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Abstract
We present a new human-structure interaction (HSI) model of walking on a flexible surface. A human is
considered as a mass point, located at the body’s center of mass (COM). The mass moves along a predefined
trajectory, which deforms together with the surface on which the human walks. The forces of motion, equal to
the sum of inertial and gravitational forces acting on the mass, are transfered to the surface at prescribed foot
positions. The motion of the surface is described using a few selected mode shapes, corresponding damping
ratios, and natural frequencies. The equations of motion of the system are time-dependent and discontinuous.
They can be written in the form of the second order differential equations of structural dynamics, but with the
right-hand forcing dependent on the deformation of the surface. We present a numerical example of a human
walking on a long beam structure. The motion of the beam is described by three mode shapes, representing
its vertical, lateral, and torsional deflections.

1 Introduction

The last two decades saw increased interest in the dynamical behavior of structures, partly because of the
widespread use of numerical computing. Footbridges in particular, which are usually light and flexible
structures, present dynamical problems important from both the scientific and the practical points of view.
Examples include the Millennium Bridge in London [1] and the Solferino Bridge in Paris [2].

Different explanations of excessive lateral vibrations of footbridges appear in the literature. Fujino [3]
pointed out that they are caused by a group of pedestrians synchronizing their movement with the lateral mo-
tion of the bridge. In his research, this phenomenon was recorded by a video camera. Another explanation
was offered by Blekherman [4], who claims that the reason for excessive lateral vibration is autoparametric
resonance. Such a resonance can occur when the ratio between the vertical and the lateral frequency is 2, in
which case a coupling between these two modes of vibration takes place. Macdonald [5], however, disagrees
with this hypothesis and shows in his paper that the reason for the lateral vibration problems in footbridges
lies in the equilibrium of a walking person, who acts on the bridge like a negative damper. Therefore, a
sufficiently large group of people can create a negative damping higher than the positive structural damping,
which results in large oscillations.

Brownjohn [6] presented a comprehensive study of a vibration response of a suspension footbridge located at
a tourist attraction in Singapore. Both continuous and discretized equations were employed to represent the
bridge, the latter of which were based on the finite element method. The author presented experimental modal
characteristics of the structure, followed by a comparison between numerical simulation and experimental
testing. However, the paper uses a 2D model in which only the vertical behavior of the bridge is taken into
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consideration.

To predict a vibration response of a footbridge, an appropriate model of the loading is needed in addition
to the dynamic characteristics of the structure. In the modeling of a load moving on a bridge, one possible
approach is to extend the system matrices (mass, damping, and stiffness) to a form which contains the
properties of the moving load, e.g., the size and velocity of the moving mass. In this approach, as exemplified
by Filho [7], the stiffness matrix becomes unsymmetric and special solvers are needed to determine the
response using the resulting equations of motion. This approach has been applied to the case of a vehicle
moving on a bridge, but it can be extended to a pedestrian walking on a footbridge as it was shown by
Blachowski et al. [8].

In other papers, pedestrians were assumed to be walking on a rigid surface and then the forces and moments
in human joints and muscles were sought. A mathematical model of human locomotion is presented in the
paper by Onyshko and Winter [9]. This approach is quite complicated, particularly if the interaction with a
moving footbridge deck is included. Nonetheless, a simplified 2D motion has been employed to analyze the
interaction between human movement and the lateral vibration of footbridges [10].

Seeking to develop simple methods for predicting dynamic responses of flexible footbridges, Willford and
Young [11] first classified footbridges into two groups: low-frequency and high-frequency structures. The
limit between these groups was set at 10 Hz for the first natural frequency of the structures. Transient
response is considered for high-frequency structures, whereas resonant response is considered for low-
frequency structures.

Eurocode [12] provides guidelines for practicing engineers on the design of footbridges, recommending
either deterministic or probabilistic methods based on a crowd density parameter for the prediction of dy-
namic responses of footbridges. Both methods, according to Eurocode, are simple and suitable for practical
implementation, but give only an approximate characteristic of the in-service response of a structure.

A reasonable trade-off between computational effort and accuracy was proposed by Kim et al. [13]. In this
paper, the loading function caused by a walking pedestrian was represented by a Fourier series. Subsequently,
the model was improved by introducing the mass of a walking person and a correction of the loading function
due to the moving footbridge deck. Another approach to human-structure interaction was presented by Ortiz
Lasprilla et al. [14]. The authors replaced a mass-spring system, which represented human body dynamics,
with a PID controller with uncertain parameters.

This paper presents a new HSI model of a human walking on a flexible surface. The working of the model is
demonstrated using a numerical example of a human walking over a long beam structure. The motion of the
beam is described by three mode shapes, representing vertical, lateral and torsional deflections of the beam.
The paper is organized as follows. In Section 2, the proposed HSI model is presented. This section is divided
into two subsections: the first one addressing walking on a rigid surface, and the second one extending the
approach to the case of a flexible surface. In Section 3, the results of a numerical simulation are presented.
Finally, Section 4 discusses the most important defects and limitations of the model.

2 The proposed model of Human-Structure Interaction

We consider a human walking over an elastic structure, which deforms under their weight. The construction
of a HSI model consists of building a dynamical model of a structure, a dynamical model of a human, and
coupling the two for the walking phase. In our case, the dynamical model of a structure has the form of the
standard second-order differential equations of structural dynamics, expressed in modal coordinates. A par-
ticular structure is described by a set of selected mode shapes, natural frequencies and damping coefficients,
as will be described in Section 2.2. The dynamical model of a walker, and its coupling with the structure, are
of a different nature. We assume that the human’s COM follows a prescribed trajectory, defined with respect
to the structure and deforming together with it. This renders human dynamics dependent on the deformation
of the structure. The force of gravity and the forces of inertia resulting from the movement of the COM along
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the deformed trajectory are applied to the structure’s surface at prescribed foot positions. These forces enter
the structure’s equations of motion as the right-hand-side loading. This gives the backwards influence of the
human motion on the deformation of the structure, and the model is complete. The main assumptions are:

1. The human can be adequately represented as a mass point, placed at their center of mass and having 3
translational degrees of freedom in 3 orthogonal directions.

2. The trajectory of the COM, corresponding to the human walking on a rigid (undeformable) surface,
is known. When the human walks on a flexible surface, the prescribed trajectory (locally) deforms
together with the surface. This is explained in detail in Section 2.2.

3. In the swing and sway phase of walking, one foot is always in contact with the moving surface regard-
less of the surface’s acceleration—the supporting foot is “attached” to the surface.

4. The phase of walking when the human is supported on both legs is negligibly short.

5. The position of the supporting foot is prescribed as a jump function of time. The movement of the
surface does not influence the placement of the foot on the surface.

Some of the above assumptions might not match to what physically occurs experimentally, as discussed at
greater length in Section 4. However, they provide a starting point to propose the current methodology,
amenable to further changes and improvement.

In the remainder of this section, we present the details of the model and derive its equations of motion. In
Section 2.1, we discuss walking on a rigid surface from the perspective of the proposed model. The problem
reduces to choosing an appropriate trajectory of the COM over an inflexible surface, further referred to
as the reference trajectory, and the placement of the supporting foot on the ground—both are parametric
functions of time. We present a simple form of approximate trajectory functions, used later in the numerical
simulations of Section 3. Then, in Section 2.2, we derive the complete equations of motion of the HSI model
for the target case of a flexible surface.

2.1 Walking on a rigid surface

When a human walks on a rigid surface, there is no dynamics of the structure itself and therefore no coupling
between the movement of the surface and the movement of the human. Everything reduces to the dynamics of
human walking—described, within the present setting, by the trajectory of the COM and the time-dependent
placement of the supporting foot. This is schematically illustrated in Figures 1 and 2, where xr(t) is the
position of the COM at time t, ri is the position of some reference point of the supporting foot during the
i-th step, ti ≤ t < ti+1, and s(t) is the point at which the ground reaction force (GRF) at time t is applied
(center of pressure of the supporting foot). In general, ri 6= s(t), but s(t) must lie within the supporting
foot’s area to allow the foot to actually support the COM.

In the case when experimental data on a COM’s motion are available, one can generate real-life walking
trajectories and input them to the HSI model. Otherwise, theoretical trajectories may be used as an approx-
imation. For the purpose of this paper, construction of a real-life trajectory based on experimental data is
not attempted. We use simple functions which possess qualitative characteristics of real walking, and give
reasonable quantitative approximations to a mechanically-balanced gait. In particular, for some portions of
the trajectories, s(t) will lie farther away from ri than required by the foot size. Such shortcomings may
be corrected, if necessary, by including the double-support phase of walking and further adjustment of the
trajectory functions.

Figure 2 shows a side view (top) and top view (middle) of a typical trajectory of the COM, plus a corre-
sponding longitudinal velocity (bottom). The vertical position of the COM, zr(t), its lateral position, yr(t),
and its velocity v(t) = ẋr(t) are described by three in-phase periodic functions, where the period of yr(t) is
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Figure 1: Trajectory of a human’s COM, and the GRF, during walking on a rigid surface.

twice the period of zr(t) and ẋr(t). The lowest point of zr(t) corresponds to the moment of change of the
supporting foot, and the highest—to the vertical position of the supporting leg. The velocity ẋr(t) is lowest
when the supporting leg is in the vertical position, and highest at the change of the supporting foot.
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Figure 2: Walking path over a rigid surface: vertical path of the COM (top), lateral path of the COM and
supporting foot’s positions (middle), and the COM’s longitudinal velocity (bottom).

In the simulations of Section 3, we use the following description of the trajectory of the COM and supporting
foot’s locations.

1. The assumed walking parameters are: step length bx, lateral sway amplitude hy, vertical sway ampli-
tude hz , mean vertical position hz,0, mean horizontal position hy,0, maximum longitudinal velocity
v0, and maximum range of longitudinal velocity hv. The parameters should be adjusted to generate a
dynamically feasible trajectory.
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2. The longitudinal velocity of the COM is assumed to be

ẋr(t) = v(t) = v0 − |hv sin(ft)| (1)

where the frequency f is obtained from the identity
∫ π/f
0 v(t)dt = bx, which gives

f =
v0π − 2hv

bx
(2)

3. The longitudinal position of the COM at time t is obtained by integrating v(t):

xr(t) =

∫ t

0
v(τ)dτ = v0t−

hv
f

(
2

⌊
ft

π

⌋
+ 1− cos(ft mod π)

)
(3)

4. The lateral and vertical components of the trajectory are assumed to be

yr(t) = hy,0 + hy sin

(
π

bx
xr(t)

)
(4)

zr(t) = hz,0 − hz cos

(
2π

bx
xr(t)

)
(5)

5. The reference positions of the supporting foot, ri, are chosen in such a way as to best approximate
the positions of the GRFs resulting from the movement of the COM along xr(t). Therefore ri are the
outcome of xr(t).

Figure 3 presents GRFs corresponding to one step cycle of an example COM’s trajectory of the above type.
Each arrow represents a scaled GRF. The tails of most arrows are concentrated around supporting foot’s
positions, as is required by real walking dynamics. Exceptions are GRFs corresponding to the portions of
the trajectory near the change of the supporting foot. The inclusion of a double-support phase of walking
might largely resolve this issue.

(a) (b)

Figure 3: GRFs for a typical COM’s trajectory of the proposed type: top view (a) and 3D view (b). The
arrows are normalized so that the length of the longest is 1.

2.2 Walking on a deformable surface

It is assumed that human motion control is performed in such a way that the position of the COM with respect
to the moving surface is the same as it would be with respect to the rigid surface at the same time t. When
the prescribed trajectory of the COM deforms with the surface, this condition is satisfied.
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Figure 4: Trajectory of a human’s COM during walking on a deformable surface.

Using the above assumption and the notation presented in Figure 4, one can decompose the trajectory of the
COM on a deformable surface as follows:

xm(t) = xr(t) + u(xs, t) (6)

where xr represents the reference trajectory of the COM (walking on a rigid surface), and u(xs, t) is the
displacement vector of the deformable surface at location xs = [xr(t), yr(t)]

T and time t.

We assume that the motion of the deformable surface can be described using a set of nm modes, and corre-
sponding damping ratios and natural frequencies. Therefore the vector of displacement can be written in the
form

u(xs, t) = Φ(xs)η(t) (7)

where Φ(xs) = [φ(1)(xs),φ
(2)(xs), ...,φ

(nm)(xs)] is a matrix composed of mode-shape functions and
η(t) = [η1(t), η2(t), ..., ηnm(t)]T is a vector of modal amplitudes, or in the equivalent form:

u(xs, t) =
nm∑
i=1

φ(i)(xs)ηi(t) =
nm∑
i=1

 φx(xs)
φy(xs)
φz(xs)


(i)

ηi(t) (8)

We shall assume, as an approximation, that the force exerted on the surface by the walker is applied not at the
center of pressure, but at the reference position of the foot ri. The force exerted on the surface is therefore

f(x = ri, t ∈ [ti, ti+1)) = −mẍm(t) +mg (9)

where ri = [ri,x, ri,y]
T is a vector representing the location of the foot on the surface during the i-th step,

m is the mass of the human, and g is the vector of gravitational acceleration. Eq. (9) should be treated as
the first approximation to the interaction between the mass and the surface. It simply describes the transfer
to the surface, at an approximate position, of the forces of gravity and inertia acting on the mass along the
trajectory. The resulting motion is not dynamically well-balanced, because the position at which the force is
applied to the surface is not exact.

The differentiation in Eq. (9) has to be performed keeping in mind that xs, which appears in Eqs. (6), (7) and
(8), is time-dependent. One obtains

ẋm = ẋr +
d

dt

(
nm∑
i=1

φ(i)(xs)ηi(t)

)
= ẋr +

nm∑
i=1

(
∂φ(i)

∂x
ẋsηi(t) + φ(i)(xs)η̇i(t)

)
(10)

ẍm = ẍr +
nm∑
i=1

[(
ẋTs

∂2φ(i)

∂x2
ẋs +

∂φ(i)

∂x
ẍs

)
ηi(t) + 2

∂φ(i)

∂x
ẋsη̇i(t) + φ(i)(xs)η̈i(t)

]
(11)
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Additional information about the matrices in Eqs. (10) and (11) is provided in Appendix A.

The resulting, combined dynamical system (human dynamics + dynamics of a flexible structure) is time-
dependent and discontinuous. Its equations of motion can be written in the form which is well known in
structural dynamics, but with the left hand side vector dependent on the current deformation of the structure

η̈ + 2ZΩη̇ + Ω2η = Bif(η, η̇, η̈, t), t ∈ [ti, ti+1), i = 0, 1, 2, ... (12)

where Z = diag(ζ1, ζ2, ..., ζnm), Ω = diag(ω1, ω2, ..., ωnm), Bi is the influence matrix for the force f acting
at position ri on the surface, and f is defined by Eq. (9). If one rewrites Eq. (11) in the form

ẍm = fr(η, η̇, t) + Φ(xs)η̈ (13)

then, after substituting Eq. (13) into Eq. (9), the result into Eq. (12), and solving for η̈, one finally obtains

η̈ = [I +mBiΦ(xs)]
−1[mBi(g − fr(η, η̇, t))− 2ZΩη̇ −Ω2η] (14)

Eq. (14) is the basis for the numerical simulations of Section 3.

3 Numerical simulations

As an example of human-structure interaction, we analyze below a human walking over a long beam-like
structure. It is assumed that the motion of the beam can be described using three mode shapes representing
vertical, lateral and torsional deflections of the beam—as shown in Figure 5. The advantage of the approach
is that it is not necessary to build a Finite Element model of the structure under consideration. In practice,
any technique allowing to obtain even approximate mode shapes and corresponding natural frequencies of a
structure can be used.

a) vertical mode: ω1, ζ1, φ(1) =

 0
0

sin( πLx)


 
 

b) lateral mode: ω2, ζ2, φ(2) =

 0
sin( πLx)

0



 
 

c) torsional mode: ω3, ζ3, φ(3) =

 0
0

y sin( πLx)



 
 

Figure 5: Mode characteristics of the flexible surface.

Assuming small deformations and using the three modes shown in Figure 5, the displacement vector can be
written as

u(x, t) =

 0
sin( πLx)η2(t)

sin( πLx)η1(t) + y sin( πLx)η3(t)

 (15)

The modal damping and spectral matrices have the form

Z =

 ζ1 0 0
0 ζ2 0
0 0 ζ3

 , Ω =

 ω1 0 0
0 ω2 0
0 0 ω3

 (16)
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We use the following values of the parameters:

• beam parameters
L = 50 m (length), W = 4 m (width), ρ = 200 kg/m2 (mass per unit area), ζ1 = ζ2 = ζ3 = 0.005,
ω1 = 0.7 Hz, ω2 = ω3 = 1.4 Hz

• mass of the walker
m = 100 kg

• trajectory parameters

- trajectory 1 (fast walking): bx = 0.9 m, by = 0.2 m, hy,0 = 0 m, hy = 0.02 m, hz,0 = 1 m,
hz = 0.02 m, v0 = 2m/s, hv = 0.5 m/s

- trajectory 2 (moderate walking): bx = 0.7 m, by = 0.22 m, hy,0 = 0m, hy = 0.03 m, hz,0 =
1 m, hz = 0.015 m, v0 = 1.5 m/s, hv = 0.4 m/s

- trajectory 3 (slow walking): bx = 0.5 m, by = 0.26 m, hy,0 = 0m, hy = 0.04 m, hz,0 = 1m,
hz = 0.01 m, v0 = 1m/s, hv = 0.3 m/s
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Figure 6: Values of η1(t) during the passage of the walker over the beam, for the three COM’s trajectories.
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Figure 7: Values of η2(t) during the passage of the walker over the beam, for the three COM’s trajectories.
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Figure 8: Values of η3(t) during the passage of the walker over the beam, for the three COM’s trajectories.

The results are shown in Figures 6, 7, and 8. One can observe in Figure 6 that faster walking induces larger
vibrations of the vertical mode, mainly because of greater amplitudes of the vertical motion of the COM
during faster walking. Conversely, the fastest walk induces the smallest vibrations of the lateral and torsional
modes, as can be seen in Figures 7 and 8. This may be related to the increased amplitude of the lateral sway
of the COM during slower walking. Also, it can be observed in Figure 6 that, because of the low value of
ω1, a more complex vibrational response of the 1st mode occurs.

4 Discussion and conclusions

We proposed a new HSI model of walking on a flexible surface. The predictions possess qualitative features
expected of the dynamics of human-structure interaction. We therefore expect that the present model will be
a good starting point for developing more accurate HSI models.

The main advantage of the model is its relative simplicity. The model does not involve complex human
dynamics. It also uses a simple, mode-shape based model of a structure, and therefore does not require
extensive FEM computations. To obtain the structural response one needs to numerically integrate a system
of ordinary differential equations with several degrees of freedom—the simulations of Section 3 took a few
seconds on a desktop PC.

There are also several obvious drawbacks of the present model which indicate directions for further devel-
opment. We discuss them briefly below.

1. The proposed trajectories of the COM, as described in Section 2.1 and used in the simulations, do
not accurately represent real human COM’s motion. Most conspicuously, for some fragments of the
trajectories, the GRFs are located away from the assumed supporting foot’s positions. To yield a
dynamically balanced motion, the reaction forces would have to be much more concentrated so that all
GRFs fall within the supporting foot’s area. As it was mentioned earlier, the inclusion of the double-
support phase of walking and a better adjustment of the trajectory functions would solve this issue.

2. The model expressed by Eqs. (12) and (14) applies the GRF at the supporting foot’s reference position
ri. In reality, the force should be applied at the time-dependent s(t), which in general differs from ri.
As a result, Bi would not be constant in the course of one step, but would turn into a state-dependent
B(η, η̇, η̈, t). It would no longer be possible to explicitly solve Eq. (12) for η̈ as in Eq. (14). Numerical
solutions would be necessary, increasing the computational burden of the procedure.
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3. Deformation of xr(t) during deformation of the structure, as described by Eq. (6), may not accurately
capture real motion of the COM. This, of course, depends to some degree on the particular walking
person, their physical capabilities and walking objectives. Nonetheless, it may be presumed that the
lateral movement of the COM is less correlated with the lateral movement of the structure than are the
corresponding vertical movements. Also, the deformation of the trajectory should be related with the
displacement of the structure at ri rather than at xs(t). Both of these matters should be accounted for
in a more precise model.

4. During large vibrations of the structure, the GRFs resulting from even a well-chosen reference tra-
jectory of the COM may fall outside the area of the supporting foot. In such a case, a formulation of
walking objectives and feedback control of the COM’s movement may be needed to replace the simple
approach of the present paper.
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A Details of the equations of motion

To perform numerical simulations using Eq. (14), the following vectors and matrices have to determined.

1. The first derivative of the COM’s trajectory with respect to time:

ẋs =

[
ẋr(t)

yr,xẋr(t)

]
(17)

where
yr,x =

∂yr
∂x

(18)

2. The second derivative of the COM’s trajectory with respect to time:

ẍs =

[
ẍr(t)

yr,xxẋ
2
r(t) + yr,xẍr(t)

]
(19)

3. The first derivative of the i-th mode shape with respect to spatial coordinates:

∂φ(i)

∂x
=

 φx,x φx,y
φy,x φy,y
φz,x φz,y


(i)

(20)

4. The second derivative of the i-th mode shape with respect to spatial coordinates:

∂2φ(i)

∂x2
=

[
∂2φ

(i)
x

∂x2

∣∣∣∣∣∂2φ
(i)
y

∂x2

∣∣∣∣∣∂2φ
(i)
z

∂x2

]
(21)

where
∂2φ

(i)
x

∂x2
=

[
φx,xx φx,xy
φx,xy φx,yy

](i)

(22)

∂2φ
(i)
y

∂x2
=

[
φy,xx φy,xy
φy,xy φy,yy

](i)

(23)

∂2φ
(i)
z

∂x2
=

[
φz,xx φz,xy
φz,xy φz,yy

](i)

(24)
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