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Abstract

An antibubble consists of a liquid droplet, surrounded by a gas, often with an encapsulating shell. Antibubbles of microscopic sizes

suspended in fluids are acoustically active in the ultrasonic range. Antibubbles have applications in food processing and guided

drug delivery. We study the sound generated from antibubbles, with droplet core sizes in the range of 0–90% of the equilibrium

antibubble inner radius. The antibubble resonance frequency, the phase difference of the echo with respect to the incident acoustic

pulse, and the presence of higher harmonics are strongly dependent of the core droplet size. Antibubbles oscillate highly nonlinearly

around resonance size. This may allow for using antibubbles in clinical diagnostic imaging and targeted drug delivery.
c© 2015 The Authors. Published by Elsevier B.V.
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1. Introduction

When a bubble is excited by an acoustic pulse, sound is emitted. The sound emitted from individual bubbles adds up to

strong nonlinear echoes, which are used in clinical diagnostic imaging to improve contrast between blood and tissue.

It has also been shown that bubbles can be used to achieve sonoporation, which is the creation of transient pores in the

cell membrane (Kotopoulis et al. (2014)). Hence, when incorporating a droplet, potentially containing a therapeutic

agent, into the bubble, as shown in Figure 1A , improved localised drug delivery might be achieved by releasing the

droplet core load using acoustics to disrupt the outer gas shell. Bubbles consisting of a liquid core surrounded by gas,

often with a thin stabilising shell, are referred to as antibubbles. The radial dynamics of antibubbles is governed by

a Rayleigh-Plesset-like equation (Kotopoulis et al. (2015)). Adding an the effect of a finite thickness shell has been

proposed by (Johansen et al. (2015)).

This study aims to investigate the singing, i.e., the actual acoustic response, from an antibubble when excited by

an acoustic pulse within the clinical ultrasonic frequency range. The radius of the droplet core is varied to illustrate

how the sound emitted is dependent on the droplet core size.
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Fig. 1. In A microscopy image of antibubble. In B schematic of a fluid (light blue) containing an antibubble cosisting of a droplet core (orange) of

radius Rd, surrounded by a gas layer (white), and thin shell (dark blue) of inner instantaneous radius R1 and outer instantaneous radius R2.

2. Theory

Let’s consider an antibubble as presented in Figure 1B, where R1 and R2 are the respective instantaneous radii of the

bubble from the centre of the bubble to the two interfaces, and Rd is the radius of the droplet inside the bubble. As this

liquid droplet core can be considered incompressible, Rd is assumed to be constant when the bubble undergoes radial

pulsation. The antibubble is surrounded by a shell layer of surface-active material. Both the fluid composing the shell

and the outer surrounding liquid are assumed to be viscous and incompressible. Assuming no mass exchange between

the respective interfaces, the radial velocity potential φ(r, t) in the shell and in the surrounding fluid at a distance r
from the centre of the bubble can be expressed as (T.G. Leighton (1994)):

φ = −R2
1Ṙ1

r
. (1)

Conserving radial momentum a Rayleigh-Plesset-like equation is found, like shown in (Johansen et al. (2015); Church

(1995))
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where ρS is the density of the shell, ρL is the density of the surrounding liquid, Pg(R1, t) is the gas pressure inside the

antibubble, σ1 and σ2 are the surface tension for interface 1 and 2, respectively, P0 is the ambient pressure, Pac(t) is

the driving pressure, τS
rr and τL

rr is the radial stress in the shell and the surrounding fluid respectively.

Let us assume a pressure change in the surrounding fluid under adiabatic conditions inside the bubble

pg0Vγ
0
= pgVγ , (3)

where pg0 is the initial gas pressure, V0 is the initial volume of the gas, γ is the polytropic exponent of the gas, pg is the

instantaneous gas pressure, and V is the instantaneous gas volume. From Figure 1B it is evident that the instantaneous

pressure inside the antibubble can be expressed as

pg = pg0

⎛⎜⎜⎜⎜⎝R
3
10
− R3

d

R3
1
− R3

d

⎞⎟⎟⎟⎟⎠
γ

. (4)

Substituting (4) for the gas pressure inside the antibubble, and computing the two last integrals, knowing that

τrr = 2η(∂u/∂r) is the shear viscous stress in a Newtonian fluid, a Rayleigh-Plesset-like equation for an antibubble

with a Newtonian shell of finite thickness surrounded by a Newtonian viscous liquid can be found:
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where ηL and ηS are the shear viscosity in the liquid and the shell, respectively. From (5) it can be seen from the first

term on the left-hand side that the acceleration increases if ρL > ρS, and the acceleration decreases if ρL < ρS. The

ratios of the densities effects the second term on the left-hand side in a similar way, decreasing and increasing the

degree of nonlinearity. The first term on the right-hand side is a different form of a Rayleigh-Plesset-like equation,

describing the radial pulsation of a gas bubble. With a relatively large core droplet size, the pressure inside an

antibubble will be larger than in a gas bubble under the same conditions. This makes it possible to predict that

antibubbles should have a larger maximum excursion, and a different frequency-content in the oscillations compared

to a gas bubble with no load.

For a small excursion ξ of an antibubble, an analytic solution exists if R0ξ is small. Assuming R = R0(1+ ξ), where

ξ � 1, the damped resonance frequency to (5) is found:
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It can be observed that increasing the respective viscosities decreases the damped resonance frequencies (Johansen

et al. (2015)).

Theoretical prediction of echoes from bubbles have both been computed for compressible and incompressible

surrounding fluids, however the difference is insignificant. The scattered echo can then be expressed as (Morgan et al.

(2000)):

Pe = −ρLφ̇ = ρL

R2
1R̈1 + 2R1Ṙ1

2

r
. (7)

Computations were performed using the ode45 Runga-Kutta algorithm in MATLAB
R©

2014a (The Mathworks, Inc.,

Natick, MA, USA). The following fixed parameters were used: P0 = 1 atm, γ = 1.4, ηL = 1.0 mPa s, ηS = 1.0 Pa s,

ρS = 1100 kg/m3, ρL = 998 kg/m3, σ1 = 0.051 N/m, σ2 = 0.072 N/m, and R2 − R1 = 2 nm. Frequency spectra of the

radius-time curves were computed using the FFT algorithm in MATLAB
R©

.

3. Results and Discussion

Figure 2 shows an overview of generated echoes of all simulations at MI=0.1 for antibubbles with a Newtonian shell.

To clarify how to interpret Figure 2A cross sections were added, B and C, simulated at 40% and 80% core droplet

radius, respectively. Analogously, in the frequency spectrogram shown in Figure 2D, cross sections were added at

the same core droplet radii. From Figure 2A it can be seen, that the phase of the generated echoes to the antibubble

with respect to the incident sound wave is dependent of the core droplet radius, as observed in Figure 2A. Around

resonant size, when the antibubbles undergo inertial growth and collapse the strongest echoes are generated. This can

be observed from the narrow red bands interlaced with wide blue bands.

At smaller core droplet radii, a more linear echo regime is observed, as depicted by the equal thickness bands.

At ∼70% core droplet radius, phase changes can be seen after 2 cycles. From Figure 2E and Figure 2F it can be

appreciated that antibubbles both with a 40% and 80% core droplet radius have higher harmonics in the generated

echo because of the nonlinear response. Around 80% core droplet radius, strong higher harmonics can be observed in

the spectrogram of Figure 2D, whereas at core droplet sizes much less, the nonlinear content is limited to the second

harmonic, and of significant lower amplitude.

Studying Figure 2B and Figure 2C it can be observed that the antibubble excited close to resonance generates an

echo which is a factor of 3 times greater than the antibubble which is excited far away form resonance. Comparing

the magnitude of the second harmonics in Figure 2E and Figure 2F the antibubble with a 80% core droplet size has

a 12 dB higher second harmonic component, showing that is is important that bubbles are excited around resonance

size if they should be applied in clinical diagnostic imaging.



1082   Kristoer Johansen et al.  /  Physics Procedia   70  ( 2015 )  1079 – 1082 

0.00
0 2 4

0 1.0 2.0 3.0 4.0

6 8 10 12 14 16 18 20

0.20

0.40

0.60

0.80

0.90

0.00

0.20

0.40

0.60

0.80

0.90

R
0

R
0

R
d

R
d

0 2 4 6 8 10 12 14 16 18

T

t

T

t

0

300

250

200

150

100

50

f
c

f

f
c

f

0 1 2 3 4 

 

0

−20

−40

−60

−80

−100

−120

P
o

w
e

r (d
B

)

Radius-time curves

Frequency spectra

A B

C

D E

F

−60

−40

−20

0

−40

0

40

80

120

−40

0

40

80

120

−60

−40

−20

0

P
e

  (P
a

)

Fig. 2. Scattered echo curves for an antibubble with a Newtonian viscous shell as a function of core droplet radius and sonication time in A

with respective cross sections, B and C; radius-time curves in A have been transformed to frequency spectra in D, creating a spectrogram of

instantaneous antibubble radius as a function of core droplet radius with respective cross sections, E and F. The MI=0.1. Echoes are computed at

a distance r = 0.01 m for the respective bubbles. Bubble radii have been normalised to the equilibrium radius R0 = 2.5 μm; core droplet radii have

been normalised to equilibrium radius; time has been normalised to the period of the transmitted ultrasound; frequencies have been normalised to

the centre frequency of the transmit pulse.

4. Conclusion

The damped resonance frequency, the radial pulsations, and the generated echo from an antibubble are all strongly

dependent on core droplet size. Owing to the presence of a droplet core, oscillations are highly nonlinear, and the

generated echo contains strong higher harmonics allowing for harmonic imaging methods.
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