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A method to model the tensile properties of cylindrical nanoclusters is proposed. The isothermal
size effect, appearing in the static simple tension test and in the dynamic process of uniaxial stretching,
is discussed. A numerical simulation of this effect is presented.

1. Introduction

Many novel phenomena exist that are intrinsic to mesoscopic systems [1]. Particu-
larly, as we shrink the mesoscale to the nanoscale, physics becomes increasingly domi-
nated by the surfaces. It is in contrast to macroscopic systems that physical properties
are dominated by the physics of bulk [2] (see also [3] — Introduction). The paper con-
cerns the bulk nanostructured isolated solid clusters of ultrasmall size (<100 nm) called
nanoclusters [3, 4]. Unfortunately, there are only limited data on the mechanical be-
havior — especially tensile properties — of nanoclusters. However, the fundamental un-
derstanding of mechanical properties of nanoclusters depends not only on experimental
work, but also requires theoretical models. In the present paper we propose a framework
for the modelling of tensile properties (static as well as dynamic — Secs. 3-5) of cylindri-
cal nanoclusters (Sec. 2). This proposal is based on the simplified method of modelling
of tensile properties of axially symmetric nanoclusters that has been proposed in [4].

2. Uniaxial Tension

Let us consider a circular cylinder B of height h and radius r. If V = V(B), F =
F(0B) and M = M(0B) denote the volume of B, the surface field of the boundary 0B
of B and the total mean curvature of 9B, respectively, then [5]:

(2.1) V =7rh, F=2rr(h+r), M =n(h+ 7r).

Introducing the slenderness z of the cylinder B:

(2.2) L= =3
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we can write Eq. (2.1) in the form:
(2.3) V=mariz, F=2rr(z+1), M =rnr(z + ).

It has been observed that the structurally most stable small metallic clusters have
almost spherical shape. The oblate or prolate shape of such a cluster means that its
structure is less stable [6]. Therefore, it is physically reasonable to consider a degree of
sphericity of nanoclusters. For a compact and convex nanocluster B, the measure k of
its degree of sphericity can be defined as [3]:

0<K=TV/T'FS17

(2.4) 1
Ty = (3V/47r)1/3 . TE = §(F/7r)1/2 ,

where V = V(B), F = F(0B) and k = 1 if and only if B is a ball. For the circular cylin-
der
we have:

(2.5) Kk = k(z) = V6z/\/2(z + 1)

where Eq. (2.3) was taken into account. It easy to see that the function %(z), z > 0,
takes its maximum value for = 2. Thus a circular cylinder By such that hg = 2rq can
be considered as the structurally most stable metallic cylindrical nanocluster (with the
degree of sphericity x(2) ~ 0.935).

Let By be a distinguished circular cylinder of height ho and radius ro. Introducing
designations:

h T ho
2.6 B THECE Ao =orrls =
( ) h hO ) L To Zo To
we can write the slenderness of B in the form:
A
(2.7) z=mﬁ.

If the circular cylinders By and B have the same center of symmetry (that coincides
with the center of mass for the considered homogeneous nanoclusters), then B can be
identified with the image of By under a linear mapping | = I(F) : E®> — E3 where
F denotes the gradient of [ (called a deformation tensor), i.e. B = [(F)(By); E® de-
notes a three-dimensional Euclidean vector space. The tensor F admits then a polar
decomposition:

(2.8) F=RU,

where R is a proper orthogonal tensor, the stretch tensor U is a positive definite and
symmetric tensor with its eigenvalues, A\; > 0, i = 1,2,3, usually called principal
stretches, defined by

Uei = )\iei ’
(2.9)
e’i'ejz(s’ija ivj:132a3a



Tensility and compressibility of azially . .. 11

and such that, according to Eq. (2.6), we can take:
(2.10) AL =22 =N, Ag =M

Further on we will deal with pure deformations (R = 1) preserving the shape of By,
that is such that:

F=U = ME, + \Ep,
(2.11)
E,=e;®e; +e3®es, E, =e3®es.

Let By be a homogeneous cylindrical nanocluster with its axis of symmetry parallel
to the versor n = e3 and endowed with the uniform absolute temperature § € T Let
us denote by T(Bo; U, 6) the generalized Cauchy stress tensor [3, 4] corresponding to
a pure deformation of the nanocluster By defined by Egs. (2.6) and (2.11). This gener-
alized stress tensor has, in the framework of the simplified model of tensility of axially
symmetric nanoclusters being in the quasi-solid state [4], the following representation:

T(Bo; U, 0) = Tr0(ho,70; Any Ar)Er + Tho(ho, 703 An, Ar)En,

(2.12)

Tr0 = po +trg, Th,o = po + the,
where

e 0Py . 0Py 0Py

Po= 5y no = (BFa’\ F+ 5010 )

(2.13)

A (09 0%,

th,e o <8F a/\hF+ 8Ma)\h ) )

and the scalars @g,0 € I, define the Helmholtz free energy function ¥ according to
the rule:
¥ (By; U,0) = &(V,F, M),

(2.14) V = M2V, F = 2112 (2o n + Ar),
M = mro(zoAn + ), Vo = wrgzo.

It follows from Egs. (2.1)-(2.3), (2.6), (2.7), (2.13) and (2.14) that, independently of
the choice of By, we have:

2Vt = 271’7”2(:1: + 2)8[»@9 + 71”27‘3M@9,
(2.15)
Vth,g = 271’7‘2.’1,‘6[:459 + mradyPe.

In the case of isothermally incompressible elasticity defined at each temperature
0 € I by:

V = Veo(6),

(2.16)
det U = A\yA2 =9(9),
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should be:

(2.17) T = =Pl + T 9By + ThgEp =T, gE, + Ty oEp,
where

(2.18) Tro=-P+Trp, Tho=-F+The

The components T} o and T} ¢ are defined by Eqgs. (2.12)—(2.15) and 7 is an undefined
scalar.

3. Generalized Simple Tension

The generalized simple tension state can be defined as an uniaxial tension such
that [4]:

(3.1) Veel, Lhe=0,

that is (at each 6 € I) :

(3.2) 2V 8y Py + 2mr*(z + 2)0r By + w2rdpyPe =0 ,
where Eqgs. (2.12)-(2.15) were taken into account. In this case:
(3.3) Tho =the —tre

and thus, according to Eq. (2.15), we have:

(3.4) VThe = nri(z — 2)0pPy + 7 (z - g) OmPo.

An unstressed (in the generalized sense — [4]) cylindrical nanocluster By of height h(6)
and radius r(6),6 € I, is defined by Eq. (3.1) (i.e. by the condition (3.2)) and by the
equation:

(35) Voel, Th’g =0

equivalent (at each 6 € I) to the following condition:
(3.6) r(z — 2)0pPy = (g— - :v) OmPo -

The experimental simple tension data for usual elastic materials [7] suggest that the
following condition is physically reasonable:

(3.7) Voel, (h—h()(r—r@®) <0, h # h(8), r#r(0) .
For example, if

h = Nhh(a) ) r = pur(0),
(3.8)

br = Xo(n) , pr >0,
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where Yy is a differentiable monotone decreasing positive function dependent, in general,
on h(f) and r(0) as the parameters (cf. [4]), then the condition (3.7) is fulfilled. The
generalized postulate of isothermal tensility in the generalized simple tension state [4]
is defined here by Eq. (3.7) and by the following condition:

(3.9) VOel,  Thoth~(hi@))>@ i~ « h#£h(8).

It follows from Eq. (3.6) that an “unstressed” metallic circular cylinder By, 6 € I,
can be structurally most stable, that is (Sec. 2):

(3.10) 2(6) = h(8)/r(8) = 2,
if
(3.11) OmPe = 0.

In a similar manner:

(3.12) z(0) = g
if
(3.13) Or®y = 0.

Note that the degree of sphericity x(m/2) ~ 0.932 (see Eq. (2.5)), means that an “un-
stressed” metallic cylindrical nanocluster of the slenderness z = 7/2 is almost such
structurally stable as that one of the slenderness z = 2 is (x(2) ~ 0.935). It follows
from Egs. (2.3), (3.2), (3.4), (3.11) and (3.13) that we can take:

T2

Th,o = _.'L' - 26\/459 for .'L‘(G) =2;

(3.14)

2 s T
Tho=-=(z-2)0v@ for a(6)=7.

Then, according to the conditions (3.2), (3.7) and (3.9), would be:
(3.15) OyPe <0,
and

Or®Py >0 for z(8) =

2
3.16
W OmPo >0 fors :5in(0) = g

It ought to be taken into account that the conditions (3.2) and (3.8) can be incon-
sistent. However, it is not the case of isothermally incompressible elasticity defined by
Egs. (2.12) and (2.16)—(2.18). Namely, the condition

(3.17) Trp=0,
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leads to Eq. (3.4) with T}, ¢ in place of T} ¢ and constrained by the condition (2.16)
only. In this case:

h = hoA, A=,

1/2
T =ToAr =T9o (é-(;i)-) )

z=h/r =z (-19—(%)—)1/2 .

and the condition (3.8) reduces to the following equation:

(3.18)

ho9(8)
=2

(319) r=T"To

The component T, ¢ of the generalized tensile stresses is then also defined by Egs. (3.4),
(3.15) and (3.16) and reduces to a function of the variable A > 0 only (dependent on
the parameters hg, 7o and 6). Consequently, the analysis of tensility of nanoclusters that
has been presented in [4] can be applied here.

4. Liquid-like Response

The so-called liquid-like response [3, 8, 9] of nanoclusters being in the quasi-solid
state [3] is defined by a Helmholtz free energy function ¥ of the following form [3]:

U(Bo; F,0) = Bo(V,F,M), 0el,
4.1
b @y(V, F, M) = a(0)V + b(6)F + c(6)M + d(6) ,

where F € GL*(E®) denotes a deformation tensor, V = V(B) is the volume of the
actual configuration B = [(F)(By) of the nanocluster By, F' = F(0B) is the area of the
boundary 0B of B, and M = M(0B) is the total mean curvature of &B. Further on we
will consider the liquid-like response of cylindrical nanoclusters defined by Egs. (2.1)-
(2.3), (2.6), (2.11) and (2.14). Moreover, we will assume, taking into account Egs. (3.4),
(3.15), (3.16) and (4.1) that:

(4.2) a(@) <0, b0B) >0, c@)>0, bO>+cB)?>0.
Let us denote:
43) @) =la(d)], AO)=0b0), w(®)=2mc®), 6)=]d#)|/4r .

The above defined scalars have the following physical interpretations ([9] — Part I).
The quantity €(6) is the free energy density needed to change the nanocluster volume
unit and it is a quantity conditioned by the bulk interatomic interactions only. The
quantity y(f) can be identified with the so-called surface tension defined as the free
energy density needed to change the boundary surface field unit. The density () is
conditioned by the interactions of atoms located on the boundary solid surface and it is
a positive quantity at the considered temperatures lower than the melting temperature.
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The quantity w(f) can be interpreted as the free energy density needed to change
the nanocluster mean width d = M/27 and this quantity can be considered as the
one conditioned by interactions between the boundary surface atoms and the bulk
atoms located in a boundary layer. The quantity §(#) is conditioned by the nanocluster
connectedness. This quantity does not influence elastic properties of the nanocluster
but influences its heat capacity. Note that although we consider solid clusters being in
the quasi-solid state [3, 4], the concept of the liquid-like response can be also useful
for modelling of the contribution of interface curvatures (mean and Gaussian) to the
surface internal energy density in incompressible fluids without memory effects [10].
The quantity §(@) is then responsible for a discontinuous change of the total internal
energy needed to change the topological connectedness of a fluid body [10].

Let us consider the generalized simple tension of an isothermally incompressible
cylindrical nanocluster defined by Egs. (2.12)-(2.18), (3.17)—(3.19) and (4.1)-(4.3). In
this case:

Th,o(Bo; AnyAr) = To(N)

(4.4) ~(6) A \1/2 2
o b [(?9(‘93) "

2@ 7 (90N
2md(0)ra 279 \ A :

The (isothermal) uniaxial tensility function Eg(Bo; ) of the nanocluster By at the tem-

perature 6 € I defined as [4]:

0, © Ry
(4.5) Eo(Bo;A) = A—=(A)

is then given by:

s 3@ w0

Low® [\ w2
219(0)r3 4zo \ 9(6)
Since, at the temperature 6 € I, we have:
VA >0, Ey(Bo; A) >0,
4.7)
lim Tp(A\) = —o0 lim Tp(A\) = o0,
A—0 A—00

the considered uniaxial tensility of the cylindrical nanocluster By is mechanically sta-
ble [4] and the generalized stress component Ty is a monotone increasing unbounded
function. Moreover, it follows from Eqs. (4.5) and (4.7) that the condition:

(4.8) Voel, To(M\@)=0, X6)>0,

and Eq. (3.18) with A = A() uniquely define the “unstressed” cylinders By , 6 € I, of
height h(6), radius 7(f) and the slenderness z(6). Thereby, the uniquely defined scalar

(4.9) E(Bo; 6) = Eg(Bo; A(0)) ,
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can be interpreted as the generalized isothermal Young’s modulus of the nanocluster By
at the temperature 6 € I [4]. For example, if zo = 2, then E(Bp; ) can be considered
as the generalized Young’s modulus of a structurally most stable metallic cylindrical
nanocluster (Sec. 2).

It follows from Egs. (4.6) and (4.9) that, for a fixed slenderness o, a very thin
cylindrical nanocluster By admits to neglect the surface tension effect with respect to
the boundary curvature effect (see remarks following Eq. (4.2)). So, let us consider the
case:

(4.10) Vo eI, v(6) = 0.
Then, according to Egs. (3.4), (3.18), (4.1)—(4.4) and (4.8), we have:
(4.11) AO6) =9(0)Y3,  x(6) = zo = 7/2.

Let us denote by Eg a reference Young’s modulus, say this one corresponding to
macroscopic samples of the considered nanomaterial at a reference temperature 6y € I
(see e.g. [11]). It follows from Eqgs. (4.6) and (4.9)—(4.11) that:

E(Bo;0) 3 16)\?
(4.12) E(; T 4md(6)%/3 (730_) s

where it was denoted:

2w(0)

(4.13) 1Oy =/ 5.~

do = 27“0 .

It is observed that if the nanostructure size becomes smaller than an “intrinsic” charac-
teristic length associated with a certain physical property, then this property changes
[12, 13]. For example, if /() is interpreted as the intrinsic characteristic length associ-
ated with the nanocluster tensility in the simple tension test, then the inequality

(4.14) Voel, dy<lI(®),

can be considered as a condition consistent with the assumption that we are dealing
with a very thin cylindrical nanocluster.

5. Uniaxial Stretching Process

Let us denote by By a cylindrical nanocluster of immovable center of mass located
e.g. in the point X = 0. We will study the isothermal stretching dynamics [4] of By due
to the influence of uniaxial surface load (tensile or compressive). It is assumed that if
the applied cross-sectional load is referred to actual cross-sections of the nanocluster,
then it takes the form:

o(x,7) = o(x,7)n(x,7) ® n(x,7) ,
(5.1) x = xte; € 9B, , X=X, X € 9B, ,
B = (U(7))(Bo) , 7205 e;-e; =0ij ,
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where
o(Bo; U(1),8) for z8= :{;g \ (@) + (222 <,
(52) O'(X, T) o= L B
0 for —g <:(:3<5 , (z1)2 + (22)2 =7,

B, is a circular cylinder of height h = h(r) and radius r = r(7) being an actual
configuration of By, U(7) denotes a time-dependent stretch tensor defined by Egs. (2.9)-
(2.11) with the time-dependent principal stretches A; = A;(7) and the time-independent
principal orthononormal vectors e;, i = 1,2,3; n(x, 7) is the unit outward normal to
the boundary 0B, of B, at the point x, and 6 € [ is a time-independent temperature
of Bo.

If the influence of mass forces is neglected, then an isothermal uniaxial stretching
process corresponding to the above defined cross-sectional load is described, in the
framework of the simplified model of dynamics [4], by the following equation:

(5.3) U(T)J(Bo)ﬂ(T) = —Mint(Bo; 7) + Mext (Bo; 7),

where M;,; and Mgy are dipole moments of internal and external surface forces acting
on the boundary 9B, of the actual configuration B, of By , respectively:

(5.4) Mint (Bo; 7) = —V ()T (Bo; U(r), 6),

where V(1) = volB,, T(Bo; U(7), 0) is the generalized Cauchy stress tensor [3, 4] defined
by Egs. (2.12)—(2.15) in the case of compressible elasticity or by Egs. (2.16)—(2.18) in
the case of isothermally incompressible elasticity, and

(5.5) Mext(Bo; 7) = /x® o(x, 7)n(x, 7)dF(x).
o8,

It follows from Egs. (2.11), (5.1), (5.2) and (5.5) that:
Mext(BO; T) = M(BO; T)Eha

(5.6)
M (Bo; 7) = o(B-; U(1),0)V (7).

J(By) is the inertia tensor of the cylindrical nanocluster By of the mass m determined
with respect to its mass center X = 0 and has the following form:

J(BO) e JT(TO)ET + Jh(hO)Eh ’

(5.7) 1z e
JT(TO) = Zmro s Jh(ho) = Emho .

Further on we will restrict ourselves to the case of isothermally incompressible elasticity.
It follows from (2.1), (2.12)—(2.18), (5.4), (5.6) and (5.7) that the equation (5.3) is then
equivalent to the following system of equations:

AMdn(ho)An = =VThe + M ,
(5.8)

)‘r']r(ro))\r = —VTT,G s
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constrained by the condition (2.16). Assuming that

(5.9) p=pe(Bo; V,F, M) ,

we obtain the following equation:

(5.10) AMndn(ho)An = 20 Jr(To)Ar = mg + Vo |
where it was denoted:

(5.11) mg = 4dnr20p®y — nr(x — 7)0MPo

and Eq. (2.15) was taken into account. The scalar mg can be viewed as a component
of an effective dynamic dipole moment in es-direction. Note that it differs from the
component M} g = VT, ¢ of the dipole moment defined by Egs. (2.12)—(2.18), (3.17)
and appearing in the static simple tension test (Sec. 3). Consequently, a new (dynamic)
characteristic slenderness z = x(6) appears. Namely, in contrast to Egs. (3.4), (3.5) and
(3.12), the condition (3.13) leads to:

(5.12) meg=0 -l - elfl=m
Let us consider the case of a constant actual cross-sectional load:
(5.13) a(Bo; U(7), ) = 0o,

where o can be dependent on the parameters hg, 7o and 6. It follows from the condition
(2.16) that introducing designations:

(61 An(T) = A7 /70), 0 = /m,

A/=Ed;)\, S=T/T020, h0=.’l:07‘0,

and

1

1
5.15 s SO ESUE I o
(5.15) &o P r Py Co = M Po

we can rewrite Eq. (5.10) in the following nondimensional form:

2x2 1 y?
1 O A2apatcf e e
(5.16) [30(0)>\ +/\])\ 3(——)\) Mp(N) ,
where it was denoted
o 4 To 2 mVO)  1/2
(5.17) Mpy(X) =8 [xofg 1) Co ()\ =" A + (sgnog)A|

and Egs. (2.2), (3.18), (5.7) were taken into account.
For circular cylindrical nanoclusters with the liquid-like response (Sec. 4) we can take:

_ 1) __w(®)
(518) 69 i |0'0l7'0 2 0 ) Ca = 27r|00|7‘(2)

>0,
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where Eqgs. (4.1)—-(4.3) were taken into account. Let us consider the case (see Sec. 4):

(5.19) Voel, v(6)=0.
If additionally:
(5.20) Top=T,

then, according to Egs. (3.18), (5.11) and (5.12), we have:

(5.21) me=0 iff A= </90).

Note, that in the static case we have an analogous relation. Namely, if

T
(5.22) To = 5 y

then, according to Eqgs. (3.18), (4.4) and (5.19), we have:
(5.23) My=VTy=0 iff A= /() .

We see that “unstressed” nanoclusters By, 6 € I, defined by Eq. (3.18) with A =
9(0)!/3, appear in the static simple tension test as well as in the time-dependent uniaxial
stretching process. The conditions (5.19), (5.20) and

(5.24) Voel, 90 =1

describe the case when an incompressible nanocluster By is “unstressed” at each tem-
perature @ € I. In this case, introducing designations:

M) = =8rAlt(A) — €], e = sgnoy,
T(\)

(525) t(>‘) = W S5 C()‘ b )‘1/2) ) C 5 n2,

1
n:k(a)%, k(a): \/E0/7T|O'0|, d0=21"0,
where [(0) is defined by Eq. (4.13) and T'(\) denotes the generalized longitudinal stress

Tp()) of Eq. (4.4) defined by the conditions (5.18), (5.19) and (5.24), we obtain the
following dynamic equation:

212 1 NN
s SO LR AT WL, o AL ¢
(5.26) (3)\+/\) 3()‘) M(\)
The considered dynamics depends on the external surface load o¢ (e = 1 — tension or
e = —1 — compression) as well as on the intrinsic characteristic length /(8) associated

with the nanocluster tensility in the simple tension test (Sec. 4). Note that, according
to Egs. (5.14) and (5.20), the parameter ¢ of Eq. (5.25) can be represented in the
following form:

(5.27) &
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Thus, if the characteristic time 7o of the considered uniaxial stretching process is kept
constant, then ¢ is a monotone decreasing function of the nanocluster radius rqg. The
following plots, representing numerical solutions of Eq. (5.26) with the initial conditions

(5.28) A0)=1, MN0)=0,

show the way in which the parameter ¢ influences the dynamics of uniaxial stretching
process:

FiG. 1. Uniaxial stretching due to tensile surface load.

and

S

RO S T AR e

Fi1G. 2. Uniaxial stretching due to compressive surface load.
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with the associated simple tension state:

E

20 s n=2
iy
/
10 //
n=1
o il ﬁ,‘_,’——”"”" n=0.5

"ﬁ 3 2 3 4 5 A
-10
20

Fic. 3. Nondimensional generalized longitudinal stresses.

6. Final Remarks

Nanoclusters exhibit physical properties characteristic of neither the isolated atoms
or molecules nor of the bulk materials (usual or nanostructured) [14] (see also [3] —
Sec. 1). Consequently, on the nanoscale level, the notion of the state of matter takes
a new meaning. The introduced notion of the quasi-solid state [3] is an example of
the phenomenological mesoscopic representation of this phenomenon. Particularly, this
notion is consistent with the observed dependence of isothermal mechanical properties of
a nanocluster upon its size and shape (3, 4]. For example, it is predicted in the paper that
the generalized Young’s modulus of a cylindrical nanocluster (in the direction of its axis
of symmetry) should increase when the nanocluster radius decreases (Sec. 4). Moreover,
the static simple tension test as well as the nanocluster uniaxial stretching process
depend explicitly on a characteristic intrinsic length (Secs. 4 and 5). The characteristic
length is intrinsic in such a sense that it depends only on the boundary curvature
effect (conditioned by interactions between the boundary surface atoms and the bulk
atoms located in a boundary layer — Sec. 4) and on the Young’s modulus of macroscopic
nanostructured samples (conditioned by the bulk interatomic interactions; see also [11]).

The dynamics of deformation processes of nanoclusters is not recognized as yet. We
propose [3, 4, 9] an approximate mesoscopic phenomenological model of this dynamics
based on the assumption that, due to macroscopically small sizes of a nanocluster, we
can restrict ourselves to its time-dependent spatially uniform deformations and temper-
atures. The equations governing the deformation processes of nanoclusters can be then
derived basing oneself on the theory of such thermodynamic homogeneous processes
[15] for which the associated thermodynamic functions (Helmholtz free energy, internal
energy and entropy) and the generalized thermodynamic forces depend on the shapes
and sizes of these clusters [9, 16]. Particularly, these equations can be applied to the
description of the uniaxial stretching processes of cylindrical nanoclusters (Sec. 5, see
also [4]). It leads, in the very thin cylindrical nanoclusters approximation (Sec. 4), to
the one-dimensional nonlinear dynamic equation defined by Egs. (5.25)—(5.27). This
equation and the initial conditions of Eq. (5.28) define, according to Figs. 1 and 2,
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the axial elongation or shortening processes of the nanocluster taking the form of its
undamped vibrations forced by the time-independent actual cross-sectional load. If the
characteristic time 79 of Eq. (5.27) is kept constant, then the amplitude and period of
these vibrations decrease when the nanocluster radius decreaces.

It should be stressed that the proposed mesoscopic model of dynamics is, in general,
inconsistent with the local macroscopic model of dynamics formulated in the framework
of continuum mechanics (e.g. [15]) [16]. Particularly, it concerns the above discussed
vibrational uniaxial stretching process.
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