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Abstract: Development of biaxial segmental orientation and stresses in flexible 
chain polymers subjected to affine deformation of end-to-end vectors or to steady 
biaxial extensional flow is discussed. A closed-formula theory with non-Gaussian 
chain statistics and a Padè approximation of the inverse Langevin function is 
considered. The approach accounts for finite chain extensibility and is free from the 
problems of weak convergence of series-expansion expressions at higher molec-
ular deformations. Average orientation tensor, global anisotropy tensor, and axial 
orientation factors characterise segmental orientation. Axial orientation factors and 
normal stress differences, in the deformation and normal planes, are discussed for 
biaxial affine deformation and steady biaxial elongational flow in a wide range of 
molecular deformations using inverse Langevin chain statistics. Orientation charac-
teristics predicted for biaxial flow deformation are higher, and change in a wider 
range, than those in affine biaxial stretch. Also sensitivity to transversal defor-
mation is different in both types of deformation. 
 

Introduction 
Mechanical and physical properties of polymers are strongly influenced by molecular 
orientation and its symmetry. Deformation of flexible-chain polymer systems during 
processing leads to orientation of individual chain segments, affects free energy and 
stresses. High modulus and tenacity of polymer fibres are consequences of high 
segmental orientation produced during the formation processes [1,2]. Molecular 
orientation influences also thermodynamic properties, related phase transition points 
and kinetics of crystallisation, as well as the crystalline morphology.  
Increasing interest in obtaining high-performance films has led several authors to 
experimental [3-11] and theoretical [3,5,8,12-14] investigations on the development 
and characterisation of biaxial orientation. Aspects of the interest concern intramolec-
ular as well as supramolecular constitution. Intramolecular, short range constitution, 
and related interactions, determine chain flexibility (rigidity). Aspects of supramo-
lecular constitution concern the role of entanglements, viscoelasticity, physical or 
chemical crosslinking, etc. We concentrate here on flexible chain polymers and the 

                                            
a Presented at the Workshop on Polymers Dynamics, organized as part of the Excellence Centre of 
the European Commission in Lodz, Poland, November 15, 2001. 
Related publications: Jarecki, L.; Ziabicki, A.; Polymer 2002, 43, 2549, 4063. 
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development of segmental orientation in solid and liquid state subjected to defor-
mation of biaxial symmetry. Inverse Langevin chain statistics is used to describe the 
non-linear effects. 
In the range of high biaxial (or uniaxial) molecular deformations, theoretical modelling 
of the development of segmental orientation in flexible chain systems should account 
for finite chain extensibility and non-Gaussian chain statistics. Such an analysis is 
much limited by the weak convergence of series expansion procedures used for non-
Gaussian systems at higher deformations. This makes the series expansion 
approach difficult, or intractable, in the case of high molecular deformations for biaxial  
[13] or more complex deformation geometries.  
In this presentation we discuss a closed-formula approach to biaxial orientation 
based on a Padè approximation of the inverse Langevin function [15]. We consider a 
system composed of monodisperse, freely jointed chain molecules with inverse 
Langevin distribution of the end-to-end vectors, subjected to biaxial deformation. 
Thermodynamic characteristics, molecular orientation, and stresses produced in the 
deformation may be used for predicting physical properties, crystallization kinetics 
and texture development. 
In a solid state, the segmental orientation produced by cold or hot drawing, thermo-
forming, etc. is controlled first of all by deformation applied to the material. Orien-
tation relaxation during processing is much reduced due to stresses transmitted 
directly to the chain ends in the case of crosslinked systems, or strong viscous 
friction in the case of uncrosslinked solids.  Crosslinked, rubbery materials show 
reversible deformation, the extent of which can be correlated with the average 
segmental orientation. In uncrosslinked solids, strong interactions between polymer 
chains lead to plastic behaviour, with irreversible deformation and frozen orientation 
maintained long after the deformation stresses are released to zero. We assume 
affine deformation of the chain end-to-end vectors in the solid state.  
In the fluid state, applied techniques such as film blowing or film casting yield 
segmental orientations controlled first of all by the deformation rate, or stress, in the 
case of purely viscous fluids. In more complex, viscoelastic materials, the effects of 
deformation and deformation rate superimpose. We assume that the viscous fluid is 
subjected to isochoric biaxial stretching flow which results in potential control of 
segmental orientation. Steady-state flow orientation is discussed. 
In the following sections, segmental orientation and stress in an individual flexible 
chain, and their system averages in polymer solids subjected to biaxial affine 
deformation and in polymer fluids under steady-state biaxial elongational flow are 
discussed. 
 
Segmental orientation and stress in an individual chain 
Segmental orientation in an individual flexible chain is controlled by the applied 
stresses. The elastic free energy of a flexible chain with end-to end vector h depends 
on the current chain extension h/Na and is represented by [16] 

( )F h NkT L* x dxel

h Na

= ∫ ( )
/

0

 (1) 

where h is the end-to-end distance, N the number of statistical Kuhn segments in the 
chain, a the statistical segment length, T the temperature, and k the Boltzmann 
constant.  
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The chain free energy is proportional to the inverse Langevin function L*(x) 
integrated between zero and h/Na. Eq. (1) is valid in the entire range of chain 
extension h/Na between zero and unity, and Fel depends parametrically on the  
number of chain segments, N.  
The chain elastic potential Fel controls an elastic force acting between the chain ends 

( )f F
kT
a

L h Nael= ∇ = * /  (2) 

The elastic force is a non-linear function of the chain extension h/Na. 
Orientation distribution of the statistical segments around the chain end-to-end vector 
h shows cylindrical symmetry, and is expressed by a function of cosine of the angle α 
between a segment and the vector h [17] 

[ ]w
L* h

L* h
L*

h
Nas ( )cos

( / Na)
sh ( / Na)

exp cosα
π

α=














4

 (3) 

The distribution depends parametrically on the actual chain extension h/Na. 
The exact analytic formula of the inverse Langevin function L*(x) used for the chain 
elastic free energy, elastic force, and segmental orientation distribution is unknown. A 
series expansion approximation of L*(x) reads 

L * ...( )x x x x x x= + + + + +3
9
5

297
175

1539
875

126117
67375

3 5 7 9  (4) 

but the expansion is slowly convergent at x > 1/2.  
An approximation of L*(x) by the first term of series (4) leads to the Gaussian elastic 
free energy and corresponding orientation distribution. The approximation can be 
used for small chain extensions. At higher chain extensions, at h/Na > 1/2, the series-
expansion approach is weakly convergent, and its application is ineffective [18].  

Cohen [15] proposed a closed-formula Padè approximation of L*(x), satisfactorily 
good in the entire range of chain extensions 

L* x x
x
x

( ) ≅
−
−

3
1

2

2  (5) 

Exact plots of the inverse Langevin function, and its Padè (Eq. (5)) and Gaussian 
approximations are illustrated in Fig. 1. The plot of L*(x) represents the relation of the 
reduced elastic force fa/kT vs. chain extension h/Na  (cf. Eq. (2)). The Gaussian 
approximation deviates significantly at h/Na > 1/2 and shows unphysical behaviour, 
i.e., finite elastic force at full chain extension. The Padè approximation shows minor 
deviations, slightly exceeding the exact plot at higher chain extensions. It converges 
asymptotically to 1/(1−x) at x approaching unity, and to 3x at small values of x. 
The elastic force acting between the chain ends and the orientation distribution of 
statistical segments can be represented by tensorial characteristics assigned to the 
chain extension h/Na and to the end-to-end vector h. The “local” molecular stress 
tensor is given by the tensorial product of the elastic force vector and the vector h 
[19,20]: 

p h f h
h h

( ) = ⊗ =












⊗1
0 0

2Nv v
h

Na
L*

h
Na h

kT
 (6) 

where v0 denotes the volume per statistical segment in the system. The local stress 
corresponds to the elastic force acting between the ends of a non-Hookean elastic 
dumbbell, representing each chain. 
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Fig. 1. Inverse Langevin function L*(h/Nl) (exact, solid line); Padè approximation 
(dashed line); Gaussian approximation (dash-dotted line) 
 
Orientation of the segments in an individual chain is given by the orientation tensor 
proposed by Zimm [17]  

A h
h h

( ) = −
























⊗
1

3
2

h
Na

L*
h

Na
h

 (7) 

At full chain extension, h/Nl = 1, the function L*(h/Nl) tends to infinity and the stress 
tensor p diverges, while the segmental orientation tensor A approaches h⊗h/h2, a 
form typical of a slim rigid rod of length h. This indicates that finite chain extensibility 
is the source of non-linearity of the stress-orientation behaviour at higher chain defor-
mations. At zero chain extension, both tensors reduce to zero. 
Eqs. (4), (6) and (7) lead to a non-linear stress-orientation relation for the individual 
chain in the form of a power series of the dimensionless stress pv0/kT  

 
A p

p p p p
( ) = −





 −





 +





 +

1
5

3
175

1
875

13
67375

0 0
2

0
3

0
4v

kT
v

kT
v

kT
v

kT
...  (8) 

At small stresses, the above series reduces to the well known linear stress-orien-
tation law given by the first term, valid for Gaussian chain statistics. At higher 
stresses, the non-linear terms play a substantial role, and finite chain extensibility 
should be considered.  
With the Padè approximation, the elastic free energy, stress, and orientation tensors 
of an individual chain read 

( )F h NkT
h

Na
h

Nael ≅




 − −





























1
2

1
2 2

ln  (9) 
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p h
h h

( ) ≅






−






−
























⊗kT
v

h
Na

h
Na
h

Na
h0

2

2

2 2

3

1
 (10) 

A h
h h

( )
( / )
( / )

≅
−

⊗2
3

2

2 2

h Na
h Na h

 (11) 

In the Padè approximation, the single-chain characteristics (elastic free energy, 
stress, and orientation tensors) are also expressed in terms of chain extension h/Na.  
 
A system of polymer chains 
The closed form Eqs. (9) - (11) can be used for modelling the thermodynamic and 
stress-orientation properties of flexible-chain polymers in the entire range of chain 
extensions. Averaging of the individual chain characteristics requires a distribution of 
the chain end-to-end vectors, appropriate for the system and the applied defor-
mation.  The average free energy, stress, and orientation tensors are given by the 
integrals 
< > = ∫∫∫F F h del el ( ) ( )W h h3  (12) 

< > = ∫∫∫p p h h h( ) ( )W d 3  (13) 

< > = ∫∫∫A A h h h( ) ( )W d 3  (14) 
where W(h) is the distribution function of the chain end-to-end vectors in the 
deformed system. Control of the distribution is different in a solid and in a fluid state. 
In an uncrosslinked system subjected to flow deformation, time evolution of the 
distribution is given by the continuity equation 
∂
∂
W
t

W D W W
F
kT

el+ −














 =div +Qh ∇ ∇ 0  (15) 

where D is the relative diffusion coefficient of the chain ends. The divergence and 
gradient operators concern the h-space. Q, the deformation rate tensor of the 
imposed flow, is purely extensional 

Q V= ∇ =

















q
q

q

1

2

3

0 0
0 0
0 0

 (16) 

where the axial components qi are the axial velocity gradients. 
For an isochoric flow we have q1+q2+q3 = 0. Distribution W(h,t) is affected by the flow 
convection with velocity Qh, by the retractive elastic force between the chain ends, 
and by the thermal motion of chain ends. Each chain can be represented by a 
Brownian, non-linearly elastic dumbbell subjected to the extensional flow. 
In the solid state, we deal with molecular mobility very much limited by strong inter-
molecular interactions, which create a sort of plastic medium with very high viscosity 
and the chain diffusion coefficient practically reduced to zero. In the limit of zero 
diffusion coefficient, D → 0, and finite elastic free energy of the individual chains, Eq. 
(15) reduces to a first order differential evolution equation 

( )∂
∂
W
t

W tr W+ + ⋅ =Q Qh ∇ 0  (17) 
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The solution of the equation, with an initial distribution W0(h), corresponds to the 
distribution at affine deformation of h vectors with time-dependent displacement 
gradient tensor  

Λ( )
( )

( )
( )

t
t

t
t

=

















λ
λ

λ

1

2

3

0 0
0 0
0 0

 (18) 

where λ i i( ) ( )t q t= exp , and reads 

[ ]W t W t t( ) ( ) ( )h h, / det= 0 Λ Λ  (19) 
For isochoric flow we have det Λ(t) = 1.  
Considering a Boltzmann initial distribution, controlled by the non-Gaussian elastic 
free energy, we obtain 

[ ]
( )

W t C t N L* x dx
Na

( ) ( )h
h h

, det exp ( )/
/

/

= −














−
⋅ −

∫Γ
Γ

1 2

0

1 1 2

 (20) 

C is a normalisation constant, and Γ the time-dependent deformation tensor  

Γ = Λ Λ( ) ( ) ( )Tt t t =

















λ
λ

λ

1
2

2
2

3
2

0 0
0 0
0 0

 (21) 

Distribution (20) is typical of affine deformations of crosslinked polymers, as well. We 
use the distribution to discuss biaxial affine deformation of polymer solids, uncross-
linked or rubbery networks. 

With the Padè approximation, the affine distribution for isochoric deformation (det Γ = 
1) reads 

W C
N a Na

N

( )h
h h h h

≅ −
⋅






 −

⋅







− −

1
1
2

1

2 2

1

2

Γ Γ
exp  (22) 

For small deformations, distributions (20) and (22) reduce to the Gaussian form 

W
Na Na

( )h
h h

=




 −

⋅







−3
2

3
22

3 2 1

2π

/

exp
Γ

 (23) 

In a fluid system we deal with higher values of the diffusion constant. Two asymptotic 
solutions of the continuity Eq. (15) are obtained. In the limit of infinite diffusion 
constant, D → ∞, and relatively small rates of flow deformation, when Q/D can be 
neglected, the distribution approaches equilibrium Boltzmann distribution controlled 
by the chain elastic free energy 

W C N L* x dx
h Na

( )h = −








∫exp ( )

/

0

  (24) 

Flow effects do not appear in the distribution. In this case we cannot produce 
effective segmental orientation by the flow.  
The flow deformation should be effective for segmental orientation if the reduced 
deformation rate tensor Q/D cannot be neglected at finite diffusion rate, i.e., at 
relatively fast flow rates. Symmetry of the tensor Q determines symmetry of the 
produced molecular orientation. 
Steady-state distribution of h vectors under such conditions assumes an equilibrium  
Boltzmann form [20] controlled by a potential being a sum of the elastic free energy 
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Fel(h) and a flow potential kTh⋅(Q/D)h/2. Introducing a relaxation time inversely 
proportional to the diffusion coefficient, τ = Na2/6D, the equilibrium distribution for the 
flow reads 

W C N L* x dx
Na

h Na

( )h h Qh= − + ⋅








∫exp ( )

/ 3
2

0

τ
 (25) 

With the Padè approximation, the distribution assumes the following form 

W C
h

N a
h

Na Na

N

( )h h Qh≅ −






 − + ⋅







1

1
2

32

2 2

2

2 2exp
τ

 (26) 

At small τQ, distributions (25) and (26) reduce to the flow-modified Gaussian form 

W C
Na

( )
( )

h
h I Q h

= −
⋅ −





exp
3
2

2
2

τ
 (27) 

Below we discuss segmental orientation and stresses in biaxial affine deformation of 
uncrosslinked polymer solids and rubbery networks, as well as in biaxial extensional 
flow of chains in a viscous liquid, obtained using the above model.    
 
Affine deformation in the solid state 

We consider an affine, biaxial stretching of the polymer chains along horizontal x1 
and zenithal x3 axes of an external system of co-ordinates, with the stretch ratios λ1 
and λ3, respectively. The remaining horizontal stretch ratio λ2 results as 1/λ1λ3 from 
the condition of isochoric deformation. Then, the macroscopic and molecular defor-
mation tensors are equal and read 

Γ =

















λ
1/ λ λ

λ

1
2

1
2

3
2

3
2

0 0
0 0
0 0

 (28) 

The initial distribution of end-to-end vectors is assumed to be an equilibrium, non-
Gaussian distribution, controlled by the inverse Langevin elastic free energy. In the 
uniaxial case, the stretch ratios reduce to  λ1 = λ2 = 1/λ3

1/2. 
Using the non-Gaussian distribution function, Eq. (20), the average elastic free 
energy, stress and orientation tensors in the series expansion form read 
< >

=










 +

























+
















F
N T

el

k
tr

N
tr

N
tr

N
O

N
1
2

1
20

2
3Γ

+
Γ Γ Γ2 2

 (29) 

< >
=





 +















 +

















p v
kT N N N N N

0
31

5
2

Γ
+

Γ Γ Γ Γ2

tr O  (30) 

< > =




 +















 +















A

1
5

4
175

2
3Γ

+
Γ Γ Γ Γ2

N N N
tr

N
O

N
 (31) 

The average characteristics depend on the macroscopic deformation tensor reduced 
by the number of statistical segments in the chain, Γ/N. Components of the reduced 
deformation tensor characterise an effective molecular deformation. The first term in 
each average, linear in Γ/N, corresponds to Gaussian statistics and leads to the well 
known linear stress-orientation law 

< >=
< >

A
p1

5
0v

kT
 (32) 
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The average axial orientation of chain segments is usually characterised by the axial 
orientation factor, an average of the second order Legendre polynomial of cosine of 
the angle between the segment and the deformation axis. Axial orientation factors f1, 
f2, f3 characterise orientations with respect to the co-ordinates’ axes, and are given by 
the components of the deviator of the average orientation tensor 

D A A I≡< > − < > =

















1
3

2
3

0 0
0 0
0 0

tr
1

2

3

f
f

f
 (33) 

The axial orientation factors read  

( )

( )

( )

f A A A

f A A A

f A A A

1 11 22 33

2 22 11 33

3 33 11 22

1
2
1
2
1
2

=< > − < > + < >

=< > − < > + < >

=< > − < > + < >

 (34) 

where <Aii> are components of the average orientation tensor, Eq. (14). 
We note that the sum f1+f2+f3 = 0. 
The norm of the tensor D  

( )[ ] ( )D DD= = + +tr
/

1
2

2
2

3
2 /T 1 2 1 22

3
f f f  (35) 

is a scalar characteristic of the system global anisotropy.  
Using the expansion form of the average orientation tensor we obtain 

f
N

N
O

N

1 = − +






















+

+ − +








 + +









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
































+





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1
5

1
2

1

8
175

1
2

1 1
2
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2
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2 3
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1
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2
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N
O

N
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

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


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
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
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


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f f f2 = − +( )1 3  (38) 
First terms in the above expressions correspond to the Gaussian chain statistics.  
For the uniaxial case, the orientation factors reduce to 

f
N N

O
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 (39) 

321 2
1 fff −==  (40) 

The series-expansion approach leads to weakly convergent expressions, in particular 
at higher - biaxial or uniaxial - deformations.  
We average the individual chain characteristics with the affine, non-Gaussian distri-
bution of h vectors in the Padè approximation, Eq. (22). Solid lines in Fig. 2 and Fig. 
3 illustrate the axial orientation factors f1 and f3 vs. transversal stretch ratio λ3, at fixed 

  (36) 

  (37) 
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axial stretch ratio λ1 (indicated), computed with the Padè approximation of the non-
Gaussian distribution. Stretch ratios smaller than unity correspond to compression. 
The stretch range is limited by full extension of an average chain conformation, i.e., 
the one with end-to-end distance equal to N1/2a in the undeformed state. We assume 
the number of statistical segments in each chain N = 100, and our computations 
apply to 
 λ + λ λ λ1

2
3

2
1 3

2+ <1 / ( ) N  (41) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Axial orientation factor f1 vs. transversal stretch ratio λ3 at fixed stretch ratio λ1 
(indicated) for affine biaxial deformation of non-Gaussian chains in the Padè approxi-
mation (solid lines), computed from Eqs. (11) and (22). Dashed line – computed from 
the Gaussian term in Eq. (36), dash-dotted line – from two terms of the series ex-
pansion, Eq. (36), at λ1 = 6 
 
As expected, transversal stretch reduces the axial orientation factor f1 (Fig. 2) mono-
tonically with increasing transversal stretch ratio λ3. A negative axial orientation factor 
indicates domination of transversal orientation of chain segments. The orientation is 
produced by dominating transversal stretch, or by compression. The orientation 
factor f3 can be enhanced by a co-axial stretch, and it increases monotonically with 
stretch ratio λ3.  
Example deviations of the Gaussian model, Eq. (36), and the two-term series 
expansion model, Eq. (37), are illustrated, respectively, by the dashed and dash-
dotted lines in the figures. The two-term model gives results being closer to the 
model with Padè approximation, but both of them significantly deviate at higher 
deformations. 
Our results can be compared with the results of a series expansion theory based on 
the Nagai formulation [21] of segmental orientation, and obtained by Sarac et al. [13] 
The slopes of the plots shown in Fig. 2 and Fig. 3 show stronger effects of stretch, 
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say λ3, on the co-axial orientation factor, f3, than on f1. A similar conclusion for 
infinitesimally small deformations was found in the series expansion model [13]. 
Tendencies of the segmental orientation behaviour in biaxial affine deformation 
predicted in our approach and by the series expansion model [13] are in qualitative 
agreement. However, the results shown in ref. [13] are limited to second-order 
approximation, and indicate significant differences between the first- and second-
order approximations at higher stretch ratios. This source of uncertainty is reduced in 
the closed-form approximation of the inverse Langevin statistics.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Axial orientation factor f3 vs. stretch ratio λ3 at fixed stretch ratio λ1 (indicated) 
for affine biaxial deformation of non-Gaussian chains in the Padè approximation 
(solid lines), computed from Eqs. (11) and (22). Dashed line – computed from the 
Gaussian term in Eq. (37), dash-dotted line – from two terms of the series expansion, 
Eq. (37), at λ1 = 6 
 
The average normal stress differences in the series-expansion approach read 
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For the uniaxial case, the above formulae reduce to    
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Fig. 4. Reduced normal stress difference (<p33> - <p11>)v0/kT vs. stretch ratio λ3 at 
fixed λ1 (indicated) for affine biaxial deformation of non-Gaussian chains in the Padè 
approximation (solid lines), computed from Eqs. (10) and (22). Dashed line – 
computed from the Gaussian term in Eq. (42), dash-dotted line – from two terms of 
the series expansion, Eq. (42), at λ1 = 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Reduced normal stress difference (<p33> - <p22>)v0/kT vs. stretch ratio λ3 at 
fixed λ1 = 2, 4, 6, and 8 for affine biaxial deformation of non-Gaussian chains in the 
Padè approximation (solid lines), computed from Eqs. (10) and (22). Dashed line – 
computed from the Gaussian term in Eq. (43), dash-dotted line – from two terms of 
the series expansion, Eq. (43), at λ1 = 6 
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Fig. 4 and Fig. 5 show reduced average normal stress differences, (<p33 - <p11>)v0/kT 
and (<p33> - <p22>)v0/kT, respectively, vs. stretch ratio λ3 at fixed values of λ1 (indi-
cated). Solid lines, computed for the non-Gaussian chain statistics with the Padè 
approximation, monotonically increase with increasing stretch ratios. The stress 
difference in the deformation plane, <p33> - <p11>, is higher than that in the normal 
plane, <p33> - <p22>. Steeper increase of <p33> - <p11> in the deformation plane with 
increasing transversal stretch is predicted for transversal stretch ratios λ3 exceeding 
λ1. 
Example deviations of the single-term (Gaussian) and two-term approximations are 
illustrated in the figures by dashed lines. Both approximations, the Gaussian and the 
two-term approximation, predict a milder increase of the stress differences than the 
closed-formula, Padè approximation. Deviations of both models from the Padè appro-
ximation are much higher at higher deformations. 
  
Flow deformation 
We consider deformation and orientation of polymer chains in a viscous fluid sub-
jected to biaxial extensional flow, co-axial with horizontal x1 and vertical x3 axes of an 
external co-ordinate system. The extensional flow field is uniform, with a velocity 
gradient tensor, or deformation rate tensor, in the form  

Q = −

















q
q q

q

1

1 3

3

0 0
0 0
0 0

( + )  (45) 

where q1 and q3 are axial velocity gradients, or axial elongation rates. Velocity 
gradient q2 for isochoric flow deformation is determined from the condition tr Q = 
q1+q2+q3 = 0. For the uniaxial case we have q1 = q2 = −q3/2. 

For Gaussian chain statistics, valid for small elongation rates τqi << 1/2, flow distri-
bution of the chain end-to-end vectors, Eq. (27), leads to the average characteristics   
< >

=






F
N T

el

k
tr

N
1
2

Γ H  (46) 

< >
=

p v
kT N

0 Γ H  (47) 

< > =A
1
5

Γ H

N
 (48) 

The tensor 

Γ H
1( )

( )
[ ( + )]
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1 3
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τ
τ

τ
τ

/
/

/

q
q q

q
 (49) 

characterises molecular deformation of the Gaussian chains in the flow. The tensor 
ΓH shows a singularity at the reduced elongation rates τq1 = 1/2 and/or τq3 = 1/2, at 
which the flow potential compensates the elastic free energy of the Gaussian chains. 
The Gaussian-type averages (46) - (48) are identical with those obtained for affine 
deformation, but with the deformation tensor Γ replaced by ΓH. Similarly, effects of 
flow deformation are controlled by the molecular deformation tensor reduced by the 
number of statistical segments in a chain, ΓH/N.  
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Molecular deformation in the flow is controlled by the product of macroscopic 
elongation rate and relaxation time, τqi, reflecting the role of viscous interactions 
between the chains and the flowing medium. 
For Gaussian chains, the axial orientation factors are expressed in terms of the 
components of the molecular deformation tensor, 1/(1−2τqi), and read 

f
N q q q q1

1 3 1 3

1
5

1
2

1 1
= − +

+

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
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 (50) 
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 (51) 

For the case of uniaxial elongational flow, along the x3 axis, the orientation factors 
reduce to 

( )f
N

q
q q

f f f  3
3

3 3
1 2 3

3
5 1 2

1
2

=
+

= = −
τ

1 − τ τ
,  (52) 

At higher elongation rates, the system deviates from Gaussian, and no longer such 
an affine-type molecular deformation represented by tensor ΓH takes place.  
Orientational behaviour at higher elongation rates can be discussed using inverse 
Langevin flow distribution of the chain end-to-end vectors with the Padè approxi-
mation, Eq. (26). This formula is tractable in the entire range of flow intensities. Axial 
orientation factors f1 and f3 computed with the non-Gaussian distribution are shown in 
Fig. 6 and Fig. 7 vs. elongation rate τq3, at fixed τq1 values.  The number of statistical 
segments in a chain is fixed to N = 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Axial orientation factor f1 vs. reduced transversal elongation rate τq3, at fixed 
values of τq1 (indicated), computed for biaxial flow deformation of non-Gaussian 
chains in a viscous fluid with the flow distribution in Padè approximation, Eq. (26). 
Dashed line – Gaussian chains at τq1 = 0.25; note the singularity at τq3 = 0.5 
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Fig. 7. Axial orientation factor f3 vs. reduced elongation rate τq3, at fixed values of τq1 
(indicated), computed for biaxial flow deformation of non-Gaussian chains in a 
viscous fluid with the flow distribution in Padè approximation. Lines like in Fig. 6 
 
Orientation factors computed from the non-Gaussian model with the Padè approxi-
mation do not show any singularity. A singularity appears for the system of Gaussian 
chains at τq1 = 0.5 or τq3 = 0.5. At flow rates τq1 or τq3 exceeding 0.5, the distribution 
of end-to-end vectors in the Gaussian system is undefined. This is a well known 
feature of Gaussian systems. Examples of such behaviour are illustrated in Fig. 6 
and Fig. 7 by dashed lines, computed from Eqs. (50) and (51), respectively, at fixed 
τq1 = 0.25.  
Similarly to affine biaxial deformation in solids, transversal flow reduces axial orien-
tation, and the effect takes place in the range of transversal flow intensities, τq3, 
comparable with those of the co-axial flow, within a range of about ±0.25. Transversal 
flows with intensities below that range do not affect axial orientation, and the plots 
show a plateau in Fig. 6, the wider the higher the co-axial elongation rate. Each 
plateau is followed by a steep reduction of the axial orientation factor to negative 
values, which next converges to a common asymptote at high transversal elongation 
rates, indicating high transversal orientation. The behaviour concerns reduced elon-
gation rates, co-axial or transversal, exceeding the value of 0.5.  
Simultaneously, axial orientation in the transversal direction is built up and converges 
to a common asymptote of high orientation at high flow rates, as illustrated in Fig. 7. 
The common asymptote, as well as the wide plateau of the orientation factor at lower 
transversal deformation rates, are not predicted in the case of affine deformation in 
polymer solids. 
At lower elongation rates, segmental orientation is very week, and the orientation 
factors do not exceed 0.03 for the co-axial and -0.015 for the transversal orientation. 
The transition to the regime of high orientation takes place at reduced elongation 
rates of about 0.5, where the Gaussian model shows a singularity and becomes 
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intractable. Then, the discussion of high segmental orientation produced in the 
extensional flow is possible with the application of non-Gaussian chain statistics. 
Here we use the Padè approximation of the distribution.   
The normal stress differences calculated in the Gaussian approximation read 

< > − < >=
−

−
−


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
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 (54) 

For the uniaxial case, the stress differences in the Gaussian approximation reduce to 

( )< > − < >=< > − < >=
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p p p p
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q
q q33 11 33 22
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3
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kT
N
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 (55) 

The reduced normal stress differences (<p33> - <p11>)v0/kT and (<p33> - <p22>)v0/kT, 
computed with the non-Gaussian distribution and the Padè approximation, are 
plotted in Fig. 8 and Fig. 9 vs. τq3, at fixed values of τq1. The dashed-lines show the 
stresses computed from the Gaussian model. The stress differences show a plateau 
in the range of the transversal elongation rates τq3 lower than τq1. Similarly to the 
axial orientation, the stress differences increase steeply in the range where both 
elongation rates τq1 and τq3 are comparable to each another, within a range of about 
±0.25. Next, they approach a common asymptote at higher deformation rates. The 
steep increase is followed by a mildly increasing common asymptote. The effective 
increase in segmental orientation takes place at the reduced elongation rates ex-
ceeding 0.5, where the Gaussian model is unphysical. At the reduced elongation 
rates below 0.5, both stress differences are very low, similarly to the axial orientation 
factors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8. Reduced normal stress difference (<p33> - <p11>)v0/kT vs. reduced transversal 
elongation rate τq3, at fixed values of τq1 (indicated), computed for biaxial elon-
gational flow of non-Gaussian chains in a viscous fluid with the flow distribution in 
Padè approximation. Lines like in Fig. 6 
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Fig. 9. Reduced normal stress difference (<p33> - <p22>)v0/kT vs. reduced elongation 
rate τq3, at fixed values of τq1 (indicated), computed for biaxial flow deformation of 
non-Gaussian chains in a viscous fluid with the flow distribution in Padè approxi-
mation, Eq. (26). Lines like in Fig. 6 
 
The model concerns the effects of an intra-chain non-linear elastic potential, and 
related finite chain extensibility, on segmental orientation and stress in systems with 
fixed chain length. Excluded-volume effects are neglected for condensed systems. 
The effective chain length can be influenced during the deformation by inter-chain 
entanglements. Experimental and theoretical work shows that inter-chain interactions 
may influence the orientation and stress characteristics, depending on the system 
[22-25]. The effects of intermolecular interactions are not taken into account in our 
calculations. Increasing degrees of cross-linking (chemical, physical) and high chain 
flexibility reduce an excess of orientation and stress resulting from entanglements. 
Also dilution with an appropriate isotropic solvent diminishes the entanglements’ 
effect on segmental orientation. 
 
Conclusions 
- A closed-formula model of biaxial (and uniaxial) deformation, affine or viscous flow, 
accounting for the effects of finite chain extensibility in the elastic potential, is 
proposed for the entire range of chain extensions. Chain statistics bases on the Padè 
approximation of the inverse Langevin function in the non-Gaussian distribution. This 
approximation avoids slowly convergent procedures of the series expansion formu-
lation in discussing segmental orientation and stresses in systems subjected to high 
molecular deformations.  

- The range of affine deformation and segmental orientation in solids is limited by the 
full extension of an average chain conformation in biaxial stretching which leads to 
the condition λi

2/N+λj
2/N+1/λi

2λj
2N < 1. Consequence of this limitation is a rather 
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narrow range of segmental orientation available in biaxial stretching by the affine 
manner.  
- The segmental orientation and stresses in biaxial affine stretching are controlled by 
squares of the macroscopic stretch ratios reduced by the number of statistical 
segments, λi

2/N, λj
2/N. In the case of flow deformation, the control variables are 

reduced elongation rates τqi, τqj, reflecting viscous interactions between polymer 
chains and the liquid medium subjected to the flow. 
- Biaxial elongational flow is more effective for segmental orientation than affine 
biaxial deformation. The computations indicate that highest values of the axial orien-
tation factor in affine deformation do not exceed 0.2 while the elongational flow 
produces orientation factors as high as 0.5, and higher. The monotonic increase of 
the orientation factors at high elongation rates indicates the possibility of production 
of biaxial orientation between ideal transversal (fi = -1/2) and ideal longitudinal 
alignment (fi = 1) by biaxial elongational flow. Elongation rates in the biaxial flow are 
unlimited in the model. 
- Transversal stretching in the affine biaxial deformation reduces axial orientation 
more effectively when it dominates the co-axial stretch ratio. Similarly, enhancement 
of the axial orientation by the co-axial stretch is stronger when it exceeds the 
transversal stretch ratio. This is accompanied by a similar behaviour of the stress 
differences. 
- In the flow deformation, the effects of transversal elongational flow are higher than 
in the affine stretching, and concentrated within a narrow range of elongation rates 
where both elongation rates are comparable. Transversal elongation does not 
influence orientation and stresses when its rate is beyond that range. 
- Significant deviations of the orientation and stress characteristics from the Gaussian 
model are predicted at higher deformations. Gaussian chain statistics is ineffective 
for discussion of segmental orientation and stresses in biaxial extensional flow, 
because of singularities and the indefinite behaviour in the range of elongation rates 
effective for orientation. 
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