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TENSILITY AND COMPRESSIBILITY OF AXIALLY
SYMMETRIC NANOCLUSTERS
PART I: SIMPLIFIED MODELLING
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A simplified method to model the temperature-dependent uniaxial tensility and volume compress-
ibility of axially symmetric nanoclusters is proposed. Particularly, formulae for the isothermal general-
ized Young’s and bulk moduli of nanoclusters being in the quasi-solid state are given and a model of
isothermal uniaxial tension dynamics is proposed.

1. Introduction

Bulk nanostructured materials are defined as bulk solids with a nanoscale micro-
structure. The bulk nanostructured isolated clusters of the ultra-small size (< 100 nm),
called further nanoclusters [1] are produced, as well as ultrafine-grained materials are
synthesized by consolidation of such clusters. There exist only limited data on the me-
chanical behaviour — especially tensile properties — of bulk nanostructured materials [2].
Particularly, the dependence of elastic properties of nanoclusters upon their shape and
size [1, 3, 4] has been observed. It means, that we should consider non-local counterparts
of usual elastic moduli as well as introduce a global measure of internal surface forces
consistent with these generalized elastic moduli. The latter notion can be defined e.g.
in the following manner. Let us consider a homogeneous compact and connected elastic
nanocluster By C E® of immovable center of mass, homogeneously deformed (with the
gradient of deformation F € GL* (E?®)) and endowed with the uniform absolute temper-
ature § € I C R, ; E® denotes a three-dimensional Euclidean vector space space ]
If ¥ = ¥(By;F,0) denotes the total Helmholtz free energy of this nanocluster, then
corresponding generalized thermodynamic force N = N(Bo; F,6) is defined by [1, 3]:

(L.1) N = — 0.

Note that when the size and shape effects can be neglected, then the tensor T € E3QFE?
of the form:

(1.2) T = -V(Bo) !N,
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where V(By) = vol By, reduces to the so-called Piola stress tensor for simple elastic
bodies (see e.g. [5]). Thereby, we can consider T as a generalized Piola stress tensor
assigned to the one whole nanocluster. Consequently, the field of surface forces tg, 0 € I,
of the form:

(1.3) to(Bo; F,X) = —T(By; F, 0)no(X),

where no(X), X € 0By, denotes the outward normal versor at a point X of the nan-
ocluster boundary 0By, can be interpreted as a field of internal surface forces acting on
the surface 08;. ’ 3

Next, let us consider the dipole moment Mins = Mint(Bo; F, 6) of the surface forces
defined as:

(1.4) Nint (Bo; F, 0) = / X ® o(Bo; F, 6, X)dF(X).
8B

Since

(L.5) T = —V(Bo)~ My,

we can take the dipole moment Mint as a global measure of internal surface forces.
We obtain then the following interpretation rule of the generalized thermodynamic
force:

(1.6) N = NI,

int*

The symmetric generalized Cauchy stress tensor T = T(By; F,0) can be defined as
[1, 3, 5]
0D T(Bo; F,0) = J(F)~'T(By; F,0)FT ,
: J(F) = detF.

Introducing the field of internal surface forces tg, 6 € I, acting on the boundary 88 of

the deformed spatial configuration B = [(F)(By) of By:
18) to(Bo; F,x) = —T(Bo; F,0)n(x) ,
1.8
x=IlF)X=FXe€B, X € 9By ,

where n is the outward normal versor, we obtain that the the dipole moment M;,; =
Mint(Bo; F, 6) of these forces:

(1.9) Mine(Bo; F, ) = / X ® to(Bo; F,x)dF(x) ,
oB

has the following representation:

(1.10) Mint(Bo; F,0) = —=V(B)T(By; F,0) ,

where V(B) = vol B.
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Some of the unique features of solid nanoclusters make those clusters different from
these of conventional size (> 1pm) and can be modeled, in the case of convex and
compact clusters, on the basis of the phenomenological concept of the quasi-solid state of
such nanoclusters [1]. Farther on, we will consider convex and compact axially symmetric
nanoclusters By only. The boundary 88y of these nanoclusters is assumed to be a surface
of revolution or it consists of such a surface and flat circular bases normal to the axis
of revolution. The quasi-solid state of a nanocluster By means that the total Helmholtz
free energy ¥ of By has the form:

(1.11) ¥(Bo; F,0) = o (V, F, M),

where V = V(B) is the volume of the figure B = [(F)(Bo), F € GL*(E?), F = F(dB) is
the surface field of the boundary 9B of B, and M = M(0B) is the total mean curvature
of B. Moreover, if By is additionally an elastic undistorted solid nanocluster within the
range I of the temperature [1], then its insensibility groups Go(Bo), 6 € I, [1, 3] would
fulfill the following condition [1]:

(1.12) h(Bo) = G(n) C Go(Bo) C SO(E®)

where h(Bp) is the group of rotational symmetries of By and G(n) denotes the group of
all rotations about the axis axis of revolution parallel to the versor n. It follows from
Eq. (1.12) that we are dealing here with transversally isotropic or isotropic homogeneous
nanoclusters only.

We will deal also with the shape-preserving homogeneous deformations of nanoclus-
ters under consideration. It follows from the polar decomposition theorem of defor-
mation gradients F € GL*(E®) [5] and from the geometry of nanoclusters that the
deformation gradients under consideration can be written in the form:

(1.13) F=RU

where R € SO(E?®) is the rotation tensor, U is the stretch tensor (a positive definite
and symmetric tensor) of the form:

U=ME, +\E,, Ar >0, Annifl
(1.14)
E. =11+ mQ®m, E,=n®n,

and (1, m,n) is an orthonormal basis in the Euclidean vector space E3:n is the versor
parallel to the axis of symmetry.

For a solid (and elastic) nanocluster By being in the quasi-solid state, the generalized
Cauchy stress tensor T = T(By;F,6) defined by Egs. (1.1), (1.2), (1.7), (1.11), (1.13)
and (1.14) takes, in the interval I of absolute temperatures, the following form [1, 3]:

T(Bo; F,0) = po(Bo; Ar, An)1 + Rto(Bo; Ar, An)RT,

o0 1
(1.15) po=7, to=SU  for  U=X\E +MEy,
8, = PR e B s T,

OF oM
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where
(1.16) V =22\, Vo = vol Bo.
Let us consider nanoclusters By, 6 € I, of the form

By = l(Ua)(BO)’ By = 300» fo:€ 15,
(1.17)
Up = Ar(0)Er + An(0)En, Ar(Bo) = An(60) = 1,

and being “unstressed” in this sense that

(1.18) Vo €I, T(By; 1,6) =0,
Since [1]
(1.19) Vo el, Go(Bo) = Go(Bo),

we obtain, according to the condition (1.12), that

Up =a(6)1 +5(6)n®n,
(1.20)
a(f) > 0, a(f) + B(6) >0, n-n=1.

Comparing equations (1.17) and (1.20) we obtain that
(1.21) Ar(0) =a(6),  An(60) = a(6) + B(6).

Therefore, the shape-preserving stretch tensors Uy, 8 € I, can be identified with free
thermal distortions of the nanocluster By. We will say then that the family By =
{Bs, 0 € I} consists of thermally equivalent solid nanoclusters [1]. It seems physically
reasonable to expect that the family B; should be uniquely defined. Note that () = 0
for isotropic nanoclusters By € I.

In this paper, a method of modelling the temperature-dependent mechanical proper-
ties of axially symmetric solid nanoclusters, based on the assumption that the quasi-solid
state of these nanoclusters is associated with the shape-preserving stretches (1.14) only,
is proposed (Sec. 2). It is a simplified approach to the description of dynamics (Sec. 3),
uniaxial tensility (Sec. 4), and volume compressibility (Sec. 5) of nanoclusters. Never-
theless, as it has been presented in [3] (Part II), such an approach enables to draw some
at least qualitative conclusions.

2. Simplified Model of Tensility

Let n denote the versor parallel to the axis of symmetry of a nanocluster By under
consideration (Sec. 1) and let e = (1, m,n) be an orthonormal base in the Euclidean
vector space E3. Let G¢(Bp) denote the set of all shape-preserving stretch tensors of By
defined by e and the formula (1.14). Since for U, Uy, Uz € G¢(By) we have:

U,U; = \ X Er + )\n)\nEn =U,U; y
U~ =X, + 0000 U =t
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where 1 = E, +E, is the unit tensor, G.(Byp) constitutes a two-dimensional Abelian Lie
subgroup of the Lie group GL*(E3) of all deformation tensors. The spaces tangent to
this manifold can be identified with the two-dimensional linear space T, (Bo) C E3@E®
of all second order tensors of the form:

(2.2) T =T.E, + T,E,, T,,T, € R,
endowed with the following rules of addition and multiplication by real numbers:

Tl + T2 = (Tr # Tr)Er + (Tn =+ Tn)Ena
(2 3) 1 2 1 2
AT = M\TE, + \T,,E;.

The linear space Te(Bp) can be also endowed with the standard scalar product induced
from the Euclidan space E3 ® E3 :

(2.4) A B =tr(ABT) =24, B, + A,B,.
Then
(2.5) IEall=1, |[E|l=v2, E.-E,=0,

and the equation (2.2) can be rewritten in the following form:

T= TrEr G TnEm

s F =B, g sy

| i T | 1y ﬁ Ty ) = ¢ .
Since Ge(Bo) C Te(Bo) and dim G (Bo) = dim T..(By) we have for a scalar f :Ge(Bo) — R:
27) 0uf(U) = 85, f(MEr + AEn)E, + 05, f(\Er + MEp)En ,

where (:\r, An) are Cartesian coordinates in Te(Bo) and
&0
V2
Thus, identifying f = f(U) with f = f(\, \n) we obtain that:

(2.8) 05 F(AE, + AEn) = —=85, fOrEr + ME,) .

(2.9) duf(U) = %aA, PO R A

We will consider an axially symmetric nanocluster By as a thermodynamic system
with the admissible thermodynamic configurations A = (U, 8) € G.(Bo) x I and with
the total Helmholtz free energy ¥ defined by the formula ( 1.11) and by the assumption
that B = I(U)(Bo), where U is given by Eq. (1.14). The volume V of B is given by
Eq. (1.16). surface field F and the total mean curvature M of 8B are then positive
functions of variables A, and )\, dependent on By as a parameter. It follows from Eqs.
(1.1), (1.2), (1.7) and (1.13) with (1.13) with R = 1 that

(2.10) N=-VTU!},
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where, according to the equations (1.11), (1.14), (1.15) and (2.9):
T=pgl +to="Tp,Er+ TonEn,
(2.11) tg:= to,rE,- + tg,nEn, 1 =E.+E,,

To,r = po + to,r, To,n = Dpo + to,n,

and

0Py

bo = W,

Ar (0P 0P,
(2.12) tor = 5y (-éfo@,\rF—i- EMOGA,M) :

An [ OP 0P

ton = -Vn- <3—F?8>‘"F+ Bﬁoa)‘uM)

Moreover, according to Eqgs. (1.11), (1.14), (1.17), (2.1) and (2.12), we have:
(2.13) VG € G¢(Bs), T(Bs; G,8) = T(Bo; GUs, 0).

Thus, the condition (1.18) is equivalent to
(2.14) Vo el, T(Bo; Up, 0) = 0.

Tt means that the stretches A.(8) and \,() of Eq. (1.17) are solutions, at the temper-
ature 6 € I, of the following system of equations:

TG,T(BO : )‘1‘7An50) = 0,

(2.15)
Ton(Bo : Ars Ans 0) =0.

3. Simplified Model of Dynamics

Let us consider the method of derivation of an equation governing the dynamics
of homogeneous thermodynamic processes [5] that has been proposed in order to de-
scribe size-effect bodies with the admissible thermodynamic configurations A = (F,0) €
GL*(E®) x I [3]. It is easy to see that this method of derivation can be adapted to
the case of nanoclusters with thermodynamic configurations defined by the condition
A = (U, 0) € G¢(Bo) xI (Sec. 2). In this way we obtain the following equation describing
the dynamics of isothermal processes (cf. [6, 7]):

(3.1) U(7)I(Bo)U(r) = —Mint(Bo; 7) + Mext (Bo; 7)

where Mint(Bo; 7) and Mext(Bo; 7) are actual (at the moment 7 2> 0) dipole moments
of internal (Sec. 1) and external [3] surface forces, respectively. The equation (3.1) is
related to the actual spatial configurations B,,7 > 0, of By and thus, according to
Egs. (1.10), (1.13) and (1.14) with R =1 and U = U(r), we have:

Mint(BO; T) = —V(T)T(BU; U(T)1 0)’

(3.2)
V(r) = vol B;, B, = 1(U(7))(Bo), 0 €1,
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where T(Bo; U, 6) denotes the generalized Cauchy stress tensor defined by the equations
(1.14), (2.11) and (2.12). Moreover, it is assumed that the actual dipole moment of
external volume forces [3] can be neglected and the dipole moment of external surface
forces defined as:

(33) Mo (Boikns / x ® 5(x, 7)dF (x),
o8B,

can be represented in the following form:
(3.4) Mext(Bo; T) = M, (Bo; 7)E, + My (Bo; 7)E,,

where Egs. (1.9), (1.10) and (2.11) were taken into account. J (By) is the inertia tensor
of the considered homogeneous nanocluster By of mass m. It follows from Egs. (1.12)
and (1.14) that it should be:

(3.5) J(Bo) = J-(Bo)E, + JIn(Bo)E,.
Thereby, we will deal with the following system of equations:

/\an(BO);\.n - _VTe,n + Mm
(3.6) ?
/\TJ,»(BQ)/\T = —VTo,r + MTv

where the components Tp,,, and Ty,r are defined by Egs. (2.11) and (2.12).

It should be stressed that the simplified model of dynamics of axially symmetric
nanoclusters is not a particular case of the model presented in [3]. This is because we
consider here a different thermodynamic system: this one for which the only admissible
thermodynamic configurations are those corresponding to the shape-preserving stretch
tensors of Eq. (1.14) (Sec. 2), while in [1, 3] and Sec. 1 the admissible thermodynamic
configurations correspond to general homogeneous deformations. However, the system
of equations (3.6) can be considered as this one which defines a particular solution of
equations governing the Newtonian dynamics of “affinely rigid bodies” [7] (see also [6]).

4. Generalized Simple Tension

We will consider isothermal uniaxial tension of axially symmetric nanoclusters only.
The geometry of the problem suggests to consider the (isothermal) generalized simple
tension (cf. [8]) of homogeneous axially symmetric nanoclusters being in the quasi-solid
state. It can be defined, in the framework of the simplified model of tensility (Sec. 2),
by the following condition:

(4.1) To,r = po + tor =0, 0el.
In this case
T(Bﬂa Ua 9) - Te,n(BO; /\ra )\n)Ena

(4.2)
To,n =pe + t0,n = te,n = t9,ra el
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We will assume that the condition (4.1) is consistent with a relationship (in general de-
pendent on the nanocluster geometry) between the axial (\,) and lateral ();) stretches
of the form:

(4.3) Ar = ho(An), he(1) =1, fel.
For example, in the case of isothermal incompressibility defined by:
VodnAZ = Vo(6),
(4.4)
Vo = Vo(eo) = vol By, 0o €1,

he, 0 € I, are decreasing functions of the variable \,. Note that decreasing functions
he, 6 € I, can appear also in the case of compressible elasticity [8].
It follows from Egs. (1.11), (1.16)-(1.18), (2.12)~(2.14) that:

Ta,n(BO; Ara An) = TG(BG; Hr, IJ"n.))

Ar = Ar(o)lj'r, A11 = A7"':(0)”""’

where, according to Egs. (2.15), (4.1) and (4.3), the following conditions should be
fulfilled:

(4.5)

A (6) = ho(An(0)),

pr = hg(n) = ho(An(O)n)Ar(8) .

Introducing the notations:

(4.6)

An = A, HUn = Ky
(4.7) To(Bo; \) = To,n(Bo; he(X), N),

Ty (Bo; 1) = Ton(Bo; ho(k), 1),
we can reduce Egs. (1.18), (2.13) and (2.14) to the following form:

(4.8) Ty (Bo; M (0)) = To(Ba; 1)
where
(4.9) To(Bo; Mn(6)) = To(Be; 1) = 0.

In the theory of simple elastic materials are considered the so-called “static inequal-
ities” concerning the relationships between principal stretches and principal stresses [5].
We will take, as a nanoscale counterpart of such a relationship, the following generalized
postulate of tensility of thermally equivalent solid nanoclusters By € Br (Secs. 1 and 2):

(4.10) voel, ToBo;p)(p—1)>0 for p#l

stating that axial elongations (u > 1) correspond to generalized tensile stresses (To > 0)

and axial contractions (0 < p < 1) correspond to generalized compressive stresses
(Th < 0).
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Let [(9) denote the size of a nanocluster By € By in the direction of its axis of
symmetry and let | = ul(f), u > 0, be the actual size of the nanocluster in this
direction. The elastic strain € of By along its axis of symmetry is defined by:

d du

(4.11) b Py,

e=¢u), €1)=0,
and can be written as the so-called natural strain:
(4.12) e = €(p) = Iny, p> 0.

Let us denote:

oo(€) = To(Bo; e°),

(4.13)

By =929, pg) = £a(0),
and
(4.14) Eo(Boi ) = XL (B ) -

It follows from Eqgs. (4.5)-(4.8) and (4.12)—(4.14) that

(4.15) E(Bo; \) = Ey(lnp) Eheamay
and
(4.16) E(0) = Eo(Bo; Mn(9))-

The function A > 0 — Eg(Bo; \) describes the isothermal tensility of a nanocluster By
at the temperature 6 € I.
Let & be a small strain of the nanocluster By in the direction of its axis of symmetry:

L-10) _
)

(4.17) 5= = 1, {hlgrig Y.

Then

oe(€) = E(0)e + o(e),
(4.18)
e=6+0), E®) >0,

where o(z)/z — 0 for £ — 0 and the generalized postulate of tensility was taken into
account. Thus, if the family B; of thermally equivalent solid nanoclusters is uniquely
defined (Sec. 1), then the positive definite scalar E(6) is a well-defined physical quantity
and can be identified with the generalized Young’s modulus of the nanocluster By € B;
in the direction of its axis of symmetry. The equation (4.16) suggests then that E(6)
can be interpreted as the generalized isothermal Young’s modulus of a nanocluster Bo
at the temperature 0 € I.
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We can observe, at least for some particular sizes of crystalline nanoclusters, the
coexistence of solid and liquid states within a finite interval of temperatures [9]. The
formulation of a phenomenological model of this phenomenon is an open question. In
the case of uniaxial tensility of nanoclusters, such a model can be proposed on the basis
of the following two assumptions [1, 3]: (i) the nanocluster is, within a certain range of
temperature, in the quasi-solid state (Sec. 1 and [1]); (ii) the mechanical stability of the
uniaxial tension of a nanocluster being in the quasi-solid state breaks down for some
its critical sizes. So, let us consider the uniquely defined isothermal tensility function
Ey of Eq. (4.14). We will say, imitating the primary thermodynamic meaning of the
notion of stability of bulk matter [10, 11], that the uniaxial tensility of a nanocluster
By is mechanically stable in the range I’ C I of temperature if for each § € I’ we have:

(4.19) VA>0,  Eo(Bo;)) >0,

or it is mechanically stable of lower order [12] if

(4.20) VOeI', 3Ir:(8)>0: Ep(Bo;Axr(8)) =0,
and
(4.21) Voer, %(Bo; Aer(6)) # 0.

Note that the existence of a temperature 6, € I’ such that the condition (4.20) is
fulfilled for 6 = 6, and

a5

dX
defines a phase transformation [12] (cf. [3], Part II, Sec. 2). The critical configurations
Be:(6),0 € I', of the nanocluster By defined by the conditions (4.20), (4.21) and by:

Bex(0) = 1(Uex(6))(Bo)
(4.23) Uer(0) = Aer,r (O)Er + Aern(0)En
/\cr,'n(o) g /\cr(e)a /\cr,r(e) = hB()\cr(o)),

are supposed to be those for which the coexistence of solid and liquid states occurs
within the range I’ of temperature.

(4.22) (BoiAer(8)) =0  for  0=6,

5. Generalized Uniform Pressure

Let us consider a generalized uniform pressure defined by the following condition:

T(BOa U1 0) = TG(BO; AT, )\n)l,
(5.1)
T0 ooy Te,r = TO,n.s

where Eq. (2.11) was taken into account. Equivalently:

(5-2) Vo eI, té‘,r(BO; Ary /\n) = tG,n(BO; Ar, An)y
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where tg » and t¢,,, are defined by Eq. (2.12). The “unstressed” nanoclusters By, 6 € I
of Eq. (1.17) are defined here, according to Eqgs. (1.18), (2.13)-(2.15) and (5.1), by:

(5'3) To(Bo; )\,.(0), ’\n(o)) =0,

o}

where the stretches \.(6) and )\, () are constrained by the condition (5.2).

The modeling of compressibility of axially symmetric, homogeneous and elastic nan-
oclusters being in the quasi-solid state (Secs. 1 and 2) needs the assumption of a re-
lationship between the generalized uniform pressure and the actual volume of these
nanoclusters. It can be done if relationships (in general, dependent on the nanocluster
geometry) between the stretches () -lateral and \,-axial) and the actual volume V can
be formulated. These relationships would be constrained by Eqs. (1.16) and (5.2). Note
that the “unstressed” nanoclusters By, 6 € I, defined by Egs. (1.17), (4.1)~(4.3) and
(4.9) are consistent with the conditions (5.2) and (5.3). So, let us assume that for each
above mentioned and uniquely defined nanocluster By € By , we have:

Ar = A (0) pr = ko(£), §E=V/Vs >0,
(54) An = An(e)llﬂn, Hn = €k0(€)_2’ kg(].) =1,
Vo = volBy = VoAn(0)Ar (6)?,

where Eq. (1.16) was taken into account. We obtain then the following representation
of the generalized pressure Ty of Eq. (5.1):

To(Bo; Ary )\n) = TG(B%#r,Nn) = 7?9(6)’

#9(€) = To(Bo; ko (), Eka(€)2).

The behaviour of real solid bodies implies the following generalized postulate of com-
pressibility of thermally equivalent solid nanoclusters By € By (cf. [5] and [3], Part II):
increasing of the volume Vj requires generalized uniform tensile stresses and decreasing

of this volume — generalized uniform compressive stresses. This postulate means that
for each 6 € I it should be:

(5.6) T(€)(§-1)>0, £#1

Let us denote

(5.5)

(5.7) e

or, equivalently:
(5.8) k=In¢.
If

(5.9) (k) = Ttg(e”) ,



152 A. Trzesowski

and A is a small relative variation of the volume Vj :
¥ <y
‘/9 ’

(5.10) A= lAl<1,

then we obtain
6o(k) = K(0)k + o(k),

(5.11)
k= A+ o(4),
where, according to the condition (5.6), it should be:
(5.12) K(G)‘ oop e (0) > 0.
Therefore, we can regard the scalar K (0) as a generalized bulk modulus of the nanocluster
By € Br.
Let us denote:
|4
N - 2

A'r(Ca 0) = )‘r(o)ke(ca(o)—l)a

XG0} = Ol A,
and
(5.14) mo(Bo; ¢) = To(Bo; Ar(¢,6), An (€, ) -
Then
(5.15) 0 (K) | x=tn(¢/a(e)) = T0(Bo3 €) »
and

dé

(5.16) (k) = Ko(Boi ) ,

K lk=in(¢/a(0)
where

dm
Ko(Boi ) = ¢ (Bui ),

(5.17)

Ko(Bo; (0)) = K(0)-

Therefore, the function { — Kp(Bo;¢) and the scalar K(f) describe the isothermal
compressibility and generalized isothermal bulk modulus of a nanocluster By at the
temperature 6 € I, respectively. Consequently, we are able to discuss the mechanical
stability (or mechanical stability of lower order) of the volume compressibility of the
axially symmetric nanocluster By in a manner analogous to that presented in Sec. 4.
However, it is an open question whether the critical configurations of Eq. (4.23) will be
identical with those defined by the state of generalized uniform pressure, or not.
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6. Final Remarks

We see that the notion of thermally equivalent solid nanoclusters (Secs. 1 and 2)
creates the possibility for a definition of such temperature-dependent generalized elastic
moduli which can be interpreted as the isothermal mechanical characteristics of a solid
nanocluster (Secs. 4 and 5). Note that these generalized elastic moduli are referred,
contrary to the macroscopic elastic moduli, to one whole nanocluster, not an infinite
family of subclusters. Thus, the existence of such defined generalized elastic moduli
imposes conditions on the total free energy function. In the second part of this paper
we will consider examples of such conditions.

In the second part of the paper we will also discuss an example of isothermal uniaxial
tension dynamics of axially symmetric nanoclusters (Sec. 3).
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