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The paper concerns the dependence of thermomechanical properties of three-dimensional nanoclus-
ters on the cluster size as well as on its shape. The main topics discussed are: (i) a group-theoretical
description of structurally stable solid nanoclusters; (ii) a phenomenological model of nanoclusters
revealing the coexistence of solid and liquid states in a finite interval of absolute temperature.

1. Introduction

The science of nanoscale concerns the properties and behavior of aggregates of atoms
and/or molecules, at a scale not yet large enough to be considered macroscopic but far
beyond what can be called microscopic. The mesoscale objects are not so large as to be
completely free of quantum effects; thus, they do not simply obey the classical physics
governing the macroworld [1]. As we shrink the mesoscale to the nanoscale, physics
becomes increasingly dominated by the surfaces. Namely, much of the foundations of
solid state physics rests on the premise that the physical properties.are dominated by
the physics of the bulk (that is, surface atoms have a negligible contribution to bulk
properties of solid bodies). Nanoscale aggregates, called further on nanoclusters, are so
small that this assumption breaks down completely.

Nanotechnology deals with materials and systems having three key properties: they
have at least one dimension not greater than 100 nm (the basic research of such struc-
tures is the subject of nanoscience), they are designed through processes that exhibit
fundamental control over the physical and chemical attributes of molecular-scale struc-
tures. It is used, for example, in self-assembly processes to put together larger structures
— atoms or molecules that make ordered arrangements spontaneously, given the right
conditions [2]. The fullerence Cgp molecules with all atoms located in vertices of a
truncated icosahedron [3, 4] as well as three-dimensional compact nanoclusters with
the mean size not greater than 100 nm are examples of self-ensambled nanostructures
considered in the paper.

One particular phenomenon — the dependence of a cluster properties upon its size
— occurs for clusters in the nanometer scale. For example, the strength of nanoclusters
increases when the cluster size decreases [5]. The elastic moduli (Young’s, bulk and
shear) of such clusters reveal also the size effect [6]. These are mechanical size effects.
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There exist also the thermodynamic size effects; for example, the reduction of the melting
point of small gold aggregates as a function of decreasing particle size (7, 8.

The shape of nanostructures can depend on its size. Namely, it is observed that
sodium clusters with a small number of atoms (< 150 ~ 200) crystallize in the form of
icosahedra. The structure becomes unstable for a large number of atoms and transforms
to cubo-octahedra (i.e. a cube with truncated corners) which is just a path of the face-
centered cubic lattice [9, 10]. More generally, when a large number of metallic atoms
aggregate in a slow manner at low temperature, then they take the shape of a regular
polyhedron with the close packing structure [9]. Moreover, it is known that the struc-
turally most stable are such symmetric crystalline nanoclusters that are invariant under
the action of the point symmetry group of their crystal structure [11]. For example, the
proper symmetry group of a cube (that covers the symmetry group of an octahedron)
defines the (proper) point symmetry group of a face-centered cubic lattice [12].

Note also that, on the nanoscale level, the notion of the state of matter takes a new
meaning. Namely, it follows from theoretical predictions, confirmed by the computer
modelling and experimental observations, that at least for some particular sizes of the
crystalline nanoclusters they would exhibit a coexistence of solid and liquid states within
a finite range of temperature [3, 8]. This makes small clusters different from the bulk
systems whose solid and liquid phases coexist only at a single temperature point, the
melting point. Consequently, one may even attempt to identify the nancsystems as
constituting a new phase of matter [10] — the nanomatter.

Most of the unique features of three-dimensional nanostructures arise from the very
high ratio of the number of surface atoms to the total number of atoms in the cluster.
Therefore, the surface energy substantially affects the properties of the bulk material
[10]. Consequently, from the point of view of classical thermodynamics, we ought to
consider a nanostructure as the one whole system, not an infinite family of subsystems
(as it is admissible e.g. for bulk solids with nanoscale microstructure). Particularly,
it means that surface effects that are not associated with the existence of boundary
regions of nanoclusters, as it take place in the case of the above mentioned sodium
nanostructures or fullerene molecules, can be then considered. Moreover, the thermo-
dynamic generalized forces would have also a global character referable to one whole
body only [13].

The main topics discussed in the paper are: (i) a group-theoretical analysis of such
generalized thermodynamic forces that can be associated with the structurally stable
elastic solid nanoclusters (see [13]) in a way consistent with the observed properties of
such clusters (Secs. 2 and 3); (ii) the notion of quasi-solid state introduced in order to
describe nanoclusters revealing the coexistence of solid and liquid states within a finite
range of temperature (Secs. 4 and 5).

2. Generalized Thermodynamic Forces

The macroscopically small mean size of a nanocluster offers a possibility for treating
its deformation and temperature as these approximated to uniform state variables of
the cluster [13]. Thus, owing to this phenomenological approximation, we are in the
framework of classical thermodynamics dealing with the so-called homogeneous ther-
modynamic processes [14, 15] considered as being dependent on the cluster size and
shape [13]. Therefore, we will deal with homogeneous compact and connected nanoclus-
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ters (called also size-effect bodies [13]) of immovable center of mass, homogeneously
deformed and endowed with a uniform temperature. Spatial configurations of such a
body can be idenfined with the subsets B of the three-dimensional Euclidean vector
space E3 that have the form B = I(F)(Bo) where By C E3 is a distinguished spatial
configuration of the body called its reference configuration and identified with the body
itself, {(F) denotes the following linear mapping in E3:

I(F)(X)=FX, FeGLt(E%, Xebk?,

(2.1)
GL*(E®) = {F € E3® E®: detF > 0}.

Let I C Ry be an interval of absolute temperatures and let ¥ = ¥(By; F,0), F €
GL*(E®),0 € I, denote the total Helmholtz free energy of the body By. We will assume
that ¥ is of class C*, k > 2, with respect to variables (F,6). Moreover, the free energy
function should be an objective scalar, that is for each pair (F,6) € GL*(E®) x I the
following condition should be fulfilled:

(2.2) VQ € SO(E®),  ¥(Bo; QF,0) = ¥(By;F,0),

where SO(E®) C GL*(E®) denotes the proper orthogonal group on E3. The dependence
of ¥ on the (compact and connected) geometrical figure By represents the dependence
of thermomechanical properties of a nanocluster upon its size and shape [13].

In the classical thermodynamics, the mechanical influence on the body By can be
introduced into the theory by what is called the Gibbs form on GL*(E3) x I

(2.3) 2 =dE — 0dS + N - dF,

where E,S and N denote the internal energy, entropy and the generalized thermo-
dynamic force, respectively. The influence of mechanical action (i.e. the generalized
thermodynamic force N) and the temperature 6 on the change of the internal energy is
described by the following dissipation inequality:

(2.4) 2(Bo; M) < 0.

for each thermodynamic configuration A = (F,8) of By. If, according to the so-called
effective principle of thermodynamic determinism [14], the following relations hold:

(2.5) N = N(Bo; A), S = S(Bo; A,

then the dissipation inequality is equivalent to the following formulae:
ov ov

(2.6) . N—_B_F ] S—ﬁ_a_é—7

stating that the free energy function is the so-called thermodynamic potential. Eq. (2.6)
is then equivalent to the following condition:

(2.7) —d¥ =N - dF + Sdb,
and the thermodynamic functions are related by the Legendre transformation:

(2.8) ¥ =E—98S.



388 A. Trzesowski

A stationary state of the nanocluster By is defined by the thermodynamic configuration
Ao = (Fo,00) such that

(2.9) dW(Bo; AQ) = 0,
what is equivalent to the following conditions:
(2.10) N(Bo;Xo) =0,  S(Bo; Ao) =0.

The stationary states defined by Ao = (1,6o) will be called natural at the temperature
6o € I. Note that, in general, the generalized thermodynamic force N of Egs. (2.3) and
(2.4) may be dependent on the rate of change of the deformation tensor [13]. In this
case, the free energy function is not a thermodynamic potential.

Let us consider, at each temperature 6 € I, a symmetric and objective tensor func-
tion (e.g. [15]) F — T(Bo; F,0) € E®* ® E? defined as [13]:

1
Bo;F,0) = ———
(2.11) by et V(B)

V(B) = JF)V(By), J(F)=detF,

where N is the generalized thermodynamic force of Eq. (2.6) and V(B) denotes the
volume of B. The tensor T of Eq. (2.11), assigned to the one whole nanocluster, is a
global counterpart of the Cauchy stress tensor for thermoelastic simple materials but
it is not a measure of stress as normally understood. Nevertheless, N can be inter-
preted as a dipole moment of internal surface forces acting on the nanocluster boundary
[13]. Moreover, contrary to the thermoelastic simple materials for which the dissipation
coming from the heat conduction appears, for the above defined thermoelastic size-
effect bodies the only thermodynamically admissible processes are the reversible ones
[13]. Consequently, a nanocluster can be treated as being elastic within a certain range
of temperature. The objectivity of the tensor function of Eq. (2.11) means that should
be [13]:

N(Bo; F,0)FT,

T(Bo; F,0) = Rh(By; U,0)RT,
s h(Bo; U, 6) = V(B)~8u¥(Bo; U, 0)U,
where the polar decomposition of F was taken into account:
(2.13) F=RU, = ReSO(E®, .. U=UT.eGL*E®.

It should be stressed that the above model of homogeneous thermodynamic processes
has been adapted to the description of macroscopically small clusters only. It is not the
case of bulk nanomaterials for which the influence of inhomogeneity of nanostructure
distortions seems to be the most interesting effect.

3. Insensibility Groups of Solid Nanoclusters

Let us consider the insensibility group Go(Bo) of the elastic size-effect body By at
the temperature 6 € I [13]:

; Go(Bo) = {H € SL(E®) : VF € GL*(E®), T(Bo; FH,0) = T(By; F,0)},
o
5 SL(E®) = {F € GL*(E®) : detF = 1}.
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It follows from Egs. (2.6) and (2.11) that H € G¢(By) if and only if

for each F € GL*(E3) [15]. We will say, imitating the concept of simple solid mate-
rials [15], that By is an (elastic) undistorted solid nanocluster (within the range I of
temperatures — see Sec. 2) if

(3.3) VeI, Ge(Bo) C SO(E®).
Then, according to (3.2):
(34)  Go(Bo) = {Q € SO(E?) : VF € GL*(E®), ¥(Bo;FQ,6) =¥(By;F,0)}.

Note that in particular applications concerning solid bodies, the existence of an un-
stressed spatial configuration of the body is usually assumed [15]. We will denote by
By = By, an undistorted solid nanocluster By such that

(35) 360 € I, T(Bo; 1,00) =04

For example, it is the case of undistorted solid nanocluster By being in a natural sta-
tionary state (Sec. 2). Further on, we will restrict ourselves, taking into account remarks
concerning the stability of nanoclusters (Sec. 1), to the case of undistorted solid nan-
oclusters being structurally stable in this sense that

(3.6) vl e I, Go(Bo) C h(Bo),
where h(Bp) is the group of rotational symmetries of By :
(3.7) h(Bo) = {Q € SO(E®) : I(Q)(Bo) = Bo} -

Egs. (2.11)-(2.13) and (3.1)—(3.7) define a nanoscale counterpart of the well-known
phenomenological representation of macroscopic properties of the elastic solid bodies
(see e.g. [15]) and we will assume that it describes the thermomechanical properties of
the considered nanoclusters.

Let us B; = {Bg,0 € I} denote the family of structurally stable undistorted solid
nanoclusters of the form By = I(Pg)(Bo),Po € GL*(E?), and let g C SO(E®) be a
subgroup of rotations. If

(3.8) vl € I, Go(By) = Pf)gl:’(;1 C h(By),

then we will say that nanoclusters By € By belong to the same g — class. Particularly,
if g is a (proper) point symmetry group of a Bravais lattice, we will say also that
nanoclusters By, 0 € I, belong to the same crystallographic class. Let us consider the
polar decomposition of Py :

Py =R(0)U(9),

(3.9) : i
R(9) € SO(E®), U(6) =U®)T € GL*(E®) .
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It can be shown [15] that, at each temperature 6 € I, Eqgs. (3.8) and (3.9) are equivalent
to the following two conditions:

(3.10) Go(Bo) = R(9)gR(0)7,

and

(3.11) VQeg, QU®B)QT =U(®).

It follows from Egs. (3.8), (3.10) and (3.11) that it should be:
(3.12) VoeI, R(6)€h(Bs) and g C h(Bp).

According to the well-known theorem concerning finite subgroups of the proper
rotation group SO(3), there exists a correspondence between symmetries of regular
polyhedrons and these finite subgroups. Namely [12, 16]: symmetries of a tetrahedron
defines the tetrahedron group T, symmetries of an octahedron defines the octahedron
group O and symmetries of an icosahedron defines the icosahedron group I. Moreover,
a cube has the same symmetry group as an octahedron and dodecahedron has the some
symmetry group as an icosahedron [16]. It follows from Eq. (3.11) that if

(3.13) 9= 0,
then
(3.14) U() = a(6)1, a() >0,

and, according to Eqgs. (3.6), (3.7), (3.10) and (3.11), Eq. (3.14) is also valid for g =
SO(E?®) and By being a ball of the radius R(6). If

(3.15) g =Tic O;
then
U0) =a()1 + B(0)k ® k,

(3.16)
a() >0, o) +406) >0, k-k=L1.

Eq. (3.16) is also valid for g = G(k) - the group of all rotations about an axis parallel
to the versor k. In this case the nanocluster boundary 8By should be e.g. a surface of
revolution with the axis of revolution parallel to k. The groups SO(E?) and G (k) as well
as the icosahedron group I are not crystallographic point groups [12, 15, 16]. However,
the groups O and T are point groups corresponding to the cubic crystallographic system
and to the tetragonal (and hezagonal) crystallographic system, respectively [12, 15,
16]. Therefore, according to (3.12), structurally stable are e.g. nanoclusters By, 6 € I,
such that: (i) Bp is an isotropic ball or a ball with a cubic crystal lattice; (ii) By has
the boundary 0By being a surface of revolution and By is transversally isotropic or
with a tetragonal or hexagonal crystal lattice. Note that in both above examples the
corresponding tensors U(#) (of Eq. (3.14) in the case (i) or of Eq. (3.16) in the case
(ii)) define shape preserving transformations By — By, 0 € I. If additionally

(3.17) VoeI: R(@O)=1, T(Bs1,0)=0,
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then these shape preserving transformations can be identified with free thermal dis-
tortions of By and thus the family By = {By,0 € I} consists of thermally equivalent
nanoclusters.

It is observed that if the temperature of an equilibrium polyhedral nanocluster
increases to the sufficiently high level, then in general, a nanocluster shape can be
transformed into an equilibrium curvature shape [8]. So, we can consider e.g. the
case when a dodecahedron or icosahedron takes, at a sufficiently high temperature,
a spherical shape. It can be viewed as a kind of phase transition of nanoclusters.
Although it is not an universal phenomenon (it is not observed e.g. for small gold

particles — [8]), we assume that the temperatures under consideration are not too
high.

4. Quasi-Solid State

It is known that nanoclusters can exhibit, as it was mentioned in Sec. 1, a coexistence
of solid and liquid states in a finite interval of absolute temperature. It seems to be
consistent with the fact that if the observation level is sufficiently low, then we can
observe the same symmetry elements in the solid and fluid states. Namely, it is known
that metallic clusters with small number of atoms crystallize in the form of icosahedra
(Sec. 1). On the other hand, it is observed that the liquid state exhibits short-range
order extending only a few atomic distances given by the liquid correlation length,
which is typically 3-8 A in a simple liquid; for example, an icosahedral (short-range)
arrangement has been found in a liquid [17].

The above consistency suggests that the coexistence of solid and liquid states for
nanoclusters should be also consistent with the nanoscale thermomechanical properties
of solid nanoclusters discussed in Secs. 2 and 3. First of all, since in the framework of
the macroscopic local approximation fluids are isotropic materials [15], let us consider
the well-known isotropic invariants of the deformation tensor F:

=trU= A + A2 + A3,
1 2 2
(4.1) II = -2-[(tr U) —tr U ] = A2 + A3 + A1 A3,
III = det U = A\ A2 )3,
where Eq. (2.13) and the formulae:

Uei = )\kek, k= 1,2,3,
(4.2)
e - e = Ok, Ak > 0,

were taken into account. If By is a cube with edges of length a directed along e, —
directions of Eq. (4.2), then the deformation tensor of Eq. (2.13) defines the rectangular
parallelepiped B = [(F)(By) whose concurrent edges have directions ar = Rei and
lengths ar, = A\xa, k = 1,2,3. The volume V = V(B) of B, the surface field F' = F(9B)
of the boundary 8B of B, and the total mean curvature M = M(9B) of 9B are given
by [18]:
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V = ajazaz = 3111,
(4.3) F = 2(aja2 + aza3 + aja3) = 2a°1I,
M = w(a1 + a2 + a3) = wal.

A fluid is commonly regarded as a material having “no preferred configuration” [15].
It suggests to consider a nanoscale counterpart of such understood elastic isotropic
materials defined by:

(4.4) W(Bo; F,0) = 4(V,F,M), 0l

We will extend Eq. (4.4) on all compact and convex nanoclusters By. V, F and M are
defined now as global geometrical characteristics of the corresponding sets B = I(F)(,).
Note that the formula

(4.5) (V. F, M) = a(0)V + b(0)F + c(6)M +d(9),

has been introduced in [13] as a particular case of the free energy function of an elastic
size-effect body with the liguid-like response defined by the following conditions:
s ¥(Bo; F, 0) = o (I(F)(Bo)),

VQ € SO(E®),  6(1(Q)(B)) = o(B),

where B = [(F)(By) and the objectivity condition of Eq. (2.2) was taken into account.
It follows from Eq. (4.4) that (see Sec. 3):

(4.7) VeI,  h(By) C Go(By) C SL(E®),
and

(4.8) VeI, Gy(By) =SL(E®),

iff

(4.9) VoelI, W(By;F,0) =d(V).

The free energy function of Eq. (4.9) describes an elastic fluid or gas. So, if the free
energy function of Eq. (4.4) does not reduce to its form of Eq. (4.9), then the general
condition of Eq. (3.3) can be assumed. Consequently, By is then an (elastic) undistorted
solid nanocluster (within the range I of temperatures) such that

(4.10) V8 € I, h(Bo) C Go(Bo) C SO(E®),
and thus these solid nanoclusters are structurally stable iff
(4.11) Vo € U, Go(Bo) = h(Bo)

We see that the liquid-like response of a nanocluster By defined by Eq. (4.4) admits,
in general, its solid state as well as gaseous or liquid states. We will say, taking into
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account this statement, that the free energy function of Eq. (4.4) describes the quasi-
solid state of the nanocluster By. Equation (4.10) means that it is a solid nanocluster
(Sec. 3) being in the quasi-solid state. It follows from Eqgs. (2.12), (2.13) and (4.4) that
in the quasi-solid state:

0%¢

T(By; F,0) = —(V, F, M)1 + Rt(Bo; U, )R,
(412) ?V 0P od
t(Bo;U,6) = 5 (E-FEBUF + B—M"laUM) U.
If
Teo(6) = Jim (389/0V) < oo,
(4.13)

1413 s ity f
Jim +(8%/0F) = lim 77 (0%6/0M) =0,

then T, (6) defines an asymptotic uniform tension dependent on bulk interatomic in-
teractions only, and the tensor ¢ is a measure of the influence of surface atoms on the
bulk mechanical properties of nanoclusters. For example it is the case of Eq. (4.5).

If By and Bp = I(P)(By), P € GL*(E?®), are elastic size-effect solid bodies with the
liquid-like response, then it should be:

i Ge(Bp) = PGo(Bo)P_l (e SO(ES),
14 :
( ) Go(Byp) C SO(E3), Pel,

where Eqs. (3.4), (4.6) and (4.10) were taken into account. Thus, denoting

(4.15) P =R(P)U(P),

we obtain that

(4.16) Go(Bp) = R(P)Go(Bo)R(P) ™"
and

(4.17) VQ € Gy(Bo), QU(P)Q" =U(P)

where Egs. (3.8)—(3.11) with SO(E?®) in place of h(Bp) were taken into account. More-
over, we have:

(4.18) h(Bo) C Go(Bo),  h(Bp) C Go(Bp).
For example, if

T(Bp;1,0) =0,
(4.19)
Bo = l(Pg)(Bo), Bo = By,

then Eqs. (4.16)—(4.18) with P = Py describe the influence of temperature on the
insensibility groups of undistorted and unstressed elastic size-effect bodies Bg, 6 € I,
with the liquid-like response (cf. Eqs. (3.8)-(3.11) and (3.13)—(3.16) with Gg(Bo) in
place of g).
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5. Final Remarks

It has been observed that the most stable small metallic clusters have an almost
spherical shape. The oblate or prolate shape of such a cluster means that its structure
is less stable [9]. Therefore, it is physically reasonable to consider also the influence
of the degree of sphericity of compact and simply connected deformed nanoclusters on
their properties. Let us define the following effective radii:

3V 1/3 1/F 1/2
(5-1) Ty = (5) ) B == § (;‘) ) ™ =

b

51K

where V, F' and M denote the volume of a cluster, the surface field and the total mean
curvature of its boundary, respectively. Note that the quantity 2y is in the rock analysis
and stereographic metallography interpreted as the mean grain width [13]. Note also
that if we restrict ourselves to compact and convex three-dimensional bodies, then the
following inequalities hold [19]:

(5.2) TV 2TF 2TM.

In each of these three relations equality is attained in the case of a ball, and in this case
only. Next, let us introduce the following shape coefficient:

el
(5.3) o= 7

Since £ = 1 if the deformed nanocluster B is a ball [19], the nondimensional quantity
k = k(B) can be taken as a measure of degree of sphericity of B. In the literature is also
considered, as a measure of the degree of sphericity, the following quantity [20]:

(5.4) K= Z,—‘IZ,

where it was denoted:

(5.5) Fy =dnry,  Vp=(4/3)nr}.
Since

(5.6) K =«5,

K and k are equivalent measures. For example, for regular polyhedra B = Bp, an
icosahedron has the highest shape coefficient x (K = 0.855 - [19]). It is the case of
metallic nanoclusters with a small number of atoms (Sec. 1). Consequently, we can
expect that the regular polyhedra B = By observed for a large number of atoms (Sec. 1)
correspond to less stable shapes of nanoclusters than the icosahedral nanocluster is.
Namely, we have [20]: K = 0.791 for a dodecahedron, K = 0.657 for an octahedron,
K = 0.583 for a cube, and K = 0.370 for a tetrahedron.

The physical distinction of the spherical shape suggests also to consider such a class
of functions @y of Eq. (4.4) that takes into account this shape effect as well as the
observed size effect of nanoclusters. It can be realized e.g. in this manner. First of
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all, let us observe that it is physically reasonable to restrict ourselves to functions &y
symmetric with respect to their arguments V, F, M. So, let us introduce three elementary
symmetric functions [21] S,, n = 1,2,3, of arguments ry,rr and 7/, defined as:

Sy =ry+rr+ry =l I=Ayv +Ar + A,
(5.7) So =ryrpm +TMTE +TRETY = l(z)H, II=AvArm + AMAF + ARy,
S3 =ryrErm = lgHI, I = )\V)\FAM; lp >0,

where [y is a characteristic length of the considered nanoclusters (e.g. the mean size of
nanoclusters revealing the coexistence of solid and liquid states [3]; see Section 1) and

(58) AV - TV/l07 A.F = rF/lOa AM = rM/lO,

are nondimensional variables. Since we consider Eq. (4.4) for compact and convex nan-
oclusters only, the following inequalities would be fulfilled:

(5.9) Av <Ar < A,
where Eq. (5.2) was taken into account. Moreover, introducing the new variables ¢ and

n by:

(5.10) Feeed . s

ST 0
we obtain that [19]:
(5.11) 0<n g Mg, iD= € &1

and £ = 1 or n = 1 iff the deformed nanocluster B is a ball.
Now, assuming that (cf. Egs. (4.1)-(4.4)):

(5.12) ¢9(V, F, M) = (pg(Sg,Sg,Sl) = G‘g(lo;IH, II,I)

we obtain an example of the considered class of functions @y. Another example of this
function define the following symmetric functions [21]:

d n
(5.13) Sp=rp+rE+ri= <-2-) a+&"+1"), d=2rpy, =, 258,

where d can be interpreted as the actual mean nanocluster width (see the commentary
following Eq. (5.1)). Therefore:

(5.14) ®9(V, F, M) = a4(d; €,n) = ae(d;n, &),

where the variables ¢ and 7 are constrained by Eq. (5.11) and describe the shape effect
while the variable d describes the size effect. Moreover, for physical reasons (see Sec. 1),
it should be:

(5.15) 0< %0 € (o, B),

where [ is a characteristic length of the nanocluster (e.g. lp = dyp — such a mean
nanocluster width for which it exhibits a coexistence of solid and liquid states).
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