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A one-dimensional nonlinear homogeneous isotropic thermo-elastic model with an elastic heat flow at 

low temperatures and small strains is analyzed using the method of weakly nonlinear asymptotics. For such a 
model both the free energy and the heat flux vector depend not only on the absolute temperature and strain 
tensor but also on an elastic heat flow that satisfies an evolution equation. The governing equations are 
reduced to a matrix PDE, and the associated Cauchy problem with a weakly perturbed initial condition is 
solved. The solution is given in the form of a power series with respect to a small parameter the coefficients 
of which are functions of a slow variable that satisfy a system of nonlinear second-order ordinary differential 
transport equations. For a particular Cauchy problem  in which the initial data are generated by a closed-form 
solution to the transport equations, the principal part of the asymptotic solution is a sum of four travelling 
thermo-elastic waves admitting blow-up amplitudes. 
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1 Introduction 

We are interested in the asymptotic analysis of a 
model describing a thermally nonlinear homogeneous 
isotropic thermo-elastic solid with an elastic heat flow 
at low temperatures and small strains. The equations of 
the full 3-D model, after non-dimensionalization, are 
given by the Eqs. (29) in [1]. When reduced to one- 
space dimension they look as follows: 
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Here, T  is the absolute temperature; and B, V, and W 
denote the  x component of the elastic heat flow, 

velocity, and strain fields, respectively; in addition, 

0∈>  and  0>ζ  denote a thermoelastic coupling 

constant and an inertia coefficient, respectively. It is 
assumed that a heat supply and the body forces are 
absent.  

Other low-temperature nonlinear thermoelastic 
models have been discussed in a survey article [5]. 

In the present paper the 1-D model described by 
(1) is explored using the method of weakly nonlinear 
asymptotics [2], [3]. 

 In the following Section the governing equations 
in a matrix form are recalled.  

In Section 3 an eigenvalue problem for the matrix 
equation is solved in a closed-form. 

 In Section 4 the Cauchy problem for the matrix 
equation with a weakly perturbed initial condition is 
formulated, and an asymptotic solution to the problem 
is postulated in the form of a power series with respect 
to a small parameter the coefficients of which are the 
functions of a slow variable. The slow variable 
functions are then determined in terms of the wave-
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amplitudes that satisfy the nonlinear ordinary second 
order differential transport equations. 

 In Section 5 an asymptotic solution to a 
particular Cauchy problem involving the initial data 
generated by a closed-form solution to the transport 
equations with   blow-up amplitudes is obtained. 

 
 

2 The governing equations in  a matrix form 

The model described by equations (1) can be 
represented as a quasi-linear system of partial 
differential equation of the second order for an 
unknown vector field 
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where )(uA  is the 44 ×  matrix depending on  u   
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and  )(uB  is the 44 ×  matrix given by 
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3    Eigenvalue problem for the matrix equation 

 

The eigenvalues λ  of the matrix  )(uA  satisfy the 

algebraic equation  

0)-)((det =IλuA                   (4)                                                        

By expanding the determinant (4), we obtain 

02
1

2

22
11234

=+−

∈
++−+ 









TT

B

T
TT

B

ζζ
λ

ζζ
λλλ

           (5)                              

We are interested in solving the eigenvalue problem  
for a particular constant state  

T,0,0,0]
0

[0 T=u with  0>
0

T .                (6) 

We obtain the following 

Lemma 1. There are four explicit right )0(i ur and four 

left )0(i ul eigenvectors corresponding to four real 

eigenvalues of the matrix )
0

(uA . Moreover we may 

choose the eigenvectors so that the orthogonality 
conditions  

1,2,3,4 ji,ij)0(j)0(i ==⋅ δuur l            (7) 

hold true.                           

The proof of Lemma 1 is given in [4]. 

4   Asymptotic solution to the  Cauchy problem  

Let us consider the initial-value problem for the 
following matrix equation with perturbed initial data  
(ε  is a small parameter ). 
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subject to the initial condition 
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where  ε   is a small positive number and 

)(y∗∗ = uu  is a prescribed function on  ∞<y .                   

An asymptotic solution to the problem (8)-(9) is 
postulated in the form      

)(0),( ηεε uuu ~+=xt                      (10) 

where )( tx λεη −= is a new slow variable with λ  an 

eigenvalue of the matrix )
0

(uA and 
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First we use the Taylor’s expansion  
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Next, by treatingη  as a new independent variable we 

express all derivatives from equation (8) in terms of 

derivatives with respect to η . Then equation (8) is 

reduced to the form  
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Equating to zero consecutively alike powers of ε  we  

obtain  first the terms with 2ε :           
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Treating the above as the algebraic equation we 
conclude that its solution must be proportional  to the 

right eigenvector r of the matrix )0(uA  corresponding 

to the eigenvalue λ . Therefore we can write  

ru )(1 ηa=                           (15) 

where )(ηaa = is an unknown wave’s amplitude. 

Next we equate to zero the terms with 3ε  and get: 
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Treating (16) as the nonhomogeneous algebraic 
equation and using linear algebra, we get from 
Fredholm’s alternative that this equation has a solution 
provided that the right hand side of it is orthogonal to 

the left eigenvectors of the matrix )0(uA . Hence 

0=⋅ fl                                (18) 
Writing the above equation explicitly we get 
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Next taking into account (15) we obtain the transport 

evolution equation for the unknown amplitude )(ηa  
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where 
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  As a result, the following theorem holds true: 
Theorem 1 An asymptotic solution to the Cauchy problem 
described by the equations (8) and (9) that represents a 
nonlinear low-temperature and small-strain thermo-
elastic wave propagating along the x-axis takes the 
form 
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where ,∞<= iiii ),( ηηaa is a solution to the 

transport equations 
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In equations (25)-(26) )(r ikik l  denotes the k-th 

component of the unit right (left) eigenvector )( ii lr of 

the matrix )0(uA . 

The proof of Theorem 1 is given in [4]. 
 

5 A  particular Cauchy problem 
 
The particular Cauchy problem is related to a particular 

set of the dimensionless parameters ζand,,∈0T as 

well as to a particular initial condition. It is assumed 
that 

64992210356050 ./,., =∈=∈== ζT       (27) 

and using (24)-(27) we obtain the inequalities 
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The initial condition is postulated in the form 
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where ,∞<= i),i(ii ηηaa is a solution to the 

transport equations (23)  subject to the conditions 
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It is easy to show that such a solution is represented by 
the two-valued function defined by 
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and the following theorem holds true 
 
Theorem 2.  An asymptotic solution to the particular 

Cauchy problem in which the function  )(ii xaa ε= is 

a restriction of the two-valued function (31)-(32) for 
0=t takes the form 
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where ,∞<= i),i(ii ηηaa is the two-valued 

function defined by (31)-(32). If )(ii xaa ε=  in 

equation (29) is identified with one of the two  
branches of the two-valued function at 0=t , then 
(33) is a unique asymptotic solution to the particular 
Cauchy problem. 
 
The proof of Theorem 2 is given in [4]. 
 

Conclusions 
 

One-dimensional nonlinear low-temperature and 
small-strain thermoelastic model with an elastic heat 
flow is revisited using the method of weakly nonlinear 
asymptotics. 

The governing equations are cast to a matrix PDE, 
and the associated Cauchy problem with a weakly 
perturbed initial condition is solved. 

The solution is given in the form of a power series  
with respect to a small parameter the coefficients of 
which are functions of a slow variable that satisfy a 
system of nonlinear second order ordinary differential 
transport equations.  

For a particular  Cauchy problem in which the 
initial data are generated by a closed-form solution to 
the transport equations, the principal term of  the 
asymptotic solution is a sum of four travelling thermo-
elastic waves admitting blow-up amplitudes. 

Since the model is to cover low temperatures and 
small strains, the asymptotic solution  to the particular 
Cauchy problem should be restricted to a region inside 
of  a support of the finite amplitudes. 
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