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ABSTRACT

The aim of the paper is to present a constitutive model for the case of uniaxial tension of the polycrystalline
materials, including the inter-granular metallic layers that create its internal structure. The quasi-static
deformation process of the material comprises elastic deformation of brittle grains, elasto-plastic deformation of
intergranular layers and additional deformation due to micro-porosity development in layers. A Representative
Volume Element (RVE) was analysed taking into consideration an initial internal structure of the material
obtained from SEM photographs
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INTRODUCTION

A typical application of polycrystalline materials is the fabrication of cutting tools. The tools
are working in such severe conditions as high dynamic and temperature loadings. An
exemplary two-phase material used for them may consist of elastic grains and ductile
interfaces. An example of SEM image showing grains, interfaces and their idealization are
presented in Fig 1a and Fig 1b, respectively. The grains can exhibit anisotropic behaviour.
The interfaces are thick enough not to be treated as only contacting adhesive layers. Our
interest will focus on the behavior of the relatively thick intergranular layers which affect
performance of entire sample. The interface material has different grades of porosity.
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MATHEMATICAL FORMULATION

Incremental equation of equilibrium
The problem is elasto-plastic with the assumption of large displacements, [1-3]. We consider
nonlinear terms of the strain tensor. The virtual work equation is of the form

(a) (®) (c)

Figure 1. SEM image of a polycrystal (a), idealization (b). gradient decomposition into elastic
and plastic parts (c)
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where S and E are the II Piola-Kirchhof stress tensor and Green Lagrange strains, f, t and
u={u,v,w} are body forces, boundary tractions and displacements. All of the quantities are
determined at time t+At in the initial configuration. To obtain the above equation at time r+Azs
in the configuration at time 7 the relations [4], [5], are used
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Now, we apply incremental decomposition to the quantities in the equation above: strains,
stresses, displacements and forces

CHE=|E+AE, "Y8=/S+AS, "Yu='u+Au, “Y='T+AS, “Vi="t+At @

Since the II P-K tensor at time 7 in the configuration ¢ is equal to the Cauchy stress tensor the
stress decomposition is of the form

‘s='t, TM8=I1+AS 5)
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Then, we employ the following strain increment decomposition into its linear and nonlinear
parts in the following form

AE =Ae+An,, Ae=AAu, An=A(Au')Au’/2 (6)

where Au’is the vector of the displacement increment derivatives w.r.t. Cartesian coordinates
and (A, A) are the linear and nonlinear operators, [2].
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Substituting the described relations, into the virtual work equation, Eqn 3, and assuming that
the equation is precisely fulfilled at the end of the step we obtain the following incremental
form of the virtual work equation

I(ir-&.ms-aae)dn' = IM&MQ' + _[At&\ud(aﬂ‘a) ®
o a

G

Employing the finite element approximation Au=NAq and Au’=Bj Aq, where N is the set
of shape functions and Aq is the increment of nodal displacements and considering the
following set of equalities

(T om='v5(A)Au’ = s{au' )" T Au = 8(aq)T (7B, ©)

where [T is the Cauchy stress matrix

(10)

we obtain the following discretized form of the virtual work equation
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Now, we will deal with the constitutive model and employ the linearized constitutive
equation, in fact with the stress increment, AS.

Finite strains
When considering the finite strains effect [6], [7], the gradient F=9(X+u)/dX is

decomposed into its elastic and plastic parts, F=F°F”, Fig. lc. To integrate the constitutive
relations the deformation increment AD is rotated to the un-rotated configuration by means of
rotation matrix obtained from polar decomposition F=VR=RU, Ad=R],ADR ,,, then the

radial return is performed and stresses are transformed to the Cauchy stresses at n+l,

o, =R, 0% R’ . The stresses are integrated using the consistent tangent matrix [8] and the
integration is done in the un-rotated configuration as for small strains.

Stress updating procedure

To integrate the constitutive relations we exploit the relations given above using the
integration for the un-rotated configuration and the backward integration rule. The algorithm
arises from the depicted above relations for rotated and un-rotated strain rates and Cauchy
stresses. The outline of the integration scheme is given below.

e Compute deformation gradient

B[X +ui,+1)
oX

- .-j+m =
eCompute polar decomposition

Fioa = Rl Uln

e Compute deformation increment over the step

Agj = B:ﬂ.&r (l.l :+:i\.t J

® Now, we take the elements of the strain increment Ag' and obtain the AD’ and perform
rotation of the increment of spatial deformation to the un-rotated configuration

iT i
Ad! = R:+A.'AD R:+m

e Then, we perform integration of the small strains constitutive model using backward Euler
integration rule (predictor - corrector) where the stresses depend on the history, this is
reflected by the stresses at time ¢ and internal variables a, .

ol = ot lo,.a,.00)
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® Transform the stresses to the true Cauchy stresses at ¢+ Af .

_ u T
Opnr = Rr+m°:+mRr+A.r

The integration in the un-rotated configuration is performed using a consistent tangent
formulation, [8].

Constitutive model.
The constitutive model is the Gurson Tvergaard model [9-11] with the yield function as

follows

2
= g_i 3q20m s 2
F—[ 5 ] +2q1fcosh[ oF ) (1+q3f ) (12)

where o™ is the Mises stress, o, 1s the mean stress, & is the Mises stress in the matrix, /is
the void ratio and ¢,,q,,q; are the Tvergaard coefficients.

The stress integration algorithm comprises the elastic trial stress (predictor) and the
corrector. It conforms the radial return algorithm. The algorithm can be derived basing on
[12]. The elastic trial stress are of the form
o.., =6, +D Ae” (13)

The deviatioric and the volumetric stresses are of the form
3 1
qmi= ‘2'5;';3,} ; Pm+ =_§(‘71| +0p +0'33),,,+1 (14)
m+l

The increment of the plastic strains can be obtained from the normality condition

oF
de? =di—; 15
do (13)

Further, the plastic strains increment and the unit normal vector are of the form

As*”=a,z(-iaif+a—Fn) D M e (16)

3 04 Jp 2q s

The volumetric and deviatoric plastic strains are as follows

AeP' = —Ai(a—F) , Al = Qﬁ) (17
ap m+l aq m+]

The stress at the end of the step after performing radial return

6,. =0 —DAe” (18)
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Since the increment of plastic strains is
Ae” =Lae 1446 19
- 3 r qnm+l ( )

the stress at the end of the step may be expressed as follows
6,. =6, —KAe 1-2GAe,n,,., (20)
Finally the updated stresses are of the form

3GAe
Ot = Oy —KAE I ———LS 1)
QMH

where the (T) indexed values are the trial stresses.

NUMERICAL RESULTS

The mechanical properties of the polycrystal consisting of elastic grains (tungsten carbide)
and metallic interfaces (cobalt) are as follows: grains; Young’s modulus 4.1x10''Pa and
Poisson’s ratio 0.25, interfaces: Young modulus 2.1x10'!Pa, Poisson’s ratio 0.235, yield limit
2.97x10"'Pa and small hardening modulus 1.0x10°Pa. The dimensions of the sample are
100x100x10 pm. The scheme of the Representative Volume Element (RVE) is given in Fig.
2

(a) (b) (c)

Figure 2. Mesh of representative volume element (a), interfaces (b), considered joint (c).
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Figure 3. Parametric study: porosity, displacements at the centre of the loaded face (a) and
equivalent plastic strains in the considered joints (b) versus loading factor.
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Figure 4. Maximum displacement of the midpoint of the loaded face (a) and maximum
equivalent plastic strain (b) in the considered interface joint.

The sample is discretized with 48894 elements and 58016 nodes. The sample is fixed on
one side and loaded with the uniform pressure of 400 MPa on the other one. There is imposed
symmetry condition in the bottom of the sample. Since the grains are elastic the sample fails
due to large plastic strains occurring in the elasto-plastic interfaces, in particular in joints [13,
14]. However, in this case, we focus our attention on the additional deformation and
additional plastic strains occurring in the interfaces due to existence of initial porosity therein.
We will consider a “control node” at the midpoint of loaded face of the sample and a joint
between 4 grains (Fig. 2b and Fig. 2c) where the plastic strains start to appear early.

The sample is loaded until 89% of the total load. The parametric study is performed for the
values of porosity in the interfaces such as: 0.005, 0.01, 0.05, 0.09 (Fig. 3). The displacements
and plastic strains strongly depend on the porosity of the material. This is presented in Fig. 3
and Fig. 4. We start to follow the equilibrium path at 70% of the total load when the plastic
strains begin to develop for lowest value of porosity. The horizontal displacement of the
chosen node increases nonlinearly and at the end of the process (89% of the total load), for
porosity 0.09 is 15.3% higher than for the material with porosity 0.005. The dependence of
the plastic strains development in the chosen joint on the porosity of the material is
dramatically strong. The equivalent plastic strains are 362% higher for the material with the
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high porosity (0.09) then for the material with the small porosity (0.005). The dependences of
the maximum displacement and the maximum equivalent plastic strain on porosity at the end
of the process are shown in Fig. 4a and Fig 4b, respectively. The dependences for the
considered two-phase material are nonlinear and strongly dependent on porosity.

Let us have a closer look at the qualitative effects of the porosity on the behaviour of the
composite. The displacement fields are presented in Fig. 5 and Fig. 6. The sample containing
interface material of low porosity is presented in Fig. 5 while the sample with the high
porosity interface material is given in Fig. 6. The difference of the behaviour of the two
samples is significant. The pictures of the displacement fields of both samples (Fig. 5a and
Fig 5b) are qualitatively almost the same at the beginning of observations. The “control
displacements™ are almost the same (Fig. 3a). The plastic strains are starting to develop in the
interface material of low porosity and are still small in the interface material of high porosity
(Fig. 3b). When observing the surface of the samples (Fig. 5a and Fig. 6a) we may notice only
spots of plastic strains.

L

EE':E:'I::_:;.. I = E':"x‘ir 100
- (a) (b)
Figure 6. Displacement fields at load factor 0.7 (a) and at load factor 0.89 (b), porosity 0.09.
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Figure 7.Equivalent plastic strain distribution at load factor 0.7 (a) and at load factor 0.89 (b),
porosity 0.005.

Sl T
(b)
Figure 8.Equivalent plastic strain distribution at load factor 0.7 (a) and at load factor 0.89 (b),
porosity 0.09.
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Figure 9. Equivalent plastic strain distribution in the interface at load factor 0.7 (a) and at load
factor 0.89 (b), porosity 0.09.
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The picture changes at the end of the loading process. Both samples undergo plastic
deformation. It can be concluded analysing Fig. 3 and Fig 7b and 8b. The last two figures
show the distribution of the equivalent plastic strain on the surface of the samples at the end
of the loading process. The plastic strains are developed in the interfaces.

Coming back to the displacement fields we may notice discontinuities in the fields. The
discontinuities are much more distinct in the sample with high porosity interface material
(Fig. 6b) than in the sample containing low porosity material (Fig. 5b). The discontinuities
qualitatively manifest the sliding of the grains because of the plastic deformation in the
interfaces. The development of plastic deformation can be observed better in Fig .9a and in
Fig. 9b.

FINAL REMARKS

The influence of porosity of the interfaces material was investigated. It has been found that
the behaviour of the two-phase composite strongly depends on the porosity of interfaces in the
material. Amount of porosity changes the qualitative behaviour of the two-phase material.
High porosity values cause earlier appearance of the slips in the interfaces and it is anticipated
that decreasing of failure loads, as well.

Summarising, we have shown that the composite structure is particularly sensitive to the
development of porosity in the ductile interfaces, namely, the equivalent plastic strains in the
interfaces increase rapidly with the increase of porosity. It implies that the composite is very
sensitive to imperfections in the interfaces as well.

ACKNOWLEDGMENTS

T. Sadowski and E. Postek are currently supported by Polish Ministry of Education and
Science - grant SPB, decision No 65/6.PR UE/2005-2008/7. The support of the Civil &
Computational Engineering Centre at UWS is appreciated.

REFERENCES

1. Owen, D.R.J., Hinton, E., Finite Elements in Plasticity: Theory and Practice, Pineridge
Press, Swansea 1980

2. Bathe, K.J., Finite Element Procedures, Englewood Cliffs, New Jersey, Prentice Hall,
London 1996

3. Kleiber, M., Incremental finite element modelling in non-linear solid mechanics, Polish
Scientific Publishers, Warsaw, Ellis Horwood, Chichester 1989.

4. Malvern, L.E., Introduction to the Mechanics of Continuous Medium, Englewood Cliffs,
New Jersey, Prentice Hall, London 1969.

5. Crisfield, M.A., Non-linear Finite Element Analysis of Solids and Structures, John Wiley,
New York 1991.

6. Pinsky, P.M., Ortiz, M., Pister, K.S., Numerical integration of rate constitutive equations in
finite deformations analysis, Computer Methods in Applied Mechanics and Engineering, 40,
1983, pp. 137-158

7. Peric, D., Owen D.R.J., Honnor, M.E. A model for finite strain elasto-plasticity based on
logarithmic strains: Computational issues, Computer Methods in Applied Mechanics and
Engineering, 94, 1985, pp. 101-118



Modelling of metallic inter-granular layers in polycrystalline ceramics 505

8. Simo, J.C., Taylor, R.L., Consistent tangent operators for rate independent elastoplasticity,
Computer Methods in Applied Mechanics and Engineering, 48, 1985, pp. 101-118

9. Gurson, L., Continuum theory of ductile rupture by void nucleation and growth: part I -
yield criteria and flow rules for porous ductile media, Journal of Engineering Materials and
Technology, Transactions of ASME, 99, 1977, pp. 2-15

10. Tvergaard, V., On localization in ductile materials containing spherical voids,
International Journal of Fracture, 18, 1982, pp. 237-252

11. Tvergaard, V., Influence of voids on shear-band instabilities under plane strain conditions,
International Journal of Fracture, 17, 1981, pp. 389-407

12, Simo, J.C., Hughes, T.J.R., Computational Inelasticity, Springer, New York-London 1998
13. Postek, E., Sadowski, T., Hardy, S.J., The mechanical response of a ceramic
polycrystalline material with inter-granular layers. In: Proc. “VIII International Conference on
Computational Plasticity, COMPLAS VIII”, E. Ofiate, D.R.J. Owen eds. Barcelona Sept.
2005, CIMNE Barcelona 2005

14. Sadowski, T., Hardy S., Postek, E., A new model for the time-dependent of
polycrystalline ceramic materials with metallic inter-granular layers under tension, Material
Science and Engineering A, 2006, pp. 230-238





