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Abstract

A model of a normal interaction of deformable spherical particles embedded in matrix is examined analytically. Normal interaction
was modelled by linearly elastic one dimensional springs transferring axial forces only. Two, upper and lower, limits of an axial
stiffness of the spring for the normal interaction are proposed and validated using a 3D finite element analysis with different ratios of
elastic moduli of particles and matrix and distances between particles. The validation showed that the results of FEM are between the
proposed limits of stiffness of the normal interaction for a connecting element with particles stiffer than interface member.
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1. Introduction

An approximation of a medium by one dimensional bars is
widely used in the modelling of various heterogeneous and
composite  materials:  concrete, rocks,  geomaterials,
biomaterials, etc. [1,2,3,4]. Since a unified approach of bonded
particles still does not exist various Lattice and/or Spring
Network Models can be applied to model particulate
tomposites.

This work is aimed at the assessment of the axial stiffness
of a normal elastic interaction of spherical particles embedded
ina weaker or stiffer matrix. Two upper and lower limits of the
stiffness were achieved and verified by 3D FEM. An analysis
showed that the results obtained by FEM are between the
developed limits when matrix is weaker than particles and the
FEM results are slightly bit greater than the obtained upper
limit.

3. Modelling coneept and governing equations
A particulate composite consisting of particles embedded in
i matrix is approximated by one-dimensional springs

connecting centres of particles (Fig. 1), The springs are
characterized by their length and axial stiffness K, only
(Fig. Ib).

It is assumed that the particle and interface materials obey
linearly elastic law, the connecting springs undertake only axial
forces  being normal interaction forces, particles of the
composite do not rotate, particles interact with an interface
member by an entire surface of hemispheres.

All parameters related to particles are denoted by subscripts
p while quantities related to interface members are denoted by a
subscript b. The particle is characterised by radius Ry, elasticity
modulus £, and Poisson’s ratio v, The interface member is
characterised by the cylinder radius Ry and the elasticity
constants £y and v, respectively.

Two limits Kys and K of the axial stiffness K, can be
obtained by considering different operations of division of a
connecting element: in the form of parallel and series connected
springs (Fig. 2).
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Figure 1: A normal interaction of two spheres through a
conditional interface member (a) and a spring representing an
interaction of the spheres (b)
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Figure Concepts of the discretisation of a half of the
conditional connecting members: by parallel connected prisms
(@) and by sequentially connected rings (h)

For the two approaches, the total stiffnesses K and K7 of
the connecting elements are as follows:

Ak

Ak, Ak, . 1
K, ,= lim Z i K p=lme=e—-— (1)
M0 Ak + Ok, w0 Y Yk,

where Akpe and Akse are stiffnesses of series connected
infinitesimal prisms of areas A4, and A4y, for the particle and
interface member respectively (Fig. 2a), Ak: is stiffness of a ri ng
of infinitesimal thickness Ak (Fig. 2b).

Limits K. and K,y given in Eqn (1) can be expressed as
integrals
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The integrals given in Eqns (2) and (4) can be computed
analytically or evaluated numerically. It is easy to see that when
Dy = Dp Eqns (2) and (3) are equal, i.e. Kir= Kin.

In Equations (2), (3) and (4) Ry and Rj are radii of a particle
and interface member respectively, Lo is distance between
surfaces of particles (Fig. 1b), Dy and Dy are elasticity constants
of the particles and the interface member respectively. These
stiffnesses a generally depend on a stress-—strain state of the
particles and a bond member. For an uniaxial stress state
D.=E. z & {p, b}, here E: is elastic modulus, for 3D stress
state D: = E(1 — vo)/((1 +v=)(1 — 2v:)). These stiffnesses can be
considered as particular limit cases. It is obvious that other
expressions of the stiffnesses of the materials can be applied to
estimate of the stiffness of the connecting element.

3. Some results and brief discussion

The obtained expressions, Eqns(2), (3), and (4), for the
stiffnesses K. and K, were verified by comparison with the
results of the 3D FEM analysis. Two cases were considered: the
first assuming fixed properties of a particle E, =40 GPa, and
the enveloping values of matrix Ej € [1.4:10°, 40-10%] Pa; while
for the second one vice versa: Fp=40GPa, [ < [1.410°,
40-10?] Pa. For both cases radii of particles and interface
member are the same and fixed i.e. Rp=Ra= 7.5%107m and
Poison’s ratios also are fixed vp = vp = 0.0. Thus, stifnesses of
materials Dy = Ep and Dy = Ep. The distance Le € {0.1, 0.5, 1.0,
1.5} mm. For the FEM analysis for the first case E, =40 GPa
and Ey e {E,, 30:10% 20-10%, 10-10% 4-10%, 4-10%, 4-107,
1.4:106} Pa, for the second case Ep=40GPa and E, € {Ep,
30-10% 20-10°, 10-10° 4:10° 4-10%, 4:107, 1.4:10%} Pa. The
stiffness obtained by FEM is denoted hereafter as Kirea. The
stiffness Ky rear= R/ Al where Al is displacement of free plane
A (Fig. 3) and R is total reaction force acting at plane B. The
FEM analysis was performed by ANSYS 12.

Figure 3: Geometry of the model under investigation

Dependence of the stiffnesses K/ and Kyn on the modulus
of elasticity of the interface member E» and the particles E,
calculated by Eqns(2) and (3) (solid and dotted lines) is
depicted in Fig. 4 and Fig. 5.
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We can see it from Fig. 4 and Fig. 5 when E, > Ep then
Koren € [Kor, Kop] and Ky rey is closer to Koy than Kyp. When
Ep = Ep then for some values of Ep K ren = Ko = K.
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Figure 4: The dependence of the stiffnesses on the modulus of
elasticity of interface member
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Figure 5: The dependence of the stiffnesses on the modulus of
elasticity of particles

4. Concluding remarks

Evaluation of upper and lower limits of the stiffness of a
normal interaction of spherical particles embedded in a matrix is
suggested. Validity of the model was verified and confirmed by
the results of the 3D FEM analysis. Tt was shown that the resulis
obtained by FEM are between the established limits when the
matrix is weaker than the particles.
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