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Thermal properties of biomaterials on the example of the liver
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Abstract

Lionel Smith Beale, FRS, (1828–1906), a physician and microscopist in an evocative comparison wrote that the liver resembles a
magnificent tree with its trunk and branches, with myriad of leaves, synthesizing and detoxifying. The liver in a human is about the
size of football, equipped in a circulatory system and is made of about one million primary lobules which are almost identical, like
the leaves of the tree. Therefore, the liver from mathematical point of view can be considered as a micro-periodic medium, and the
mathematical methods of homogenisation developed for micro-periodic media can be applied to determine some overall properties of
the tissue. Pennes equation of heat propagation in a biological tissue is a quasi-nonlinear partial differential equation with coefficients
depending on temperature T . It consists of three terms, one of them describes Fourier heat diffusion, with the diffusion coefficient λ
depending on T . This term is a subject of the contribution.
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1. Introduction

After the discovery of ultrasound generators it was realized
that absorption of high intensity ultrasound waves acts negatively
on biological tissues. This observation led to research in tissue
heating and healing effects. However, there is still little infor-
mation on the effect of heating on absorption by tissues, which
affects the size and shape of the thermal lesions. The absorption
coefficient exhibited by a soft tissue varies widely from tissue to
tissue and is a function of temperature, cf. [7].

The liver is composed of four lobes of unequal size and shape,
with a rich micro-structure. A normal human liver weighs about
1.5 kg. The liver is a vital organ with a wide range of functions
including protein synthesis and storage, transformation of carbo-
hydrates, synthesis of cholesterol, bile salts and phospholipids,
detoxification, and production of biochemicals necessary for di-
gestion, [2, 3].

A hepatic lobule (Lat. lobuli hepatis) is a small division of
the liver defined at the histological scale. It is about 1 million
lobules in the human liver, each lobule containing at least 1000
sinusoids 0.5-1.0 mm in length, and 700 nm in breadth. There are
over 1 billion sinusoids, with blood sluggishly flowing in parallel
through each one.

A hepatocyte is a cell of the main parenchymal tissue of the
liver. Hepatocytes make up 70-85% of the liver mass. The typical
hepatocyte is similar to a cube with sides of 20-30 µm.

A liver sinusoid is a type of sinusoidal blood vessel (with fen-
estrated, discontinuous endothelium) that serves as a location for
the oxygen-rich blood from the hepatic artery and the nutrient-
rich blood from the portal vein. Sinusoidal capillaries are a spe-
cial type of open-pore capillary also known as a discontinuous
capillary, that have larger openings (30-40 µm in diameter) in the
endothelium, [10].

2. Acoustic wave

George Döring Ludwig (1922 - 1973), pioneer in medical
ultrasound, estimated the velocity of sound transmission in an-

imal soft tissues between 1490 and 1610 m/s, with a mean value
of 1540 m/s. He also determined that the optimal scanning fre-
quency of the ultrasound transducer was between 1 and 2.5 MHz,
and found that the speed of ultrasound and acoustic impedance
values of high water-content tissues do not differ greatly from
those of water, [12].

Acoustic wave propagating through a fluid in the direction x
with the speed u, amplitude A and angular frequency ω is de-
scribed by

ξ = A sinω
(
t −

x

u

)
(1)

Here ξ denotes the displacement of the particle in the time t at
point x. The velocity of vibrations v ≡ ∂ξ/∂t has the am-
plitude v0 = Aω. The amplitude of strain ε ≡ ∂ξ/∂x is
ε0 = Aω/u = v0/u. From Newton’s equation we have
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(2)

where ρ is the density of the fluid and p = p(x, t) is the acoustic
wave pressure. Hence

∂p

∂x
= Aρω2 sinω
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t −

x
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)
(3)

and p = p0 + Aρω u cosω (t − x/u) . The integration con-
stant p0 denotes the pressure in the fluid in absence of wave. The
pressure variation is p̃ ≡ p − p0 = p̃0 cosω (t − x/u) , with
the amplitude

p̃0 ≡ Aρω u = ρ u v0 (4)

The stream of the energy J = wu, where w denotes the mean
value of the wave energy
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(5)

After time averaging 〈(...)〉 ≡ (1/t)
∫ t

0
(...)dτ we get, so called,

the acoustic pressure

p∗ ≡ 〈p̃0〉 = w =
J

u
=
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ρu2
(6)
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In a soft biologica tissue an acoustical wave with a speed 1500
m/s and frequency ν ≡ ω/(2π) = 1 Mhz has the length
1.5 mm. Let the acoustic pressure p∗ be 1 N/m2 = 1 J/m3.
Then v0 = (2/3) · 10−6 m/s, and the amplitude of vibrations
A = (2/3) · 10−3 nm, what is a sub-atomic length.

3. Attenuation of sound

Due to a sound propagating, there is always thermal loss of
energy caused by viscosity. For inhomogeneous media, besides
viscosity, acoustic scattering is another reason for the removal of
acoustic energy, [5].

Absorption of ultrasound in biological tissues strongly de-
pends on the molecular composition of the tissue. The absorp-
tion coefficient increases in function of a protein content, with
collagen of a particularly high specific absorption. Collagen ac-
counts for 10% in the liver, and the absorption coefficient is of 0.2
dB/cm. In water and body liquids there is little absorption 0.003
dB/cm, [1].

4. Thermal properties and Pennes equation

The heat in a living body is transferred by three different
mechanisms: conduction, convection (natural or forced) and ra-
diation. Average thermal conductivity of the liver in (W/(m ·K) is
0.52 with a standard deviation 0.03. The same numbers are found
for the blood, [6]. The Pennes equation reads, [9],

ρc
∂T

∂t
=

∂

∂xk

(
λ

∂T

∂xk

)
+ wb cb (T − Ta) + q (7)

Here, ρ and c are the mass density [kg/m3] and specific heat [J/(kg
· K)], respectively, wb is the blood perfusion rate [m3 blood / (s
kg tissue)], Ta is the temperature of the arterial supply blood.
The heat generation term q encompasses the thermal effects of
metabolism and, if necessary, other volumetric heat loads, as mi-
crowave irradiation or the heat generated by ultrasound waves.

5. Nonlinearity of thermal properties

There is a considerable variation in thermal properties from
tissue to tissue, from species to species, and even within tis-
sues from the same donor. Thermal properties of water taken
from [11] were fit to a linear equation over the range 00 to
450, it is λ = 0.5652 + 0.001575T where λ is in (W/(m ·K).
Thermal conductivity of a tissue is lower than that of water,
while the temperature dependence approximates that of water,
it is λ = 0.4882 + 0.001265T. Thermal diffusivity of a tissue
matches the thermal diffusivity of water well for both the magni-
tude and the temperature coefficient.

6. One-dimensional time-independent problem

Let the section [x0, x0 + ℓ] of x axis consist of two sub-
sections (segments) [x0, x0 + a] and [x0 + a, x0 + ℓ]. Let the
heat conductivity be λa(1+αT ) in [x0, x0+a] and λb(1+βT )
in [x0 + a, x0 + ℓ].

For small α and β the temperature Ta = T (x0 + a) is given
by

Ta = (8)

=
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2
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)

In the linear case, for α = 0 and β = 0 we have

Ta =
1

bλa + aλb

(bλaT0 ++aλbTℓ) (9)

For α > 0 and β > 0 the expression (8) is always greater than

(9).

7. Effective thermal conductivity of liver

Effective medium approximations describe a medium (com-
posite material) based on properties and relative fractions of
its components. These approximations include a Clausius-
Mossotti’s formula (CMF) for the effective conductivity of the
medium consisting of the matrix substance of conductivity λM ,
in which small spherical inclusions of conductivity λI , are dis-
seminated the ratio of the volume of all small speheres to that of
whole being f ,

λeff =
λI + 2λM + 2 (λI − λM ) f

λI + 2λM − (λI − λM ) f
λM (10)

Vladimir Mityushev defined the effective thermal conductivity
when the conductivity coefficient is a function of the temperature
T , and found a generalization of CMF for a family of strongly
non-linear and weakly inhomogeneous composites, [8]. Unfor-
tunately, in the liver tissue the inhomogeneity of conductivities
(collagen vs fluid) is strong.

A. Gałka, J. J. Telega and S. Tokarzewski noticed that soft
tissues are usually anisotropic, and using asymptotic methods de-
rived the formula for the effective heat conductivity in this gen-
eral case, [4]. In one-dimensional case their formula reads

λeff = A(ξ) +B(ξ) +
C(ξ)

T −D(ξ)
(11)

where ξ = a/ℓ, cf. Sect. 6, and A,B,C,D are given function of

ξ. Their effective conductivity λeff is no more linear in the tem-
perature, however. This formula is applied to describe the λeff of
the liver.
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[7] Kruglenko, E., Gambin, B., Cieślik, L., Soft tissue-mimicking ma-
terials with various number of scatterers and their acoustical char-
acteristics, Hydroacoustics, 16, pp. 121-128, 2013.

[8] Mityushev, V., First order approximation of effective thermal con-
ductivity for a non-linear composite, J. Tech. Phys., 36, pp. 429-
432, 1995.

[9] Pennes, H. H., Analysis of tissue and arterial blood temperatures in
the resting human forearm, J. Appl. Physiol., 1, pp. 93 -122, 1948.

[10] Teutsch, H.F., Schuerfeld, D., Groezinger, E., Three-dimensional
reconstruction of parenchymal units in the liver of the rat, Hepatol-
ogy, 29, pp. 494-505, 1999.

[11] Touloukian, Y.S., Liley, P.E., Saxena, S.C., Thermophysical Prop-
erties of Matter, The TPRC Data Series (IFI/Plenum, New York,
1970), 3, pp. 120, 209, 10, pp. 290, 589.

[12] Woo, J., A short History of the development of ultrasound in ob-
stetrics and gynecology, esource Discovery Network, University of
Oxford, retrieved March 12, 2012.

268


