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ABSTRACT- During the squeeze forming process stresses in the mould and cast are
developed due to temperature and applied pressure. A knowledge of the level of stresses
m the cast serves to evaluate the quality of products and a knowledge of the stresses in
the mould helps to evaluate the durability of the mould. During squeeze forming
processes the pressure may be applied directly to the cast or through the punch. In the
last case large plastic strains are developed. The problem is thermomechanical, coupled.
The problem is solved using a staggered approach. A microstructural solidification
model has also been included.

INTRODUCTION: The paper deals with a squeeze casting model which is currently
being developed. The application of microstructural solidification models should allow
us to predict better the residual stresses distribution. The interest of the readers is directed
towards the influence of second order effects like initial stresses, voids, etc. An overview
of squeeze casting processes is presented by Ghomashi et al. [2000]. A description of
thermomechanical problems is shown by Sluzalec [2000], Vaz et al. [1996]. Methods of
solving thermal problems including phase transformation are described by Lewis et al.
[1996], microstructure evolution was shown by Celentano [1994].

THERMAL PROBLEM: Let us consider the thermal problem in the following form

dH oT - _ [T ~
V(kVT)+q+2v.sp—E§-, §(r)=T-T, =0, S,(T)-k[a J+h(T T,) (1)

n

with enthalpy rate dH/dT = pc, which depends on the state of the material, where £ is the
thermal conductivity, VT is the temperature gradient, g is the heat source, p is the mass
density and ¢, heat capacity, respectively. The equation is solved over the domain
£ and fulfils Dirichlet and Neumann boundary conditions (on 9 £), respectively. The
additional term ye:e, represents plastic work converted into heat (y is the Taylor-
Quinney coefficient, o is the stress tensor and g, is the plastic strains tensor).

MECHANICAL PROBLEM: Mechanical problem, o

U

+ X, =0, is also defined over
domain £. It fulfils stress and displacement boundary conditions, p, =0 ,n,, u, =0, on
0Q where n, are the normals to the boundary and u, are the prescribed displacements.
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The elastoplastic constitutive law o, = Dj;’¢, is employed. The large displacements
problem is described in the Updated Lagrangian configuration.

COUPLING STRATEGY: The general staggered scheme for two field problem
(thermal and mechanical) is presented in Fig. 1 (left). The solution is obtained by

sequential execution of thermal and mechanical modules.
F
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Fig 1. Coupling strategy (left), gradient decomposition (right).

The temperature field is passed to the mechanical module affecting the loading,
constitutive parameters and the contact conditions. The plastic work and the air-gap
which is based on the contact conditions are transferred from the mechanical to the
thermal module.

STRESS INTEGRATION ALGORITHM: When considering the finite strains effect,
the gradient F = d(X +u)/9X is decomposed into its elastic and plastic parts, F = F'F”
Fig 1 (right). To integrate the constitutive relations the deformation increment AD is
rotated to the unrotated configuration by means of rotation matrix obtained from polar

decomposition F = VR =RU, Ad =R/ ADR,,, then the radial return is performed and

el n+l?
stresses are transformed to the Cauchy stresses at n+1, ¢,, =R 6. R/ .

Lo Bt

CONSTITUTIVE RELATIONS: The additivity of small elastic, viscoplastic and

thermal strains £, =& + ¢ +&, and the Hooke’s law &, = D,,é; lead to linearized,

incremental stress-strain relation, AS=D(A8—A£"" —AaT), the viscoplastic strains

increment is calculated from the viscoplastic strain rate evaluation as follows

e =r<o)>92, (p())= { =0 @
@(F) F>0

where F and Q are the yield and plastic potential functions, y is the fluidity parameter.

Asscociated flow rule is used, F=0. Accounting for a generalized trapezoidal integration

rule, Ag” = Af[(l - @)™ +6&™"' |, applying Taylor expansion one gets the viscoplastic

strain rate at time n+/

el L [a;s J AS", Ae” =g""At+C", C _em[a;S J ®)
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The viscoplastic strain increment is of the form: AS = f)(As—é"’At —aﬂT) where D is
the the matrix of the form:D=(I+DC)"'D, a is the vector of thermal expansion
coefficients and AT is the increment of temperature.

CONTACT TREATMENT: The interfacial heat transfer coefficient is used for
establishing the interface thermal properties of the layer between the mould and the cast
part. It depends on the air conductivity (k.), thermal properties of the interfacing
materials and the magnitude of the gap (g). The formula is adopted: h=k.i/(g+kan'ho).
The value of h,, an initial heat transfer coefficient should be taken from experiment.
When considering the mechanical contact the penalty approach is applied.

SOLIDIFICATION MODEL: During the entire process of forming a part the
solidification process takes place. The basic assumptions: the sum of the solid and liquid
fractions is equal one f; + f; = 1, the solid fraction consists of dendritic and eutectic
fractions, f; = fz + f.. Further assumptions are connected with the existence of
interdendritic and intergranular eutectic fractions. The internal fraction consists of its
dendritic and eutectic portions, f; = f;* fi + /" and f; = £ + f7. Final formulae for the
dendritic and eutectic fractions (spherical growth): fz = £° ', i = i fF + &5 f& =
4IIN4R /3 and ff= 4TIN.R.’/3, where N, N,, are the grain densities and Ry, R, are the
grain radii. The rate of growth of the dendritic and eutectic nuclei depends on the
undercooling, 474, = Tiae) - T and Gaussian distribution of the nuclei is assumed.

1
; AT - AT, ; —T Y1
Niio = Nuaae -2-;_—161(13[— ﬁ](— T) i f:“' =1 —[;: _;; ) 4)
The rate of the dendritic and eutectic grain radii is established based on experimental
dependence, R, ,, = fr.,- Finally, the internal dendritic fraction f“depends on the
melting temperature and k' is the partition coefficient.

FINAL REMARK: A mathematical framework of the developed squeezed casting
model is presented, the numerical examples will be given in the full paper.
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