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Abstract 
 

The aim of the paper is to find an optimal sensor location in order to perform an  identification of laminates’ elastic constants. As a 
result the identification procedure can be more accurate and less time-consuming. Simple and hybrid (with laminas composed of 
different materials) laminates are considered. To collect data necessary for the identification procedure modal analysis methods are 
used. This attitude allows reducing the number of sensor points to one. Sensitivity analysis of the measurements to the variation of 
identified parameters is performed. Global optimization methods in form of Evolutionary Algorithm and Artificial Immune System  
are  employed to perform the identification task. Commercial finite element method software is employed to solve the direct problem 
for laminates. Numerical examples showing the influence of the sensor point location on the identification results are attached.  
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1. Introduction 

Laminate elements are often produced in short series. To 
determine the elastic constants of the product non-destructive 
methods of the identification should be employed. The identifi-
cation is typically performed on the basis of measurements of 
state fields, like displacements or stresses. Application of the 
modal analysis methods allows reducing the number of sensors 
to even one, as one can obtain a diagram instead of a single 
value at sensor point.  

Sensor (or sensors) location strongly influences the results 
of the identification procedure. The aim of the paper is to find 
the best location of the sensor for laminates’ identification and 
show the influence of the location of the sensor on the 
identification results. Commercial FEM software package 
MSC.Patran/Nastran is used to solve the direct boundary-value 
problem for laminate structures. 

2. Identification of laminates’ elastic constants 

2.1. Simple and hybrid laminates 

Laminates state a group of composites which consist of 
many layers. Each layer is composed of continuous phase 
(matrix) and long fibres, usually placed unidirectionally in each 
ply. Laminates have especially high strength/weight ratio 
comparing with other types of composites. Laminates can be 
usually treated as thin two-dimensional structures with four 
independent elastic constants [4]: two Young module E1, E2, 
one shear modulus G12 and one Poisson ratio ν12.  

In hybrid laminates particular plies are composed of 
different materials. The main reason of designing hybrid 
laminates is to find a balance between the cost and the required 
properties of the laminate. Interply hybrid laminates [1] have 
the internal layers made of a low-strength but cheaper material 
while the external layers are composed of a high-stiffness, but 
more expensive material. In the case of interply hybrids it is 
necessary to identify 4 elastic constants for each material and 

additionally the material densities, which increases the number 
of identified parameters to 10. 

2.2. Laminates’ identification task 

The identification can be treated as the minimization of the 
functional J(x) with respect to a design variables vector x:  
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where: x – the vector of the design variables,  ˆ
iv  – measured 

values of the state fields, vi – the same state fields values calcu-
lated from a numerical model, N – the number of measu-
rements. 

Gradient-based optimization methods are fast and precise, 
but in many engineering problems the calculation of the 
objective function gradient is complicated or even impossible. If 
the objective function has many optima, the gradient methods 
can direct to the local ones. To avoid the mentioned problems, 
the global optimization methods, like Evolutionary Algorithms 
or Artificial Immune Systems can be employed [2,3]. 

3. Optimal sensor location 

3.1. Formulation of the problem 

Identification belongs to inverse problems, which are 
mathematically ill-posed. In order to solve the identification 
task it is necessary to collect measurements in form of state 
fields’ values from the considered structure. Identification 
procedure compares them with the values of the state fields 
calculated from the numerical model of the structure. An 
important problem is the choice of sensors location, which can 
significantly influence the effectiveness and precision of the 
identification process. 

Typically, the location of sensors is determined by physical 
conditions and/or by intuition. The other approach is an application 
of efficient numerical algorithms of optimum experimental design. 
These algorithms usually base on the Fisher Information Matrix 
and A-optimality or D-optimality criterion [5] .  
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In the present paper modal analysis methods are employed to 
collect data necessary for the identification of laminates’ elastic 
constants. The structure is excited by the sinusoidal signal of 
changing frequency and the accelerations in one sensor point are 
measured to obtain the frequency response diagram [6].  

3.2. Sensitivity analysis 

The aim is to find the location x0 of the sensor point where 
the measurements are the most sensitive to the variation of the 

identified parameters – material constants  C=(E1, E2, G12, 12). 
For a given sensor location x and vector of material constants 
C, F(x,C) denotes the corresponding frequency response 
function. It should be emphasized that F(x,C) is not a single 
value, but a function belonging to the normed space X of all 
functions which can represent the frequency-amplitude 
response.  

For a given sensor location x, the derivative of F(x,C) with 
respect to the each material parameter Ci is calculated (via finite 
difference approximation). The overall measure of the sensor 
location point quality may be defined as: 
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where the   sign denotes the norm in the X space - in 

practice calculated using discretised values of frequency-
amplitude response. 

The determination of the point where J(x,C) attains maxi-
mum for wide range of material constants can make the 
identification procedure faster and less ambiguous. 

It should be noted that the concepts and expressions given 
above are somehow simplified. In real problems, material 
parameters scaling should be performed to guarantee the equal 
influence of all material constants – it must be remembered that 

12 and Eij (or G12) are quantities which orders of magnitude are 
extremely different, which is also true for the corresponding 
sensitivities. Hence, all presented sensitivities are called 
“normalised sensitivities”. 

4. A numerical example – sensitivity analysis 

A square laminate plate 0.2x02m made of 12 plies is 
considered (Figure 1). The stacking sequence of the laminate is: 
(10/15/45/60/0)s, where “s” denotes symmetry. Each ply is 
made of the same glass-epoxy material having elastic constants 

values: E1 = 38.6GPa, E2  = 8.27GPa, G12 = 4.14GPa,  = 0.26. 
To solve the direct problem the plate is divided into 25 4-

node finite elements. The plate is subjected to the sinusoidal 
load P in node 6 with maximum value Pmax = 100kN. It is 
assumed that the excitation location does not change and the 
possible sensor locations are limited to chosen nodes of the 
mesh (points 1-16). 

Figure 1: Laminate plate: mesh, excitation point and considered 
sensor locations (points 1-16) 

The acceleration amplitudes in direction perpendicular to 
the plate plane are measured (numerical experiment) and the 
sensitivities are calculated for each location of the sensor point.  

The results of the sensitivity analysis for selected points (the 
highest and the lowest normalised sensitivity values) are 
collected in Table 1.  

 
Table 1: Sensitivity analysis – results  
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 J(x,C) 

Sensor's 
rank 

1 0.643 0.638 0.637 0.637 1.277 2 
2 0.585 0.528 0.581 0.581 0.116 14 
3 0.467 0.464 0.463 0.464 0.093 16 
6 1.000 1.000 1.000 1.000 2.000 1 
7 0.109 0.372 0.311 0.311 0.586 4 

11 0.079 0.049 0.049 0.049 0.116 15 
12 0.396 0.434 0.434 0.434 0.849 3 

 
The proposed rank of sensors ordered accordingly to values 

of J is presented in the last column of Table 1. It can be seen 
that the best selection for sensor location are points: 6, 1, 12 and 
7. To find the optimal location of the sensor point more 
precisely the adaptive mesh techniques can be employed. This 
attitude can be especially useful if the geometry of the laminate 
structure is more complicated. 

5. Final conclusions 

The paper is devoted to the searching of the optimal sensor 
location for identification problems. The identification of lami-
nate material constants problem is considered. Influence of the 
sensor point location on the sensitivity of identified parameters 
is presented. As the result the location of the sensor (or sensors) 
significantly influences identification results. In the next step 
the global optimization methods supported by finite element 
method are employed to solve the identification task. 

References 

[1] Adali, S. et al., Optimal design of symmetric hybrid lamina-
tes with discrete ply angles for maximum buckling load and 
minimum cost, Composite Structures, 32, pp. 409-415, 
1995. 

[2] Beluch, W., Burczyński, T. and Kuś, W., Parallel Artificial 
Immune System in Optimization and Identification of 
Composite Structures, Proc. of the XI Conference  Parallel 
Problem Solving from Nature, LCNS 6239, Springer-
Verlag, Berlin Heidelberg, Vol. 1, p p. 171-180, 2010. 

[3] Beluch, W., Evolutionary Identification and Optimization of 
Composite Structures, Proceedings of the III European 
Conference on Computational Mechanics, ECCM 2006, 
LNEC, Lisbon, CD-ROM, 2006. 

[4] German, J., The basics of the fibre-reinforced composites’ 
mechanics,  Publ. of the Cracow University of Technology, 
Cracow, Poland, 2001 (in Polish). 

[5] Patan, M. and Uciński, D., Optimal location of sensors for 
parameter estimation of static distributed systems,  
Proceeding of PPAM 2001, Wyrzykowski R. et al. Eds., 
LNCS 2328, pp.729-737, 2002. 

[6] Uhl, T., Computer-aided Identification of Constructional 
Models, WNT, 1997 (in Polish).  

x 

y 

1 

2 

3 

4 

5 

6 (excitation  point) 
 

7 

8 

9 

10 

11 

12 16 14 

15 13 


