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Abstract: Artificial immune systems (AIS) have become popu-
lar among researchers and have been applied to a variety of tasks.
Developing supervised learning algorithms based on metaphors from
the immune system is still an area in which there is much to explore.
In this paper a novel supervised immune algorithm based on clonal
selection framework is proposed. It evolves a population of linear
classifiers used to construct a set of classification rules. Aggregating
strategies, such as bagging and boosting, are shown to work well
with the proposed algorithm as the base classifier.
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1. Introduction

This work presents a novel immune algorithm, which is an example of applying
the general framework of clonal selection with suppression based on usefulness
(a novel measure of artificial immune cell quality) to create new computational
techniques. Clonal selection is one of the most important paradigms of artificial
immune systems (AIS) (Dasgupta, 1998). The general schema of clonal selection
algorithm is presented in Fig. 1. The algorithm is inspired by the evolutionary
process of B–lymphocytes in the immune system of higher vertebrates. In the
presence of antigens the B–cells become stimulated. The intensity of stimula-
tion depends on how close the B–cell matches the antigen (on the molecular
level). The most stimulated cells are cloned and mutated, the number of clones
depends on the stimulation. The useless cells are removed from the system. The
hypermutation process, i.e., the mutation at very high rates, leads potentially
to a population of lymphocytes that recognise and react against the antigens
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more efficiently. In AIS the problems (e.g., the training samples) are treated as
antigens, whereas possible solutions are represented as lymphocytes. Although
the process of developing the immune response is a complex biological process,
not fully understood yet, the main concept is the basis for creating the clonal
selection algorithms. The general paradigm and its main steps, common for all
clonal selection algorithms, are presented in Fig. 1. The algorithm proposed in
this work is based on this paradigm. However, novel ideas are introduced.

Figure 1. The general schema of Clonal Selection Algorithm.

There are several features in the proposed algorithm that contribute to its
novelty and originality. It assumes hyperplanes as the form of lymphocyte
representation. It evolves a population of hyperplanes, solving a multiclass
classification task. It is a supervised learning algorithm, as it makes use of class
information in the form of the sample class labels during training. In its basic
form it is formulated for the two–classes case, then it is extended to multiclass
case. The final classification is based on voting among rules, which use weighted
attributes and are created by means of the evolved linear classifiers. Since the
proposed approach is formulated as a clonal selection algorithm, all the steps
of the general clonal selection schema are defined with respect to the assumed
representation of lymphocytes as linear classifiers. Linear classifiers (artificial
lymphocytes) are trained to solve the problem not only by competition, but first
of all by cooperation, which is due to the proper formulation of the suppression
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step. The idea of suppression based on usefulness is utilised. Usefulness is this
context has the meaning of artificial immune cell quality. This concept was
proposed in Bereta and Burczyński (2007) and further developed in Bereta and
Burczyński (2006). Proper definition of the usefulness of a given lymphocyte for
the whole population is crucial for the evolution of the population with desired
properties. This approach is different from the commonly used suppression
based on similarity, in which if there are too similar lymphocytes, the worst of
them are removed. As it was the case in the cited works, also in this paper
it is shown that suppression based on usefulness of the lymphocytes allows to
develop populations of different, interesting properties.

The proposed algorithm is very unstable (i.e., very sensitive to the change
in the training set) and for that reason it is especially suitable for the usage
in construction of aggregated classifiers, which are very often better in solving
difficult classification problems than single classifiers. Aggregated classifiers,
also referred to as ensemble of classifiers, are discussed in Section 3.6.

1.1. Related work

Evolutionary computation methods have been applied to evolve a population
of optimal classifiers. The approaches used differ by the type of the evolu-
tionary algorithm used (Genetic Algorithm (GA), Genetic Programming (GP),
etc.) and the classifier evolved (linear classifiers (LC), Neural Networks (NN),
etc.). An approach that resembles the method presented in this paper is the
one proposed in Pal, Bandyopadhyay, and Murthy (1998) and later further de-
veloped in Bandyopadhyay, Pal, and Aruna (2004). The similarity is that in Pal,
Bandyopadhyay, and Murthy (1998) a population of linear classifiers is evolved
(however, by means of genetic algorithm instead of clonal selection algorithm).
The final classification of the unknown object is done based on the decisions
of all the linear classifiers. However, there are not many similarities between
the algorithm from Pal, Bandyopadhyay, and Murthy (1998) and the one pro-
posed here. The main difference is that in the cited work each individual in
the population encodes all the linear classifiers in the final aggregated classifier.
In Immune Hyperplane Algorithm (IHA), each artificial lymphocyte is a single
linear classifier and the whole population cooperates to solve the problem, so
that the solution is the aggregation of all the artificial lymphocytes, the number
of which differs from task to task, due to the suppression step. The proper def-
inition of usefulness in the suppression step makes the population size in IHA
adjusted – for simple problems, there are only a few lymphocytes needed. What
should be stressed is that this population size adjustment is done already during
the evolutionary process, starting from the very first iteration. Following this,
it not necessary for the user to set the number of the linear classifiers for the
problem. This is not the case in Pal, Bandyopadhyay, and Murthy (1998). Addi-
tionally, the usage of GA means that the individuals in the population compete
first of all. There is also a need to set the maximum number of linear classifiers
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that a single individual can encode. The procedure of removing some of the
linear classifiers is performed after the evolutionary process finishes. This step
resembles in some sense the suppression step of IHA, however, it is performed
at the end, which means that IHA, which removes useless LCs starting from
the first iteration, will probably find the proper population size more effectively.
The advantage comes from the fact that IHA uses the Michigan approach to
solution encoding instead of the Pittsburgh approach, which is somewhat more
popular in evolutionary algorithms. In Bandyopadhyay, Par, and Aruna (2004)
a solution for the problem of estimating the proper population size is solved
by means of the multi–objective evolutionary algorithm. The algorithm tries
to minimize the number of misclassified samples and to minimize the number
of linear classifiers. Several multi–objective techniques have been compared in
Bandyopadhyay, Pal, and Aruna (2004) yielding better results than for the ver-
sion of the algorithm with a constant number of LCs encoded by each individual.
However, multi–objective optimization problems are hard to solve. For instance,
weighting several objectives and combining them into one fitness function, eligi-
ble for use in GA, is very sensitive to the values of the weights and it is almost
impossible to select a universal set of weights, optimal for each problem. The
proposed IHA avoids the issue of solving multi–objective optimization problem
by proposing a novel approach based on clonal selection paradigm and properly
defined usefulness.

The ideas of using evolutionary computation to create ensembles of classifiers
appear in many other works. In Wang and Wang (2006) a genetic algorithm is
proposed to perform a search for appropriate weights. The weights are assigned
to each of the training samples, which are then used to create an ensemble of
classifiers. Good results in the problem of face detection are reported. In Kim
and Oh (2008) a hybrid genetic algorithm is proposed for classifier ensemble
selection. The proposed approach includes local search operations to improve
the offspring. The proposed algorithm focuses not only on optimization of the
decision function of the aggregated classifier (i.e., the combination algorithm)
but also makes an effort to optimize the selection step of the candidate clas-
sifiers from the pool of available classifiers. The problem of selecting optimal
classifiers to construct the final combined classification system is addressed also
in Ruta and Gabrys (2005). In Jing and Zhang (2003) face recognition problem
is solved by a combination of linear classifiers. The rational weights for the
classifies are generated by means of a genetic algorithm with a fitness function
based on a novel criterion, the maximum complementariness criterion. Other
works that report successful applications of combined classifiers and novel evo-
lutionary computation methodologies to create such ensembles are Gabrys and
Ruta (2006), Zhang and Bhattacharyya (2004) or Kim, Street, and Menczer
(2006).

The rest of this paper is structured as follows. First, the idea of a linear
classifier is briefly reminded. Next, the proposed algorithm is described in detail.
The generalization ability of the proposed method is discussed and possible
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ways of improvement are proposed, such as committee voting, bagging and
boosting. Very promising results for several benchmark databases are presented
in Section 4 and finally, conclusions are drawn in Section 5.

2. Linear classifiers

Let us assume that the training data consist of N–dimensional samples and
the class labels are given in the form of T = {(xi, yi), i = 1, .., M}, where
xi = (xi1, xi2, ..., xiN ) is the vector of real valued features (attributes), M is
the number of samples in the training set, and yi ∈ {1,−1} is the label of the
class, to which xi belongs. Linear classifiers are natural discriminators in the
case when the samples are linearly separable, i.e. there exists a hyperplane
w = {w0, w1, ..., wN} such that w · xi + w0 > 0 and w · xi + w0 < 0 for all
xi from class 1 and −1, respectively. The element w0 of w is often refereed
to as bias. As it is always possible to extend the training input vector xi

to x′

i = (1, xi) = (1, x1, x2, ..., xN ), the following notation can be assumed,
without losing the generality of the discussion: w ·xi > 0 for all xi from class 1,
and w · xi < 0 for all xi from class −1. In the case of data that are not
linearly separable, one single plane separating all training samples cannot be
found. The most common approach to deal with nonlinear problems is to use
a nonlinear transformation of the original problem to a new feature space, most
likely of higher dimensionality, in which the problem is linearly separable. The
transformation can be achieved, for example, by means of appropriate kernel
function (e.g., in Support Vector Machines - SVM, Vapnik, 1995) or multiple
layers in neural networks (e.g., in Multi–Layer Perceptrons (MLP) or in Radial
Basis Functions (RBF), Bishop, 1995). The problem with this approach is the
choice of the appropriate transformation, i.e. the proper kernel function, the
proper number of hidden neurons, etc. There exists no easy solution for these
problems.

The approach proposed is different. The goal is to find a set (a population) of
linear classifiers, among which none can solve the problem separately, but only in
cooperation with other classifiers. Fig. 2 shows the idea. The data presented in
Fig. 2 are not linearly separable, i.e., there exists no single line which separates
the two classes. However, without any nonlinear transformation, it is possible to
separate the two classes with two lines, w1 and w2. The final classification has
to take into account on which side of each line a given subsample is. It can be
viewed as performing two linear transformations, and constructing a set of rules
of the following type: IF w1 · xi > 0 AND w2 · xi < 0 THEN yi = −1. The
output of the algorithm proposed is a population of linear classifiers, which can
serve as a base for creation of such classification rules. The proposed algorithm
is well suited to the general framework of clonal selection with the suppression
based on properly defined usefulness. As in all previous algorithms, based on this
framework (Bereta and Burczyński, 2006, 2007), an important characteristic of
the proposed algorithm is the ability to determine the population size dynami-
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cally during evolutionary process, i.e., for simple problems small populations
are expected. In classification problems, in the case of linearly separable data,
a population consisting of only one lymphocyte (one hyperplane) is expected.

Clonal selection paradigm has been relatively seldom used to create su-
pervised learning algorithms for multiclass classification problems. The most
known, successful and influential ones are Watkins, Timmis and Boggess (2004),
Watkins (2005) or Carter (2000). The approach proposed in this work proves
that the creation of such algorithms is not only possible, but also can bring very
satisfying results. Even more rarely linear classifiers have been used in artificial
immune systems as artificial lymphocytes. The work presented in Ando and Iba
(2003) seems to be an exception. It is, however, completely different from that
presented here.

Figure 2. Line 1 is better than line 2 (it yields less misclassifications), however,
both lines have to be considered together to separate the data. Example x is
misclassified by line 2, but the pair (x, NN∗(x)) is not misclassified and does
not decrease the usefulness of line 2.

3. Immune hyperplane algorithm

3.1. Definition of usefulness

In order to solve wide range of classification problems, also nonlinear, the pro-
posed algorithm, Immune Hyperplane Algorithm (IHA), evolves a population
of linear classifiers, which solve the problem through cooperation, i.e., none of
them is globally optimal. They are locally optimal, and cooperate globally.
This means that suppression should remove classifiers, which do not contribute
to the global solution. This general definition of usefulness is, however, not so



Immune algorithm for evolving aggregated linear classifiers 331

obvious to formulate in detail. In the case of linear classifiers, none of them has
class label appointed to it, as none of them can solely decide about the final
classification. The problem is that the influence of a single linear classifier is
valid for the whole space, i.e., it divides the whole space into two subspaces.
Thus, as each classifier has to be locally tuned, checking the number of training
samples, which are correctly classified by a particular classifier does not work.
As an example, consider the situation presented in Fig. 2. Line 1 is definitely
better than line 2, in the sense that it yields less misclassifications globally. On
the other hand, both lines are equally important from the point of view of coop-
erative solution of the problem. This example explains why suppression, which
takes into account the total number of misclassifications of a given hyperplane,
is not a good choice. Favoring hyperplanes, which make few errors, produces
globally optimal planes, which try to solve the problem independently, and this
is not the goal. In this place it is worth mentioning that during evolution of the
population of hyperplanes, no classification rules (as presented earlier) are cre-
ated. The rules are created after the evolutionary process, based on the already
existing linear classifiers.

Fortunately, there is a straightforward way to define the usefulness of a given
hyperplane lymphocyte. To achieve that, the algorithm does not work on orig-
inal data, but rather on samples matched in pairs. Assuming two–class classi-
fication case, in each pair one sample is from the 1 class and the other is from
the −1 class. The original set of training samples T = {(xi, yi), i = 1..M} is
used to create a new training set in the following form:

Tpairs = {{(xi, yi), (xj , yj)} : i = 1..M, j ∈ {1..M},

NN(xi) = xj , yi 6= yj} (1)

where NN(xi) is the nearest neighbor of xi. It means that for each training
sample, its nearest neighbor from the other class is found and the pair con-
structed from these samples is added to Tpairs.

The form of representation of the training data as Tpairs has very useful
implications. It is very easy to observe that by counting the number of correctly
classified pairs, it is possible to assess the usefulness of a given linear classifier
in a way which leads the population to the desired configuration. A given pair
{(xi, yi), (xj , yj)} ∈ Tpairs is correctly classified by a given linear classifier w

if signum(w · xi) = yi and signum(w · xj) = yj , where signum(u) returns 1
if u > 0 and −1 if u ≤ 0. Counting the number of correctly classified pairs
for each plane does not have some of the disadvantages of counting the total
number of misclassifications. For example, line 1 in Fig. 2 intersects several
segments corresponding to pairs in Tpairs. Training sample x is misclassified
by line 2, however, the segment related to x and its NN∗ (nearest neighbour
from the other class) is not intersected by line 2, thus, this case is considered
neither as error nor as correct classification with respect to line 2, and it does
not decrease the usefulness of line 2.
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The concept of Tpairs construction is in a sense similar to the idea of dipoles
— pairs of feature vectors. An example of the usage of dipoles in the construc-
tion of an ensemble of Dipolar Neural Networks can be found in Kretowska
(2008). However, the idea of Tpairs used in the approach proposed in this work
is much simpler.

To summarize, a given lymphocyte (hyperplane) is considered as useful for
the whole population, if there exists at least one pair from Tpairs, which is
correctly classified only by this lymphocyte. If there exists no such pair, the
linear classifier is considered as useless. It means that if the subtask of the overall
classification task performed by the given lymphocyte can be distributed among
other individuals in the population, the given classifier can be removed without
any loss to the performance of the whole system. On the other hand, a given
classifier can be considered as useful even if it is a very poor global classifier,
i.e., it yields more misclassifications than correct classifications.

3.2. The two class case

In this section, basic formulation of the proposed algorithm is given. The train-
ing examples xi from the set T are considered to be vectors of real valued
features (attributes). The basic formulation of the IHA is for the two–classes
case. The proposed algorithm goes as follows:

IMMUNE HYPERPLANES ALGORITHM

T : A set of training samples from two classes, 1 and −1.
Pop: Population of lymphocytes, i.e., linear classifiers.
LCi: i–th linear classifier in Pop.
startPopSize: The starting size of Pop.
mutRange: The parameter of mutation.
clonesNum: The number of clones of each LCi.
newNum: The number of newly generated linear classifiers in each iteration.

START

1. Create the Tpairs set.
2. Generate the starting population Pop of the size startPopSize.
3. For each LCi in Pop, i = 1, .., |Pop|, check which pairs from Tpairs are

correctly classified by LCi.
4. Sort Pop in the descending order according to the number of correctly

classified pairs from Tpairs.
5. Create clonesNum clones for each LCi in Pop, i = 1, .., |Pop|.
6. Mutate each clone created in step 5 and check correctly classified pairs

from Tpairs for each mutated clone.
7. Add newNum newly generated linear classifiers to Pop and check correctly

classified pairs from Tpairs for each newly generated classifier.
8. Sort Pop in the descending order according to the number of correctly

classified pairs from Tpairs.
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9. Perform suppression. Starting from the worst (i.e., the one with the small-
est number of correctly classified pairs from Tpairs) LCi in sorted Pop, for
each LCi temporarily remove it from Pop. If there exist no loss in the
total number of correctly classified pairs by all classifiers in Pop, remove
LCi definitely.

10. Repeat from step 5 until termination condition is satisfied.

END

After creation of the Tpairs set, a random initial population is generated.
To alleviate the learning process, the generation process assures that the gen-
erated linear classifier separates at least two learning samples, one from each
class. This is achieved by randomly selecting two training samples, x−1 and
x1, from class −1 and 1, respectively. Next, the new weight vector wi of the
i–th generated linear classifier, LCi, is constructed as a hyper plane perpen-
dicular to the direction of vector x1 − x−1, and intersecting the middle point
between x−1 and x1. From that, wi = x1 − x−1 and the bias of wi, wi0 is

determined as wi0 = −
∑N

j=1 wij ∗ (x−1j +x1j)/2. The new lymphocytes gener-
ated in step 7 are constructed in the same way. In all experiments presented in
this paper, it is assumed that every LCi produces the same number of clones,
regardless of the number of correctly classified pairs from Tpairs, which could be,
in fact, interpreted as stimulation level and used to promote better classifiers
by allowing them to produce a bigger number of clones. It is not used here,
however, as the algorithm works well without this property. The mutation is
performed in a very simple manner. Parameter mutRange describes the max-
imum allowed decrease or increase of the value of each wij of a given wi, i.e.
wij = wij + mutRange ∗ (2 ∗ random(0, 1) − 1), where random(0, 1) is a ran-
dom value, uniformly sampled from the range [0, 1], j = 0, .., N (bias is also
mutated).

The results of applying the proposed algorithm to artificial 2D data sets are
presented in Fig. 3. Each example is a two–class classification problem. The
algorithm is able to find the appropriate number of lines separating the classes
cooperatively.

3.3. Dealing with noise

The formulation of the algorithm from Section 3.2 is very optimistic. The naive
assumption was that even in the case of nonlinear boundaries between classes,
the samples from different classes are not mixed, i.e., the class distributions do
not overlap and there is no noise or incorrect labels in the training set. If the
distributions do overlap or some incorrect labels exist in the training set, the
construction of the set Tpairs becomes erroneous, in the sense that there are pairs
from Tpairs entirely included inside one of the classes. This leads to populations,
in which many classifiers are adapted only to these noisy pairs. This undesirable
effect is illustrated in Fig. 4, in which two classes with artificially added noise
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Figure 3. Example results of Immune Hyperplane Algorithm applied to 2D
artificial data (classification problems with two classes). The proposed method
is able to find the proper population size for the given problem.

Figure 4. The population evolved on data with added 5% of noise (left). The
population evolved on noisy data with modified method of Tpairs construction
(right).

are presented, together with a population of evolved linear classifiers. Note that
there are many unnecessary lines, due to the existence of misleading pairs.

Fortunately, there is a simple modification that can be introduced into the
algorithm, allowing for the limitation of the undesirable effect of the misleading
pairs. Such pairs can be in many cases discovered during the first step of the
algorithm, in which Tpairs set is constructed. This procedure is modified as
follows. For each xi its nearest neighbor among samples from the other class is
found, as previously. Additionally, the nearest neighbor from both classes, i.e.,
from the whole training set T , is found, too. If both nearest neighbors are in



Immune algorithm for evolving aggregated linear classifiers 335

fact the same training sample, xi does not create any pair which could be used
during training and no new element is added to Tpairs. Although this simple
procedure does not eliminate all undesirable pairs, it definitely makes IHA very
resistant to noisy samples. Fig. 4 presents an example result of applying mod-
ified IHA to noisy data. Note that the modification has no effect if there is no
noise present in the data.

3.4. Classification rules

As it was already mentioned, a final classification of an unknown sample by
means of a set of hyperplanes requires checking on which side of every hyperplane
a given sample is. Assuming there are K hyperplanes in the final population
in IHA, an Immune Hyperplane Classifier (IHC) can be constructed, which is
represented as a set of rules of a type

IF w1 · xi > 0 AND w2 · xi < 0 AND . . . wK · xi > 0 THEN yi = −1. (2)

Having the population of hyperplanes already evolved, it is relatively easy
to create a set of such rules. The procedure is straightforward. Each training
sample xi ∈ T, i = 1, .., M is checked against each linear classifier LCj , j =
1, .., K, whether it satisfies a condition xi · wj > 0. Thus, a premise of an l–th
rule is in the form of a vector of boolean values Premisel = (pl1, pl2, ..., plK),
where plj = true if xi · wj > 0 and plj = false otherwise, j = 1, ..., K, and
the conclusion of the l–th rule, Conll is the class label, i.e., either 1 or −1.
Additionally, each rule has an additional field, Percl, in which a percentage of
samples correctly classified training by this rule is stored. After the training
sample xi is checked against all LCj, a vector tempPremise of binary values
is formed. If it is equal to a premise of the already existing, l–th, rule and
yi = Concll, i.e., xi is correctly classified by the l–th rule, then Percl is increased
properly. If the class labels do not match or if there is no rule with a premise
equal to tempPremise, a new rule is constructed with the premise tempPremise
and class label yi. It means that there can exist rules with the same premises but
different conclusions (different class labels). This is not a problem, as each rule
has its Perc value, allowing for deciding, which rule should make the decision
about the final classification, in the case of a test sample satisfying both rules.
Fig. 5 presents class boundaries found by means of the set of rules constructed
as described.

It can be observed even in these 2D examples that during testing of an
unknown sample xtest with the set of rules, it is possible that tempPremise
constructed by checking xtest against each LCj , does not match a premise of
any known rule. Areas of such test samples are presented in darker colours in
Fig. 5. Obviously, it is possible to use the idea of partial matching, popular in
many artificial immune algorithms. If tempPremise of xtest is interpreted as
an antigen and Premisel as antibody receptor, it is possible to check how many
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Figure 5. The results of applying classification rules with partial matching, con-
structed by means of evolved populations of hyperplanes (lines in 2D). Darker
color depicts regions for which rules with only partial matching exist.

single conditions in Premisel and tempPremise match. The final classification
procedure is defined as follows:

1. For a given xtest construct tempPremise by checking xtest against all
LCj, j = 1, ..., K.

2. Find a rule, whose premise exactly matches tempPremise. If there are at
least two such rules, choose that with the highest value of Perc. Return
Concl of the chosen rule. If there is no exactly matching rule, go to step 3.

3. Find a rule that best matches tempPremise, i.e., the number of single
matching conditions in the premises, is the biggest. If there are at least
two such rules that match tempPremise equally well, choose that with
the highest value of Perc. Return Concl of the chosen rule.

This approach allows also for signaling that a given test sample xtest is
classified, but with a very low confidence level, i.e., it is classified by a rule
with a very weak match tempPremise generated by xtest. A threshold can be
set for the matching level, in order to signal the impossibility of classification
rather than a classification with a very low confidence. Fig. 5 presents the class
boundaries found by the aforementioned approach with partial matching. The
areas with darker colors are those classified by partial matching. As it can be
observed, although matching is only partial, the results are consistent with those
given by exact matching.

3.5. The multiclass case

The aforementioned formulation of the Immune Hyperplane Algorithm deals
with classification problems with only two classes. It can be, however, easily
extended to the multiclass case. Let us consider a classification problem in
which a training set T consists of samples belonging to C different classes, i.e.,
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T = {(xi, yi), i = 1, ..., M}, where yi ∈ G. The set G = {1, 2, ..., C} is a set
of possible class labels. The idea of solving the classification problem with C
possible classes by means of the proposed IHA is to create one classifier for
each class, treated as class 1, and all samples from the rest of the classes as
representing class −1. This will result in a set of C two–class IHC. During the
classification of an unknown sample xtest, each j–th basic IHC, j = 1, .., C,
tries to classify xtest as 1 or as −1, as it was described in the previous section.
First, only the exact matches are considered. The answer 1 of the j–th classifier
means that j–th IHA classifier classifies xtest into j–th class. The answer −1
means that the j–th IHA classifier classifies xtest as not belonging to the j–th
class. If there are more basic classifiers that give answer 1, the final decision
is made based on the Perc values, i.e., the one with the highest Perc wins. In
the case of no exact matches, partial matches are considered. Note, however,
that each basic IHC can have rules with premises of different lengths. This
comes from the fact that each of the original classes can be separated from all
others by a different number of hyperplanes and xtest has to be checked, in
general, against different number of hyperplanes. For example, if one of the
C classes can be linearly separated from all others, its rules will have premises
of length 1 (assuming that IHA correctly finds a single separating hyperplane),
while in the case of nonlinear class boundaries, more than one hyperplane is
needed to separate classes, thus, the premise part of the rules has length greater
than 1. Because of that, if there is no exact matching and partial matching has
to be used, the matching level of different IHC cannot be compared directly,
but rather a percentage of the exact match should be used. For example, if one
of the IHCs has premise of length 4 and in one of its rules there are 2 conditions
that match xtest, and in the case of other IHC with premise of length 9 there
are 3 matches, it is better to choose the first case as there is 50% of the ideal
match, and only 33% in the second case.

3.6. Generalization issues

In IHA, for the case where there is no correctly matching rule for a new sample,
a rule with the highest, but incomplete matching, is selected. This can be viewed
as a limited generalization ability, although it does not solve the problem. Even
if the modified procedure of constructing the Tpairs set helps with dealing with
noise in IHA, it is clear that the algorithm is constructed to maximize the overall
number of correctly classified pairs. No evolutionary pressure is put upon the
future generalization ability on test data.

Classification trees (Breiman et al., 1984) are unstable classifiers, i.e. slight-
ly different training sets lead to different classifiers. This is similar for the
proposed IHA. Differences in training sets result in different Tpairs to which
IHA adapts. There exists yet another source of instability. The evolution is
stochastic and after each run, different populations, and thus different sets of
rules, are achieved. In general, although after each run one can separate the
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training data even ideally, the potential future classification error on test data
is expected to have great variability, i.e., it is unstable. The instability of
classifiers is not necessarily their drawback. It turned out that such classifiers
are especially suited for constructing families of classifiers, through techniques
such as bagging or boosting. The easiest way to limit the variability of a single
classifier from IHA is to combine them in family F and use simple majority
voting to make the final decision. If there are two classes with the same number
of votes, a sum of all Perc values of IHC classifiers voting for a given class are
used, and the class with the highest value wins.

The techniques of bagging and boosting come from the attempts to answer
the question whether weak classifiers (so called weak learners) can be used to
form a better classifier through the aggregation of the weak ones. Weak clas-
sifier is a classifier that gives not much better results than random classifica-
tion. However, when there are C statistically independent weak classifiers,
the expected performance can be improved. Having enough classifiers one can
count on correct classification by means of plurality voting. The problem is
that having one training set T it is impossible to produce a set of independent
classifiers. Yet, creating multiple training sets by randomly sampling the orig-
inal training set and using them to train weak classifiers can bring significant
improvements, although the classifiers are not independent. Bagging states
for bootstrap aggregating, a method for generating multiple versions of classifiers
and aggregating them into an aggregated predictor, was proposed by Breiman
(1996). Bagging can improve accuracy if there is a big variability in the base
classifier, i.e., if perturbing the training set can cause significant changes in the
predictor constructed. For that reason, commonly used as base classifiers in
bagging, are classification trees, due to their instability, which is their advan-
tage in this case. Each replicate training data set is formed by sampling the
original training set at random (with uniform probability), but with replicates.
The bagging procedure is independent of the base classifier. This enables the
use of the proposed IHC as the base classifier. This seems to be justified, as IHC
are also unstable. The expected result would be decreased variability of IHC,
even more than due to the procedure of constructing a simple family of IHC.
This was empirically verified and the results are presented in Section 4. Boost-
ing is also a general method for improving any type of classifier. The most
striking similarity to bagging is that the base classifier is constructed several
times by means of a different training set generated from the original training
set. Unlike in bagging, in boosting the probability of each training sample to
be selected to the consequent training sets is not constant. The probability of
being selected is increased after each call to base classifier training, for samples
that were hard to learn for the previous base classifiers. One of the first and
most popular boosting algorithms is AdaBoost (Schapire, 2001), which was
used int the experiments presented in this work. Random Forests (RF) were
proposed by Breiman (2001) as aggregated classifiers, especially designed for the
classification trees as the base (weak) classifiers. They are able to obtain very
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good generalization results. For that reason RF are used in the next section for
comparison.

4. Results

In this section preliminary results obtained by the proposed immune algorithm
are presented and compared with the results obtained by the Random Forest
classifier. The proposed IHC was used as a base classifier in different strate-
gies for constructing aggregated classifiers. These were: simple committee with
majority voting, bagging, boosting (all with 50 base classifiers), bagging and
boosting of committees of IHC (both with 50 committees, each consisting of 5
IHC). Several benchmark databases from UCI Repository were used for test-
ing. The classifiers were tested by means of 5-fold crossvalidation. The tests
were repeated 20 times and result were averaged (with an exception of Diabetes
database, which was averaged over 10 runs). Standard deviations were also
calculated. Table 1 summarises the results.

Table 1. Results of 5-fold cross-validation tests of the proposed aggregated
classifiers. The classifiers are: single IHC (1), committee of IHCs (2), bagging
with IHC (3),boosting with IHC (4), bagging with committees of IHCs (5),
boosting with committees of IHCs (6), Random Forest (7). The results are
presented in the form of MeanTestError/Std.Dev.OfTestError. (Ionos. and
Diab. stands for Ionosphere and Diabetes, respectively.)

DB 1 2 3 4 5 6 7

Iris 6.1/1.5 4.8/0.8 4.3/0.7 4.4/0.8 4.3/1.0 4.3/1.0 4.9/0.9

Sonar 27.0/2.3 18.2/1.8 19.8/1.9 16.8/2.1 19.2/1.6 15.9/2.0 18.3/2.2

Ionos. 17.1/1.5 11.7/1.0 11.5/0.8 8.0/0.9 11.9/0.7 7.3/0.9 6.9/0.4

Glass 46.1/2.8 33.0/2.0 32.5/1.4 30.5/1.8 32.3/1.5 29.8/1.9 22.4/1.8

Diab. 28.1/1.7 24.2/0.9 23.7/1.0 26.1/0.8 23.9/0.5 25.8/1.3 23.8/0.7

Bupa 37.9/2.8 30.0/1.8 29.1/1.8 32.2/2.3 28.7/1.5 32.4/2.1 28.2/1.7

Vowel 62.8/4.3 36.5/1.7 38.2/1.6 33.2/1.9 38.8/1.1 31.1/1.7 46.3/1.7

The results are very promising. The proposed immune algorithm is not
only able to perform comparably with the well established Random Forest (RF)
algorithm, but it also outperforms RF on some of the databases. Even if the
Random Forest algorithm turns out to perform better, the differences are not
significant. Different aggregating strategies seem to be better suited for different
databases. From the results obtained it is obvious that all aggregating strategies
tested work with the proposed immune algorithms very well. This is observed
through significantly better results of all aggregating classifiers when compared
to a single IHC, and, secondly, through the decrease of variation of the single
IHC due to the aggregation (which was expected). The important results prove
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that it is possible to construct supervised learning algorithms based on immune
metaphors (clonal selection in this case). Being competitive even with Random
Forests classifiers, they can become an important alternative in many real world
classification problems.

5. Conclusions

In this paper a novel evolutionary algorithm is proposed. It utilises the con-
cept of clonal selection from artificial immune systems in order to evolve the
population of linear classifiers. The most significant novelty of this algorithm
is that the evolution is based not only on competition but most of all on coop-
eration. The degree to which a given artificial lymphocyte contributes to the
overall performance of the whole population is referred to as usefulness. It has
been presented that usefulness in this context can be treated as a measure of
a lymphocyte quality. By means of incorporating this novel concept into the
clonal selection framework, the resulting algorithm is able to adjust the pop-
ulation size to the difficulty level of the classification problem. The proposed
algorithm is very unstable (i.e., very sensitive to the change in the training set)
and for that reason it is especially suitable for use in construction of aggregated
classifiers. The results presented show that the proposed method is competitive
with the well established classifier, such as Random Forests.

Among the increasing number of novel methods for evolutionary construction
of combined classifiers it can be stated that the proposed Immune Hyperplane
Algorithm can be assigned to the growing family of modern and robust clas-
sification techniques. Future work on the IHA algorithm should include the
analysis of the statistical significance of the results obtained by IHA when com-
pared to other classifiers. More sophisticated filtering process in construction
of the Tpairs set should also contribute to the better results of IHA.
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