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Abstract The aim of this presentation is to show the behaviour of a cellular com-
posite material. The material is two-phase consisting of metallic, relatively rigid
interfaces and weak filling material. Such type of a generic composite is used as core
filler between external layers of sandwich composite material applied in aerospace
engineering. We investigate the limit load of a sample varying the initial void ratio
in the filling. We are using the Tvergaard-Gurson in order to describe porosity exis-
tence in the material and elasto-plastic models with the assumption of presence of
the finite deformations. The geometrical model is three-dimensional.

1 Introduction

A generic model of a two-phase composite is presented. This model can be used for
an analysis of a cellular composite with weak filling material. The initial porosities
can be as high as 60%. The problem is highly non-linear because of initial stress
stiffness, plasticity and possibly voids nucleation. In our case we follow the analy-
sis up to appearance of plastic strain which develops close to junctions of the stiff
skeleton and close to surfaces where the pressure is applied.
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2 Formulation

2.1 Incremental Equation of Equilibrium

The problem is elasto-plastic with the assumption of large displacements [1–3]. We
consider nonlinear terms of the strain tensor. The virtual work equation is of the form

δΠ =
∫

Ωo

t+∆t

oS ·δ t+∆t
oEdΩo −

∫
Ωo

t+∆tfδ t+∆tudΩo −
∫

∂Ωo
σ

t+∆ttδ t+∆tud (∂Ωo
σ ) , (1)

where S and E are the second Piola-Kirchhof stress tensor and Green Lagrange
strains, f, t and u = {u,v,w} are body forces, boundary tractions and displacements.
All of the quantities are determined at time t + ∆t in the initial configuration. To
obtain the above equation at time t + ∆t in the configuration at time t the relations
[4, 5], are used

t+∆t
oS =

ρ
ρo

t+∆t
tS, t+∆t

oE =
ρ
ρo

t+∆t
tE, ρdΩt = ρo dΩo (2)∫

Ωt

t+∆t
tS ·δ t+∆t

tE dΩt =
∫
Ωt

t+∆ttδ t+∆tu dΩt +
∫

∂Ωt
σ

t+∆ttδ t+∆tu d
(
∂Ωt

σ
)
. (3)

Now, we apply incremental decomposition to the quantities in the equation above:
strains, stresses, displacements and forces

t+∆t
tE = t

tE+∆E, t+∆t
tS = t

tS+∆S, t+∆tu = tu+∆u, t+∆tf = tf+∆S. (4)

Since the second Piola-Kirchhoff tensor at time t in the configuration t is equal to
the Cauchy stress tensor the stress decomposition is of the form

t
tS =t

t τ and t+∆t
tS =t

t τ + ∆S. Then, we employ the following strain increment
decomposition into its linear and nonlinear parts in the following form ∆E =
∆e + ∆η, ∆e = Ā∆u and ∆η = ¯̄A(∆u′)∆u′/2 where ∆u′ is the vector of the dis-
placement increment derivatives w.r.t. Cartesian coordinates and Ā, ¯̄A are the linear
and nonlinear operators [2]. The operators act on linear and nonlinear parts of the
strain tensor.

Substituting the described relations, into the virtual work equation, Eq. (3), and
assuming that the equation is precisely fulfilled at the end of the step we obtain the
following incremental form of the virtual work equation.

∫
Ωt

(t
tτ ·δη+∆S ·δ∆e

)
dΩt =

∫
Ωt

∆f δ∆udΩt +
∫

∂Ωt
σ

∆t δ∆u d
(
∂Ωt

σ
)
. (5)
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Employing the finite element approximation ∆u = N∆q and ∆u′ = B′∆q where N
is the set of shape functions and ∆q is the increment of nodal displacements and
considering the following set of equalities

t
tτ

Tδη = t
tτδ

(
¯̄A
)

∆u′ = δ
(
∆u′)T t

t τ̄ ∆u′ = δ (∆q)T t
t τ̄ B′

L, (6)

where t
t τ̄ is the Cauchy stress matrix

t
t τ̄ =

⎡
⎢⎣

t
tτ

t
tτ

t
tτ

⎤
⎥⎦ t

tτ =

⎡
⎣ t

tσxx
t
tτxy

t
tτxz

t
tσyy τyz

t
tσzz

⎤
⎦ , (7)

we obtain the following discretized form of the virtual work equation

⎛
⎝ ∫

Ωt

B′
L

Tt
t τ̄B′

L dΩt

⎞
⎠ ∆q+

∫
Ωt

BT
L∆S dΩt =

∫
Ωt

NT∆f dΩt +
∫

∂Ωt
σ

NT∆t d
(
∂Ωt

σ
)
. (8)

Now, we will deal with the constitutive model and employ the linearized constitutive
equation, in fact with the stress increment, ∆S.

2.2 Finite Strains

When considering the finite strains effect [6, 7], the gradient F = ∂ (X+u)/∂x is
decomposed into its elastic and plastic parts, F = FeFp. To integrate the constitutive
relations the deformation increment ∆D is rotated to the un-rotated configuration by
means of rotation matrix obtained from polar decomposition F = VR = RU, ∆d =
RT

n+1∆DRn+1, then the radial return is performed and stresses are transformed to
the Cauchy stresses at n + 1, σn+1 = Rn+1σu

n+1RT
n+1. The stresses are integrated

using the consistent tangent matrix [8] and the integration is done in the un-rotated
configuration as for small strains.

3 Constitutive Model

The constitutive model is the Gurson Tvergaard model [9–11] with the yield func-
tion as follows

F =
(

σM

σ̄

)2

+2q1 f cosh

(
3q2σm

2σ̄

)
− (1+q3 f 2) , (9)
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where σM is the Mises stress, σm is the mean stress, σ̄ is the Mises stress in the
matrix, f is the void ratio and q1,q2 q3 are the Tvergaard coefficients.

The stress integration algorithm comprises the elastic trial stress (predictor) and
the corrector. It conforms the radial return algorithm. The algorithm can be derived
basing on [12]. The elastic trial stress are of the form

σE
m+1 = σm +D ∆ε pl . (10)

The deviatioric and the volumetric stress are of the form

qm+1 =

√(
3
2

Si jSi j

)
m+1

pm+1 = −1
3
(σ11 +σ22 +σ33)m+1. (11)

The increment of the plastic strains can be obtained from the normality condition.

dε pl = dλ
∂F
∂σ

(12)

Further, the plastic strains increment and the unit normal vector are of the form

∆ε pl = ∆λ
(
−1

3
∂F
∂ p

I+
∂F
∂q

n
)

m+1
nm+1 =

3
2qm+1

Sm+1. (13)

The stress at the end of the (m+1) takes the form

σm+1 = σE −D∆ε pl . (14)

Since the increment of plastic strains is

∆ε pl =
1
3

∆εpI+∆εqnm+1, (15)

the stress at the end of the step may be expressed as follows

σm+1 = σE
m+1 −K∆εpI−2G∆εqnm+1. (16)

The updated stresses are of the form

σm+1 = σE
m+1 −K∆εpI− 3G∆εq

qT
m+1

SE
m+1, (17)

where the quantities designated with the index (E) are the elastic trial stresses.
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4 Numerical Example

We consider two cases of the material of the different Young’s moduli of the fill-
ing material. The Young’s moduli are 0.2E + 11N/m2 and much lower 0.005E +
11N/m2. Both moduli significantly lower the Young’s modulus of the skeleton
which is 2.1E + 11N/m2. The yield limits are 15.0E + 6 and 297.0E + 6N/m2.
The initial porosity of the filler is 0.3. We observe the most characteristic features of
the behaviour of the material. Our interest is focused on the vertical displacements,
equivalent total strains, plastic strains and Mises stress.

Observing all figures (Figs. 1–4) we may notice qualitatively different perfor-
mance of both materials. The vertical z-displacements (Fig. 1) is more equally
distributed and is lower, 0.725E-5 mm, in the case A than in the case B, 0.358E-
3 m. This z-displacements distribution gives a picture of roughness of the material
during loading. The weaker sample becomes thinner close to the loaded edge. When
concerning the total equivalent strain (Fig. 2) we may notice higher contrasts in the
case of stronger material. The strain is distinctly lower in all interfaces than in the
cells. The maximum strain, 0.691E-3 is lower than in the case of the weaker mate-
rial, 0.418E-1.

Fig. 1 Veritical displacements distributions (cases A and B)

Fig. 2 Equivalent strain distribution (cases A and B)
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Fig. 3 Equivalent plastic strain distribution (cases A and B)

Fig. 4 Mises stress distribution (cases A and B)

The equivalent plastic strain distribution (Fig. 3) is different in both cases. In the
case of stronger material there are more equivalent plastic spots within the sam-
ple than in the case of weaker material. The plastic strain are more localized in the
weaker sample. The equivalent plastic strain reads 0.309E-3 and 0.286E-1, respec-
tively.

The Mises stress distributions are presented in Fig. 4. The Mises stress is the
highest in the junctions of the skeleton and in the edges of the skeleton. The maxi-
mum stress is higher in the sample with weaker filling material (0.386E+9Pa) than
in the case of stiffer sample (0.642E + 8Pa). The stress contrasts are higher in the
case of weaker sample.

The calculations were performed for the same load level, 80.4E+6Pa.

5 Final Remark

A generic numerical model of a material with weak filling material is presented.
The weak material is modelled using Tvergaard Gurson material. This approach is
convenient and allows to model material with high initial volume of voids.
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