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Polyamide 11/multi-walled carbon nanotubes nanocomposite fibers with weight fraction 2, 4, and 6 wt.%
and diameter 80 lm were prepared with a twin screw mini-extruder. The morphology and degree of
dispersion of the multi-walled carbon nanotubes in the fibers was investigated by using scanning and
transmission electron microscopy. In turn, the molecular structure was indicated by using wide-angle x-ray
scattering and correlated with thermal analysis. It was found that carbon nanotubes lead to the formation
of a phase in the fibers and they show medial level of alignment within the length of the fiber. Mechanical
analysis of the fibers shows that apart from the crystallinity content, the tensile strength is strongly
dependent on the macroscopic defects of the surface of the fibers. Nanocomposite fibers based on polyamide
11 with carbon nanotubes can be used as a precursor for non-woven or woven fabrics manufacturing
process.
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1. Introduction

Polyamides (nylons) are wide range groups of polymers that
are both crystalline and amorphous materials in which the
repetitive units are connected by characteristic amide groups
(-CONH-). Within this group of polymers, Polyamide 11
(PA11) is one of great importance because of its excellent
properties, including resistance to chemicals, a wide range of
working temperatures (from �40 to +130 �C), less water
absorption or high dimensional stability. Hence, this type of
polyamide is willingly used in almost each industrial sectors,
for instance, automotive, industrial vehicles, medicine, food
packaging, aerospace, sports applications, and also textile
industries. The last one includes usage of PA11 fibers as
precursors for woven or non-woven fabrics or mats. Nowadays,
a lot of researches are focused on electrically conductive fibers
and fabrics which can be used as smart materials to regulate
electrostatic discharge (ESD) and determine shielding from
electromagnetic interference (EMI) and radio frequency inter-
ference (RFI). One of the methods to manufacture smart fibers
and fabrics is doping neat polymer with conductive filler like
multi-walled carbon nanotubes (MWCT, MWCTs). By addition

of MWCT into a polymer the fibers with improved mechanical
performance and electrical conductivity can be achieved
(Ref 1-7).

Polymer/CNT nanocomposite fibers with CNT content not
higher than 10 wt.% can be obtained by extrusion or spinning
methods. In many cases, the higher the percentage of CNT
(more than 10 wt.%), the lower the desired properties. Never-
theless, the enhancement in mechanical properties, chemical
resistance, and increase in electrical and thermal conductivities
caused by CNT addition were observed. Moreover, the addition
of CNT leads to polymer crystallization, which acted as a
template for polymer chain orientation (Ref 4-8).

It has been found that PA11 can occur in several crystal
structures that have been described by many authors (Ref 9-18),
and hence, some difference in nomenclature is evident. At room
temperature (after cooling from the melt), PA11 occurs in the
triclinic a form (stable) and smectic pseudo-hexagonal d¢-form
(metastable). However, the a-form in the range of 60-100 �C
alters reversibly into the hexagonal d phase, which is
stable above 100 �C (so called Brill transition). According to
different authors (Ref 12-17), the specific order of the a-form
can be reached by slow cooling, annealing, or by solution
casting. In turn, a disordered pseudo-hexagonal d¢-form can be
obtained upon quenching the polymer from the melt state
resulting in smectic-like order. In our case, the lattice param-
eters of the triclinic a crystalline phase are a = 4.9 Á̊,
b = 5.4 Á̊, c = 14.9 Á̊, a = 49�, b = 77�, c = 63� (Ref 16).

Based on our knowledge, there are just a few papers that
investigate nanocomposites made of PA11 with MWCT (Ref
19-22) but not in the form of fibers. We have already
published the general procedure of fabrication PA11 fibers
and non-woven fabrics doped with MWCT (Ref 23). In this
paper, we focused on characterization of PA11 nanocompos-
ite fibers (PA11/MWCT) with 2, 4, and 6 wt.% of MWCT
produced by the drawing of extrudate with average thickness
80 lm. The effect of MWCT on morphology, their distribu-
tion, and PA11 crystallization were evaluated using SEM,
TEM, WAXS, and DSC methods. The mechanical properties
of PA11/MWCT fibers are shown in terms of further
applications.
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2. Experimental

2.1 Materials

Nanocomposite fibers made of PA11 (Rilsan, Arkema) with
a 2 wt.% MWCT (PA11_2), 4 wt.% MWCT (PA11_4), and

6 wt.% MWCT (PA11_6) were fabricated using a twin, co-
rotating screw mini-extruder HAAKE MiniLab (Thermo Sci-
entific, Germany) equipped with circular nozzle (d = 0.3 mm).
More details about fibers manufacturing are given in Ref 23.
All of the tested fibers have the diameter within the range
80± 10 lm.

Fig. 1 TEM images of PA11_6 starting pellets

Fig. 2 The distribution and dispersion of MWCT in PA11_6 fibers
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2.2 Methods

The morphology of starting pellets and then fibers was
analyzed using a scanning electron microscope (SEM) (SEM
3000, HR STEM S5500, Hitachi). In turn, the distribution and
dispersion of MWCT in the fibers/starting pellets was analyzed
using HR STEM S5500 in SEM and STEM mode. Samples for
SEM and TEM observations were prepared using Leica UM6
positioned in a low-temperature chamber. Slides with a
thickness of 80-90 nm were created using Diatome diamond
knives which are suitable for trimming and sectioning. The
process was performed using a temperature of 100 �C with the
speed cutting set at 1 mm/s. The plain of cross sections was
aligned with the direction of the extrusion process. The single
fiber was cut parallel to its long axis. The SEM and TEM
observations were made with a voltage of 30 kV. Additionally,
the fiber surface was analyzed using SEM 5500.

The supermolecular structure, in terms of crystallinity and
molecular orientation, was analyzed by using wide-angle x-ray
scattering (WAXS) and differential scanning calorimetry
(DSC). WAXS (D8 Discover, Bruker) measurements were
performed using a diffractometer operated at the voltage of
40 kV and a current of 40 mA. Cu Ka radiation (wavelength of
0.1542 nm) was used. Measurements were performed in both
transmission and scattering modes. Gebel geometry with a 0.6-

mm slit and two Soller collimators applied on both sides were
used in transmission mode. A highly sensitive 2D Vantec
detector was used. The angular range of measurements 2h was
between 5� and 30� with a step of 0.01� and with time of data
accumulation at particular angular point of 0.2 s. WAXS radial
profiles were deconvoluted using the Pearson VII and Gauss
function. The amount of the crystal, smectic, and amorphous
phase of PA11 was determined by division of the area of crystal
peaks (001) and (100) and (010) + (110) by the total area
(crystal, smectic and amorphous) scattered on PA11 from the
radial profile after azimuthal averaging of intensity. Measure-
ments were executed on well parallelised bundles of fibers.
Firstly, background correction was performed. Thermal anal-
ysis was performed using DSC (Q-1000 (TA Instruments)
placed in an aluminum hermetic pan in a nitrogen atmosphere.
The utilized program was heat-cool-heat with a scan rate 10 �C/
min. The crystallinity of all the materials was estimated using
the standard equation:

xc ¼
DHf

DH0
f

; ðEq 1Þ

where xc is the crystallinity of measured sample, DHf is the
heat of a sample normalized with respect to its mass, while
DH0

f is the specific heat of fusion of 100% crystalline PA11

Fig. 3 Fibers surface: neat PA11 (a, b), PA11_6 (c, d)

70—Volume 25(1) January 2016 Journal of Materials Engineering and Performance



taken as 189.05 J/g (Ref 5). For each composition, three mea-
surements were conducted. The characteristic temperatures
and calculated crystallinity for the pellets and fibers are pre-
sented in Table 2.

The mechanical properties of the extruded fibers were
measured in tensile testing (MTS Tytron 250 instrument)
according to the standard test method for tensile strength and
Young�s modulus of fibers (ASTM C1557-03(2013)). From one

Fig. 4 WAXS patterns for fiber: PA11 (a), PA11_2 (b), PA11_4 (c), PA11_6 (d) (arrow indicates the direction of a fiber bundle)

Fig. 5 Typical WAXS radial profiles for investigated PA11 and PA11/MWCT fiber
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type of material, 10 single fibers were tested to failure at a
constant cross-head displacement rate, with the same velocity
equal to 10 mm/min. The used conditions were close to those in
which the nanocomposite fibers will be worked. Then, the
average values of tensile strength, elongation at break, and
Young�s modulus were calculated with taking the value of
diameter into account.

3. Results and Discussion

3.1 Morphology

The state of dispersion in the one of starting pellets-PA11_6
is shown in Fig. 1. There are places with visible primary
agglomerates with single nanotubes around them. Based on our
experience with polymer/MWCT nanocomposites, these tubes
are rather short when compared to other commercially available
examples. Moreover, there are some visible black spots that
indicate impurities in the material. It is highly probable that
they are residues created by the carbon nanotubes manufactur-
ing process (CVD-chemical vapor deposition) like carbon or
the rest of the catalyst. Besides, the appearance of the MWCT
used in this study as well as the state of dispersion is similar to
that described by Mago et al. (Ref 19).

High shear forces and relatively long mixing time during
extrusion process lead to the breakage of agglomerates,
resulting in a satisfactory distribution and dispersion in the
final fiber. The alignment of CNT is of great importance in
achieving the desired mechanical properties of fibers. During
extrusion, the movement of the melted polymer forces the
orientation of the macromolecular chains. In turn, the orienta-
tion and alignment of carbon nanotubes is mostly triggered by
the drawing or stretching of the extrudate (Ref 5, 7, 24]. TEM

images taken from thin sections prepared along the PA11/
MWCT fiber are shown in Fig. 2. The red arrows show the
direction of the extrusion and drawing. It can be seen that there
is no alignment of MWCT in the extrusion direction. This is
contrary to, for instance, polycarbonate/MWCT fibers (Ref 24)
or those reviewed in Ref 5-7 prepared by melt spinning. The
reason for this could be related to a too low drawing velocity
that was described for polyethylene/MWCT (Ref 25) and
polycarbonate/MWCT fibers (Ref 26). On the other hand, the
dimensions of the used MWCTs can be a factor affecting the
lack of orientation of tubes within the fibers what was also
presented by Pötschke et al. in Ref 27). It is highly probable
that very short MWCTs move in the polymer much easier than
longer MWCT. Hence, during the crystallization step of fibers
(after extrusion), the MWCT can lose the arrangement.

Furthermore, the qualitative analysis of PA11/MWCT fiber
was conducted. Figure 3 presents the surface of the extruded
fibers using SEM. Neat PA11 fiber (Fig. 3a, b) is characterized
by grooves aligned parallel to the main axis, as a result of the
fabrication process. There is visible surface continuity and it
can be stated that polymer�s chains are oriented in the drawing
direction. In the case, PA11_6 fiber�s topography is altered
significantly (Fig. 3c, d). It can be seen that the surface is not as
smooth like it is for neat PA11 fibers. Moreover, there are some
defects on the surface including cracks and knobs. Such
discontinuity of the surface can diminish the mechanical
properties (Ref 4-7). Most likely, the presence of MWCTs
makes the extrusion process much more difficult, resulting in
macroscopic defects of the fiber.

All of the predictions made about orientation of polymer
chains and MWCT in the fibers using the microscopic images
will be discussed and compared in the sections 3.2 and 3.3 by
WAXS and DSC analysis, respectively.

3.2 Molecular Structure

The supermolecular structure was analyzed using WAXS
and DSC. Figure 4 illustrates typical WAXS patterns registered
for various fibers (A: PA11; B: PA11_2; C: PA11_4; D:
PA11_6). All of the fiber samples indicate the molecular
orientation of PA11 crystal phase. The radial profile of pure
PA11 fiber shows several peaks attributed to triclinic crystal
structure: crystal phase d¢ (001) at 2h = 4� and (100) at
2h = 21�; smectic c phase at 2h = 20.5�; amorphous phase at
2h = 10� and 2h = 19.5� (Fig. 5). The radial profile of the
PA11 nanocomposite fiber shows additional peaks that can be
attributed to (010) + (110) at 23.5� and a weakly visible peak at

Table 1 Interplanar distances, d of angular positions 2h
of peaks for planar (001), (100), (010) + (110)

(001) (100) (010) + (110)

Fiber d, A d, A d, A
PA11 12,754 4088
PA11_2 12,035fl 4200› 3898l
PA11_4 12,052fl 4237› 3862l
PA11_6 11,926fl 4237› 3862l

Fig. 6 Examples of fittings of WAXS radial profiles PA11 (a), PA11_6 (b)
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about 2h = 26� corresponding to MWCT presence (Fig. 5).
The radial profile of pure PA11 is characteristic for polyamides
formed after having been quenched in an ice bath. Peaks at
(100) at 2h = 21�, (010) + (110) at 23.5� are characteristic for
polyamides crystallizing in a form during isothermal crystal-
lization at high temperature (Ref 10, 28, 29). It is evident that
the addition of MWCT promotes a phase formation. This is
probably due to the thermal capacity of nanotubes or the
crystallization in temperatures higher than 95 �C. This effect
was defined already for the PA11/MWCT pellets, which were
then used for fiber formation. There is a small shift of PA11
(001) and (100) reflections observed for PA11/MWCT in
comparison with pure PA11 (Fig. 5). Those shifts correspond to
a small decrease in d crystal spacing connected to the c axis
(001) of the lattice cell diameter and an increase of a (100) in
the presence of MWCT. In turn, the position of (010) + (110) in
the case of PA11/MWCT fibers does not change significantly
(Table 1). Slichter et al. observed a change of phase from d¢ to
a under pressure as a reduction in spacing on the (001) planes
by compression of the hydrogen bond between macromolecules
in plane (010) by high pressure. Reduction of N-HÆÆÆO distance
influences a change in the angle b. Quite similar effects were
observed in the samples that were reported already (Ref 12, 13).

Examples of the fittings of WAXS radial profiles of the
investigated fibers using the Pearson VII (crystal phase) and
Gauss (smectic and amorphous phase) function are shown in
Fig. 6. It can be seen from Fig. 7 that a relatively small addition
of MWCT leads to an increase of PA11 crystalline and smectic
phase content. This is because of the effect of additional

nucleation on MWCT and/or more effective drawing in the
presence of MWCT.

3.3 Thermal Properties

A thermal analysis was conducted for the pellets and fibers,
and the results are collected in Table 2. The addition of MWCT
has a visible effect on the temperature of crystallization (Tc)
which is 8 �C higher for PA11 fibers with 6 wt.% MWCT than
for neat PA11. This confirms the nucleation effect of MWCT on
PA11 in the fibers as well as in the pellets (Table 2). The
addition of MWCT has a much smaller influence on the melting
point (Tm) as well as the crystalline content of PA11 fibers.
DSC results show that the crystals melt in the wide temperature
range between 150 and 170 �C (Fig. 8). Interestingly, there is a
drop in melting point for first and second heating equal to 3 �C
because of the MWCT presence. Such phenomenon was
observed by Huang et al. for PA11 doped with functionalized
MWCT (Ref 20) and could be caused by different types of
crystals. If smaller, imperfect/defected crystals are formed, they
have a lower melting temperature. It is worth noticing the
typical tiny peak just before the main melting range on the neat
PA11 curve is associated with the occurrence of polymorphism
in PA11 (Ref 14). The degree of crystallinity was determined
using Eq 1. According to Table 2, there is not a clear
dependence of PA11 crystalline in MWCT function for pellets
and fibers. Generally, the crystalline content decreases for filled
PA11 but there are some deviations, especially for fibers.
Nevertheless, these differences in crystallinity are in agreement
with that observed in the WAXS patterns.

3.4 Mechanical Properties

It was shown that PA11/MWCT fibers possess unsatisfac-
tory orientation of the macromolecules in the direction of
drawing. Besides, the MWCT alignment is not as high as it
could be because the drawing conditions are not optimized.
Nonetheless, we would like to show whether or not fully
ordered MWCTs affect the mechanical performance of PA11
fibers. Figure 9(a)-(c) presents the Young�s modulus, tensile
strength, and elongation at break of the PA11/MWCT fibers. It
is known, that at low strains up to the yield point, the MWCT-
doped PA11 fibers show higher stress (Ref 5, 7, 30). It is
expressed by an increase in Young�s modulus clearly visible in
Fig. 9(a). Unfortunately, the obtained values are lower than
expected. For PA11_6 fibers, the Young�s modulus is almost
600 MPa. Compared to literature, the lowest found values of

Fig. 7 Phases content for pure PA11 and PA11/MWCT at room
temperature

Table 2 Thermal properties for pellets and fibers of PA11 and MWCT-doped PA11

Form Material
First heat Second heat

Cooling
Tg , �C Tm , �C DH , �CJ/g Xc , % Tm , �C DH , J/g Xc , % Tc , �C

Pellets PA11 45.89 101.2 189.3 51.47 27.22 188.7 46.74 24.72 163.1
PA11_2 45.88 104.4 188.4 58.42 30.91 188.4 52.96 28.01 173.8
PA11_4 47.47 85.01 186.6 43.23 22.87 186.7 40.44 21.39 171.9
PA11_6 43.86 80.02 185.2 39.27 20.77 185.2 47.42 25.08 171.5

Fibers PA11 58.54 (Peak) — 186.9 40.05 21.18 1878.0 69.59 36.81 162.9
PA11_2 53.50 — 186.4 39.54 20.92 185.8 61.45 32.51 173.2
PA11_4 47.91 — 185.7 52.24 27.63 184.5 36.78 19.45 171.3
PA11_6 51.42 — 183.5 36.49 19.30 184.3 42.91 22.69 170.4
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Young�s modulus for others polymer/MWCT fibers are at the
level of 500 MPa. In turn, the elongation at break for more stiff
fibers, here 4 and 6 wt.% MWCT, is decreased. This is shown
in Fig. 9(c). For industrial application the most important factor
is tensile strength, which is reported as to be between 0.1 and
7 GPa (Ref 5, 7, 30). Generally, the tensile properties of fibers
are dependent on (i) orientation of macromolecules chains, (ii)
dispersion of the MWCT, and (iii) alignment of the MWCT.
These factors are expressed by crystalline content. Following
the calculated percentage of Xc, it should be assumed that the
MWCT-doped PA11 fibers should have lower tensile strength.
This is because the amount of crystalline phase in fibers is
lower when MWCTs are added. Following the results in
Table 2, there are a few deviations in Xc values, which make a
comparison between tensile and crystalline content difficult.
Therefore, we presume that there are other factors affecting a
significant reduction of PA11/MWCT strength. The first one is
related to the described MWCT agglomerates in the fibers and
the mentioned impurities occur in the material (see Fig. 2).
Weakly dispersed MWCT bundles can act as stress concentra-
tion points what was also noticed by Pötschke et al. (Ref 24).
The second reason is associated with the nature of the used
MWCT. On one hand, the presence of impurities can work as
an intrinsic crack. On the other hand, MWCTs with too short of
a length (less than 1.8 nm) are not able to connect the PA 11
chains together, resulting in easy gliding of macromolecular
chains. Finally, the third reason for decreasing tensile strength
of the PA11 fibers after MWCT addition is linked to the
macroscopic effects. According to microscopic investigation in
section 3.1, the surface of the fiber after MWCT addition
possesses visible defects and a much rougher face. Contrary to
the neat PA_11 fibers that have a surface which is flat and
smooth (see Fig. 3). Hence, even small discontinuities like
knobs or oval grooves, which are easily noticeable on the PA/
MWCT surface, can act as micronotches during tensile strength.
It is highly probable that macroscopic effects have stronger
influence of mechanical strength of PA11/MWCT fibers.

4. Conclusions

In the present work, the nanocomposite fibers made of
Polyamide 11 and 2, 4, and 6 wt.% of MWCT (PA11/MWCT)
were characterized by their molecular structure, microstructure,
and mechanical properties. WAXS analysis shows that fibers

achieve the molecular orientation of PA11 crystal phase but the
addition of MWCT leads to a reduction of expected orientation
in these fibers. These results were confirmed by microscopic
investigations where MWCTs occur in the form of agglomer-
ates and they are not aligned in the drawing direction. Deep
analysis of PA11 polymorphism suggests that MWCTs pro-
nounce the creation of a stable a phase in both the starting
pellets and fibers. Besides, a third phase (smectic) in the PA11/
MWCT fibers was found. Crystallization temperature increases
after MWCT addition. This confirms that MWCT works as a
nucleating factor for PA11. Contrary to a decreased melting

Fig. 8 Melting peak for unfilled and filled PA11and PA11/MWCT
fibers. Thermograms are recorded during the 2nd heating

(a)

(b)

(c)

Fig. 9 Mechanical properties of nanocomposite fibers: Young�s
modulus (a), tensile strength (b), elongation at brake (c)
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range for the filled PA11 fibers, this is related to the formation
of defected crystals. Generally, the degree of crystalline is
diminished when MWCTs are present, but some visible
deviations occur. Mechanical testing shows that just Young�s
modulus increases after MWCT addition. More stiff fibers have
lower elongation at break. In turn, the changes in tensile
strength of fibers are related to various parameters. There is a
lack of fiber orientation, MWCT agglomerations, and surface
defects of the fiber. All of these factors cause the significant
reduction of their strength. In order to achieve good quality
PA11/MWCT fibers, it is necessary to apply higher drawing of
extrudate which will lead to improved strength. Merely by
improving mechanical behavior, these fibers can be used in
many industrial sectors, mainly in as a precursor for smart,
conductive fabrics in textile world.
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