
a finite volume technique. A fully implicit method has been
adopted for the mass and momentum equations. Experiments
are performed for water in a differentially heated cube sur-
rounded by air. The experimental data for natural convection
with freezing in the cavity are collected to create a refer-
ence for comparison with numerical results. The method of
simultaneous measurement of the flow and temperature fields
using liquid crystal tracers is used. It allows us to collect tran-
sient data on the interface position, and the temperature and
velocity fields. In order to improve the capability of the nu-
merical method to predict experimental results, a conjugate
heat transfer problem was solved, with finite thickness and
internal heat conductivity of the non-isothermal walls. These
results have been compared with the simulations obtained for
the idealised case of perfectly adiabatic side walls, and with
our experimental findings. Results obtained for the improved
numerical model shown a very good agreement with the ex-
perimental data only for pure convection and initial time of
freezing process. As time passes the discrepancies between
numerical predictions and the experiment became more sig-
nificant, suggesting a necessity for further improvements of
the physical model used for freezing water.

1 Introduction

Fluid flow and thermal effects during melting and solidifi-
cation are of great interest in a number of manufacturing
processes, where a solid material is formed by the freezing
of a liquid. Its main characteristic is that a moving inter-
face separates two phases with different physical properties.
Temperature differences in the melt give rise to buoyancy
forces that produce significant convective flow. It appears that
there is a close relationship between the structure of the solid

formed and the convective flow in the melt. Proper modelling
of the flow problems becomes necessary for controlling fun-
damental parameters of the technological applications like
casting, welding, soldering, and processing of alloys or crys-
tal growth at low gravity environment. Due to the problem
complexity, direct application of numerical methods to the
engineering problem of solidification is not a trivial task. Er-
rors appear due to limited accuracy of different numerical
methodologies (eg. adaptive grid by Yeoh et al. 1990 [1],
fixed grid FEM by Banaszek et al. 1998 [2], fixed grid FDM
by Giangi et al. 1998 [3]), and due to inevitable simplifi-
cations introduced in the models. Our previous numerical
attempts appear to fail in modelling the details of the wa-
ter solidification. The numerical simulations performed by
Kowalewski and Rebow (1998) [4] or Giangi et al. (1998) [3]
show several differences in the front shape and flow pattern. It
seems that the numerical models used need several improve-
ments. In the present paper we verified several assumptions
made in the modelling. The effect of finite conductivity of
both non-isothermal and isothermal walls is also discussed.
The experimental verification of numerical models has spe-
cial importance for phase change problems. However, the
available comparisons with experiment appear to be insuffi-
cient. This is, perhaps, due to the fact that most of the acces-
sible experimental data on freezing are limited to general ob-
servations of the phase change front and point measurements
of the flow velocity and temperature. Hence, the primary tar-
get of the experimental part is to create a physical benchmark
for the problem of natural convection in freezing water under
free surface conditions. To avoid geometrical complications
and uncertainty of the thermophysical properties, a simple
model of water freezing in a differentially heated cavity will
be used for code testing purposes. The experimental data on
freezing of water in the cube-shaped cavity are collected to
create a reference for comparison with numerical results. The
method of simultaneous measurement of the flow and tem-
perature fields using liquid crystal tracers is used. It allows
us to collect transient data on the interface position, and the
temperature and velocity fields [5].

In this paper our numerical model is verified against col-
lected experimental data. Problems with defining well posed
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initial conditions, effects of supercooling and non-uniformity
of the solidus generate additional difficulties in matching ex-
perimental data with their numerical counterparts. Neverthe-
less, our present model seems to offer very promising re-
sults, describing most of the observed features of the physical
experiment.

2 Formulation of the problem

We consider convective flow in a cubic box filled with a vis-
cous heat conducting liquid, which in this case is distilled
water. Two opposite vertical walls of the box are assumed
isothermal (Fig. 1). One of them is held at temperatureTc =
−10◦C. It is below the freezing temperature of the liquid
Tr = 0 ◦C, hence the solid forms there. The opposite vertical
wall is held at temperatureTh = 10◦C. The other four walls
of low thermal conductivity allow the entry of heat from the
environment (air at temperatureText= 25◦C).

For transient processes uncertainty of the initial condi-
tions may create difficulties in matching experimental and nu-
merical results. In any physical experiment small temperature
fluctuations inside the fluid, non-uniformity of temperature at
the external walls, as well as final rise time for the tempera-
ture jump, are inevitable. Hence, to improve our definition
of the initial condition, a so called warm start is performed.
The freezing starts after the steady convection pattern is es-
tablished in the cavity. This initial flow state corresponds to
natural convection without phase change in the differentially
heated cavity, with the temperature of the cold wall set to
Tc= 0 ◦C. The freezing experiment starts, when at timet = 0,
the cold wall temperature suddenly drops toTc=−10◦C. In
the numerical runs, the solution obtained for steady state nat-
ural convection was used as the initial flow and temperature
fields to start the freezing calculations.

The three basic dimensionless parameters describing the
problem are: the Rayleigh number(Ra), the Prandtl number
(Pr), and the Stefan number(Ste), defined as:

Ra= gβ∆TH3

να
, Pr = ν

α
, Ste= c∆T

L f

where∆T = Th−Tr is the difference of the hot wall tem-
peratureTh and the interface temperatureTr (melting tem-

CH

Fig. 1. Physical problem: differentially heated cube shaped cavity

perature). In the above definitiong, H , α, β, ν, c, L f , denote
respectively the gravitational acceleration, the cavity height,
the thermal diffusivity, the coefficient of thermal expansion,
the kinematic viscosity, the specific heat of fluid and the latent
heat of fusion.

Due to the non-linear variation of the water density with
temperature the problem is fully prescribed and the use of
a non-dimensional description of the problem is only for
comparison purposes. The non-dimensional parameters are
defined at the arbitrary selected reference temperatureTr =
0 ◦C. The corresponding non-dimensional values calculated
for a temperature difference∆T = 10◦C, and38 mmcavity
are:Ra= 1.503·106, Pr = 13.3 andSte= 0.125.

Non-linear variation of the water density we consider only
in the buoyancy term. The water density function used was
obtained by fitting a fourth order polynomial to the data col-
lected by Kohlrausch (1968) [15] (fit error0.02%):

ρ = 999.840281167+0.0673268037314·T (1)

−0.00894484552601·T2

+8.78462866500·10−5·T3

−6.62139792627·10−7·T4

where the temperatureT is given in degrees Celsius andρ in
kg/m3.

The expansion coefficient is obtained by differentiating
the above formula:

β =−1

ρ

dρ

dT

Variation with temperature of the remaining physical param-
eters appeared to have only a secondary effect. Hence, water
viscosityν, as well as the thermal conductivity(k) and the
heat capacity(c) of water and ice are assumed to be constant.
Their value at the reference temperatureTr = 0 ◦C is used:

ν = 1.79×10−6 [m2/s]
kl = 0.56[W/m K]
ks= 2.26[W/m K]
c= 4.202[kJ/kg K]

The latent heat is equalL f = 335 kJ/kg. The thermal con-
ductivity, heat capacity and density of the Plexiglas used were
measured. When solving the energy equation for the side
walls, the values of0.195 W/mK for the thermal conduc-
tivity, and 1.19×10−7 m2/s for the thermal diffusivity were
used. The heat transfer coefficienth used for modelling the
convective heat flux from the external fluid was taken to be
20 W/m2 K.

3 Mathematical model and numerical technique

The numerical study of freezing water has been conducted on
a fixed-grid by using a mathematical formulation based on
the enthalpy porosity method [6]. One of the advantages of
the fixed grid method is that an unique set of equations and
boundary conditions is used for the whole domain, including
both solid and liquid phase. It allows us to avoid the problem
of tracking the solid/liquid interface.
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The governing equations are obtained using averaged
quantities [7] so the generalised velocity, density, and thermal
conductivity are defined as:

vm = fsvs+ flvl

ρm = fsρs+ flρl

km= gsks+ glkl

wherevl , vs, are the velocity of the liquid and solid phase,fl ,
fs, are the liquid and solid mass fraction,gl , gs are the liquid
and solid volume fraction,ρl , ρs are the density of the liquid
and solid phase. The volume fractiong is related to the mass
fraction fl and fs via:

ρm fs= ρsgs

ρm fl = ρl gl

According to the saturated mixture conditions the mass and
volume fractions must add to unity:

fs+ fl = 1
gs+ gl = 1

Using the assumption that the liquid is Newtonian and in-
compressible, and that the densities(ρ) and the specific heat
(c) in the liquid (·)l and solid(·)s phases are equal and con-
stant, the dimensionless governing equations in a vorticity-
velocity formulation are:

∂ωm

∂t
+∇× (ωm×vm)= Pr∇2ωm− (2)

RaPr
N∑

i=1

γiθ
i

(
g
|g|
)
+∇×S

∇2vm =−∇×ωm (3)
∂θ

∂t
+ (vm ·∇)θ =∇ ·

(
k̃∇θ)+ B (4)

where:

γi = ai

a1
∆T

(i−1)

andai are the coefficients in the density expression (1) and
∆T = Th −Tr is the temperature difference of the hot wall
Th and the phase interface temperatureTr . The dimensionless
conductivity is defined as:

k̃= (1− fl)
ks

kl
+ fl

In this way, in the liquid zone( fl = 1) k̃= 1, and in the solid
zone( fl = 0) k̃= ks

kl
.

A modified Boussinesq approximation has been used, that
is the non linear density variation has been considered only in
the buoyancy term.

The Darcy type [7] source term has been adopted in the
momentum equation to gradually reduces velocity in the so-
lidifying zone:

S= −C (1− fl)
2(

f 3
l +q

) vm

Where C is a large constant value andq is a computa-
tional small quantity used to avoid singularity in solid zone(≈ 10−3

)
.

In the energy equation (4) the last term at the right-side is
given by

B=− 1

Ste

∂ fl
∂t

which takes into account the latent heat due to phase change.
The governing equation eq. (2–4) are discretised using

a finite volume technique on a staggered grid. A fully implicit
method has been adopted for the mass and momentum equa-
tions, while the temperature field is solved separately in order
to evaluate the variation in the local liquid phase fraction. The
two linearised algebraic systems are solved using a precondi-
tioner BI-CGStab method [8].

At each time step the liquid fraction and the temperature
field in (4) are solved by using an iterative procedure. At
the time stepn+1 the initial iterative fields are initialised to
previous time stepn then the following iterative system eqs.
(5–7) is solved:

f i
l = f i−1

l +Ste
(
θ i−1− θs

)
(5)

Subject to the following constraint:

f i
l =max

[
0,min

(
f i
l ,1

)]
(6)

Ste

(
θ i − θn

∆t

)
+Ste∇ · (vn

mθ
i )= Ste∇ · (k̃∇θ i)+ f n

l − f i
l

∆t
(7)

wherei is the index of the iteration level,∆t the time step
discretization andθs the phase change temperature. The steps
(5–7) are repeated until∣∣∣∣ f i

l − f i−1
l

∣∣∣∣< ε1 and
∣∣∣∣θ i − θ i−1

∣∣∣∣< ε2

and typicallyε1= ε2= 10−8 was used.

4 Experimental

Our main interest is directed collecting quantitative informa-
tion about the phase front position as well as about velocity
and temperature fields within a domain of a mid-height verti-
cal plane of the cavity. For this purpose the flow images of the
centre vertical cross-section have been collected periodically
every60 sor 120 s, for approximately two hours from the on-
set of cooling. At each time step a series of three to ten RGB
images are taken at a short time interval. Special acquisition
and image analysis software has been developed and used to
obtain 2-D flow pattern (particle tracks) and temperature and
velocity fields ([9–11]).

Apparatus

The experimental set-up used to acquire temperature and vel-
ocity fields consists of the convection box, a light source,
a 3CCD colour camera (KYF55 JVC). The flow field was illu-
minated with a2 mmthin sheet of white light from a specially
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constructed halogen lamp, and observed at the perpendicu-
lar direction. The24-bit colour images of 560×560 pixels
were acquired using and a32-bit PCI bus frame grabber (AM-
STD-RGB Imaging Technology Inc.). The convection box,
of 38 mm inner dimension, has two isothermal walls made
of aluminium. The four non-isothermal walls were made
of 6 mm thick Plexiglas. The isothermal walls were main-
tained at a constant temperature by anti-freeze coolant flow-
ing through the attached antechamber. Thermostats controlled
the temperature of the cooling and heating liquids. The freez-
ing experiment starts by opening abruptly the inlet valves to
the coolant passages. The temperature of the cold and hot wall
was−10◦C and+10◦C, respectively. Distillate water was
selected as a flow medium for its well known thermophysical
properties and well defined temperature of the phase change.

Velocity and temperature measurements

Both velocity and temperature fields were monitored using
unencapsulated Thermochromic Liquid Crystal (TLC) tracers
([4, 12]). Digital evaluation of tracer images collected for the
selected flow cross-section (Digital Particle Image Velocime-
try and Thermometry) allows us simultaneous and fully au-
tomatic measurements of temperature and velocity 2-D flow
fields. Temperature is determined by relating colour of the
tracers to a temperature calibration function ([11, 13]). The
2-D velocity vector distribution has been measured by digi-
tal particle image velocimetry (DPIV). For this purpose, the
colour images ofTLC tracers are transformed to B&W in-
tensity images. The magnitude and direction of the velocity
vectors are determined using the recently developed evalua-
tion technique based on the Optical Flow approach [14].

To get a general view of the flow pattern, several im-
ages recorded periodically within a given time interval have
been added in the computer memory. Displayed images are
similar to the multiexposed photographs, showing the flow
direction and its structure (see Fig. 2a). This type of visu-
alization is very effective in detecting small re-circulation
regions, usually difficult to identify in the velocity field. In
all cases studied the volume concentration of tracers was very
low (below0.1%), so their effect on the flow and the physical
properties of water was negligibly small.

0.5mm/s

Fig. 2a,b.

a b

Natural convection of wa-
ter observed forTh = 10◦C, Tc = 0 ◦C.
a Flow pattern visualized on multiex-
posed image of traces;b Evaluated vel-
ocity field using PIV technique

The flow images are used to evaluate the shape and loca-
tion of the phase front. These measurements are performed
manually using image analysis software. The accuracy of
a single point measurement is about 1 pixel, which corres-
ponds to0.07 mm.

5 Selected results

Natural convection

At the beginning, our interest was directed to verify numeri-
cal solutions obtained for natural convection of water in the
vicinity of the freezing point. In the experiments the cold
wall temperature was set to0 ◦C, and the hot wall to+10◦C.
The effects of density inversion and of the thermal bound-
ary conditions at non-isothermal walls on the flow structures
are studied to compare and eventually improve the numerical
code.

A typical flow structure (see Fig. 2) exhibits two recircu-
lation regions, upper one, where the water density decreases
with temperature, and the lower region with an abnormal
density variation. Similar flow patterns were obtained in the
numerical solution (Fig. 3, 4), however several discrepancies
are present. Numerical experimentation with thermal bound-
ary conditions posed at the non-isothermal walls has shown
that the calculated flow pattern strongly depends on the mod-
elling used. Small changes of the heat flux through these pas-
sive walls evidently shifts the saddle point (Table 1) present
at the cold wall, modifying the size of both flow circulations.
Figure 5 illustrates variation of the vertical vorticity profiles
along the cold wall calculated for different heat fluxes through
the side walls.

It was concluded, that neither isothermal or constant heat
flux models are sufficiently accurate to obtain observed flow
structures. The observed flow configuration, with two inter-
acting cold and warm counter-rotating circulation, appears to
be very sensitive to changes of the heat flux through side
walls. Hence, direct comparison of the numerical and experi-
mental results is necessary to verify assumptions made for
heat transfer coefficients at the external surfaces. Solving the
coupled solid-fluid heat conduction problem together with the
Navier-Stokes equations evidently improved the modelling of
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Fig. 3a,b.

a b

Natural convection of water for
Th = 10◦C, Tc = 0 ◦C, flow field calcu-
lated for adiabatic boundary conditions.
a Stream function;b Velocity vectors

Fig. 4a,b.

a b

Natural convection of water
for Th = 10◦C, Tc = 0 ◦C, flow field
calculated for conducting walls solv-
ing the conjugate heat transfer problem.
a Stream function;b Velocity vectors

Table 1. Saddle point position

Numerical Numerical Experimental
adiabatic walls conducting walls

0.714 0.585 0.625

the flow pattern, but still empirical values for the air-wall heat
flux coefficients have to be used.

Freezing of water

The pure convection experiments show as already mentioned
two main flow circulation regions. In the first, driven by nor-
mal convection and located in the upper part of the cavity,
there is a clockwise circulation. It transports the hot liquid
up to the top wall and back along the isotherm of the dens-
ity extreme. When freezing starts from developed flow, the
thermal boundary conditions at the cold side remain the same,
i.e. isothermal surface at temperature0 ◦C. However, inter-
action of the convective flow with the freezing front causes
deformation of initially flat freezing plane. The hot circula-
tion melts the upper parts of the ice front, reducing the ice
growth rate in this region. The abnormal flow circulation, lo-
cated in the lower right part of the cavity, transports the cold
liquid up along the adjacent ice surface and back to the bot-
tom along the isotherm of the density extremum. This cold
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Fig. 5. Vertical vorticity profiles extracted along the cold wall. The strong
dependence of the saddle point position (zero crossing of the profile) on
heat flux through the side walls is shown

water circulation only moderately modifies the heat balance
at the interface. The convective heat transfer between both up-
per and lower regions seems to be limited mainly to the upper
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t = 120s
0.5mm/s

t = 500s
0.5mm/s

t = 1400s
0.5mm/s

t = 2000s
0.5mm/s

Fig. 6. Measured velocity field at120 s, 500 s, 1400 s, and 2000 s after
freezing process starts from the steady convective flow;Th = 10◦C, Tc =
−10◦C

right corner of the cavity. There, along the colliding cold and
warm fluid layers, the heat is transferred from the hot wall to
the lower parts of the cavity. The shape of the freezing front
reproduces this interaction, almost doubling the ice growth
rate at the bottom (see Fig. 6).

Comparison of the measured and calculated (see Fig. 7)
ice fronts indicates qualitative agreement. For short time (first
500 s), there is also quite good quantitative agreement be-
tween simulated and experimental results. However, with
progressive development of the solidus differences of the
front shape appear to grow. Especially lower parts of the ice
front suffer evident errors in modelling. Numerical counter-
clockwise circulation at the lower parts seems to be more
effective in decreasing ice growth. In the experiments the
ice surface remains almost perpendicular to the bottom wall,
whereas in the numerical results for large time its shape de-
clines strongly back into the cold wall.

6 Discussion

The results obtained show a very good agreement between
numerical and experimental results for initial time of this
transient process. The agreement progressively decreases for
longer experimental time. One of our future aims is to im-
prove the capacity of the prediction of the numerical model
for long simulation times. Since at longer times the ice layer
is quite thick, it seems important to improve modelling of
thermal conductivity inside the solid. Non-uniformity of the
ice structure, dendrites, and impurities due to the solved gases
may force us to verify the assumption used about isotropy of
the thermal properties of the ice.

Another important point is analysis of the effects of su-
percooling. As a matter of fact, most of the investigations
concerning solidification assume the isothermal conditions
at the phase change boundary and the temperatures above
the freezing point for the liquid phase. However, it is well
known that usually the fluid supercooling precedes the phase
change [16]. For example, we observed in the experiments
that water of standard purity will supercool to about−5 ◦C to
−7 ◦C, before ice nucleation appears. This may significantly
retard the solidification process, modifying initial flow pat-
tern. Thus, an understanding of the role of supercooling in the
solidification process seems to be worthwhile. The accurate
modelling of the supercooling is not straightforward. The su-
percooling depends on concentration of the nucleation sites,
the cooling rate and the cooling history. Theoretical predic-
tion of these parameters is rather imprecise. Our experiments
with freezing water indicate that in most of the cases dis-
tilled water cools to about−7 ◦C before phase change begins.
The observed effect of supercooling qualitatively changes the
onset of freezing. The proper definition of the initial flow con-
ditions for the numerical simulation becomes controversial.
Modelling of supercooling for the formation of ice was not
present in the numerical model. However, we believe this is
important and is part of work being undertaken.

Acknowledgements.We gratefully acknowledge CIRA S.c.p.A. (Centro Ital-
iano Ricerche Aerospaziali) for the use of the POWER CHALLANGE
supercomputer. The third author acknowledge research grant of KBN (State
Committee for Scientific Research).



Phase change problems with free convection: fixed grid numerical simulation 129

Fig. 7. Freezing of water:Th = 10◦C,
Tc = −10◦C. Numerical solutions ob-
tained at120 s (left column) and 500 s
(right) after freezing starts from the
steady convective flow. Velocity vectors
(top row) and temperature fields (bottom)
displayed
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