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In the discrete element method (DEM), a material is represented by a large assembly of particles inter-
acting among one another with contact forces. Particle interaction models are based on various contact
formulations incorporating such physical phenomena as elasticity, viscosity, friction, as well as cohe-
sion [1, 2, 3]. The contact law for the particle interaction in the DEM plays a role of a micromechanical
material model. Taking an adequate contact formulation with appropriate contact parameters allows us
to obtain required macroscopic behaviour of the material [4].

The DEM has become a popular method to model granular and particulate materials. It has also
been shown to be a suitable tool to model powder sintering, cf. [5, 6]. Sintering is an essential stage of
powder metallurgy processes consisting in consolidation of loose or weakly bonded powders at elevated
temperatures, close to the melting temperature with or without additional pressure. Sintering requires a
special constitutive model for particle contact interaction [7, 8]. In the present work, an original authors’
contact model for sintering [9] will be presented.

The model developed in [9] is aimed to model the sintering as well as the preceding stage of pow-
der compaction. The rheological schemes of the contact interaction for the both stages are shown in
Fig. 1. The non-cohesive contact interaction at the powder compaction stage is represented by the
Kelvin–Voigt scheme (Fig. 1a) while the cohesive contact during sintering is modelled by the Maxwell
element connected in parallel with an element representingthe sintering driving force (Fig. 1b). The
tangential interaction is neglected in the contact model. Transition between the two viscoelastic model
is smoothened by gradual activating one model and desactivating the other one [9].
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Figure 1: Rheological scheme of the contact interaction forthe stages of:
a) powder compaction, b) sintering

The total contact forceF cont for the sintering model is a resultant of the sintering driving forceF sint

and the force in the Maxwell elementFMaxwell

F cont
= F sint

+ FMaxwell. (1)

1

user
Typewritten Text

user
Typewritten Text
Abstract of the paper presented 
at IV International Conference on Computational Contact Mechanics
27-29 May, 2015, Hannover, Germany (published in conf. proceedings on USB stick)



For the Maxwell element, we assume the additive decomposition of the relative velocity between the
particles at the contact pointvr into the elastic and viscous parts,ve

r
andvv

r
, respectively.

vrn = vvrn + vern (2)

The force in the Maxwell branch can be expressed either by theelastic or viscous force,F e or F v,
respectively, which are equal:

FMaxwell
= F e

= F v. (3)

The viscous force is written in the form:

F v
= ηvvrn (4)

whereη is the viscosity coefficient. The sintering driving force and viscosity are evaluated according
the the classical models developed for two-particle sintering [10]
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