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In the discrete element method (DEM), a material is represkloy a large assembly of particles inter-
acting among one another with contact forces. Particleaoteon models are based on various contact
formulations incorporating such physical phenomena astielty, viscosity, friction, as well as cohe-
sion [1, 2, 3]. The contact law for the particle interactiorthie DEM plays a role of a micromechanical
material model. Taking an adequate contact formulatioh ajipropriate contact parameters allows us
to obtain required macroscopic behaviour of the material [4

The DEM has become a popular method to model granular anitylate materials. It has also
been shown to be a suitable tool to model powder sinteringb¢B]. Sintering is an essential stage of
powder metallurgy processes consisting in consolidatidmase or weakly bonded powders at elevated
temperatures, close to the melting temperature with oromitadditional pressure. Sintering requires a
special constitutive model for particle contact interai7, 8]. In the present work, an original authors’
contact model for sintering [9] will be presented.

The model developed in [9] is aimed to model the sintering el & the preceding stage of pow-
der compaction. The rheological schemes of the contaataictien for the both stages are shown in
Fig. 1. The non-cohesive contact interaction at the powdenpgaction stage is represented by the
Kelvin—\Voigt scheme (Fig. 1a) while the cohesive contacirysintering is modelled by the Maxwell
element connected in parallel with an element represetti@gintering driving force (Fig. 1b). The
tangential interaction is neglected in the contact modedn3ition between the two viscoelastic model
is smoothened by gradual activating one model and destiotiuhie other one [9].

a)
Figure 1: Rheological scheme of the contact interactionHerstages of:
a) powder compaction, b) sintering

The total contact forc&<°™t for the sintering model is a resultant of the sintering criyforce st
and the force in the Maxwell elemeffaxwell

Fcont _ Fsint + FMaxwell. (1)
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For the Maxwell element, we assume the additive decompositf the relative velocity between the
particles at the contact point into the elastic and viscous part§,andvy, respectively.

Urn = /Ul\‘/l'l + ’Ufn (2)

The force in the Maxwell branch can be expressed either byeldwic or viscous forcel™ or FV,
respectively, which are equal:

FMaxwell _ Fe — Fv. (3)
The viscous force is written in the form:
FY =nvl, (4)

wheren is the viscosity coefficient. The sintering driving forcedariscosity are evaluated according
the the classical models developed for two-particle simggi10]
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