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Abstract 
 

The goal of the paper is to present results of identification of trabecular bone material properties. The identification is performed with 
use of evolutionary algorithm. The single isotropic trabeculae material properties are obtained on the basis of orthotropic material 
properties for RVE. 
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1. Introduction 

The multiscale modelling of tissues is emerging and 
important problem. The tissues have hierarchical structure in 
most cases. The paper deals with trabecular tissue which is one 
of the component of the bones. The goal of the paper is 
identification of material properties of tissue on the base of 
homogenized material properties. The identification is presented 
on the example of trabecular tissue in the proximal femur bone. 
The evolutionary algorithm is used in the identification process. 
The paper is extension of works presented by the authors in the 
[3]. 

2. Multiscale model of femur bone 

The proximal femur bone is shown in Figure 1. The 
cancellous and cortical tissues are two main components of the 
bone. The cancellous tissue is a porous structure with 
complicated geometry (Figure 1).  

   

 
Figure 1: The proximal femur bone geometry and 
microstructure 
 

The geometry of the cancellous bone changes in different 
locations of the femur bone.  The experimental tests of single 
trabeculae have showed isotropic material behavior [5], 
however the material properties of the cancellous tissue are no 
longer isotropic.  

The material properties depend on the tissues structure and 
change depending on the location in the femur bone. They can 
be obtained on the basis of the density obtained from CT scans 
[6]. The multiscale modelling is used in the paper. The 
heterogeneous material is replaced with a homogenous one. The 
homogenization is useful when the microstructure is periodic. 
The influence between scales in the computational 
homogenization is obtained on the basis of numerical solution 
of the boundary value problem performed in each scale.  

 The trabecular bone is modeled as micromodel. The 
representative volume element (RVE) approach is used.  

The material coefficients in the case of linear problems can 
be obtained once for each microstructure. The six analyses 
should be performed for each microstructure to obtain the 9 
independent material coefficients.  

3. Problem formulation 

The goal of the identification is to obtain material properties 
of single trabeculae of trabecular bone. Material parameters of 
the structures in one scale should be identified on the basis of 
measurements in another one. In the considered problem the 
identification of Young modulus E and Poisson ration ν of the 
single trabeculae is performed on the basis of measured material 
parameters in the macroscale for representative volume element. 
The material properties in the macroscale can be obtained by 
performing identification task on the basis e.g. strains or 
displacements measured for macromodel. The material 
properties can be also obtained by using ultrasonic velocity 
measurement or mechanical test for microspecimens. The 
problem can be formulated as minimization task: 
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ia are computed homogenized RVE material properties, ˆ
ia are 

RVE homogenized material properties from the macromodel. 
 The objective function is multimodal in most cases, the 

optimization should be performed with use of algorithm 
resistance to local minima. The wide range of bioinspired 
algorithms allows to solve the global optimization problems. 
The minimization problem can be solved using the distributed 
parallel evolutionary algorithm [1]. The searched materials 
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parameters - Young modulus E and Poisson ration ν of the 
single trabeculae create a chromosome 

1 2[ , ]ch g g  (3) 

where gi (i=1,2) are genes:  
g1 - Young modulus E, 
g2 - Poisson ration ν 

4. Numerical example  

The isotropic material properties for trabeculae can be 
performed on the basis of known orthotropic material properties 
for microstructure model. The orthotropic parameters for 
microscale can be obtained by performing tensile test for 
trabeculae specimen  or on the basis of the ultrasonic velocity 
measurements. The orthotropic material properties in 
microscale can be also acquired by performing identification for 
macro level model. 

 

a)  b)  
Figure 2: The trabecular RVE model: a) geometry, b)finite 
element mesh 
 

The identification of material parameters E and ν of the 
single trabeculae on the micro level has been performed as 
minimization of the objective function F, given by (1), by the 
distributed parallel evolutionary algorithm with the parameters 
presented in Table 1. 

 
Table 1: The evolutionary algorithm parameters 

Parameter Value 

Number of subpopulations 2 
Total number of chromosomes  30 

Number of genes 2 

Probability of crossover+Gaussian mutation 90% 
Probability of uniform mutation 10% 

Ranking selection - 
Number of iterations 35 

 
The microstructure model shown in Figure 2 was used for 

computations. Numerical results of identification are presented 
in Table 2. 

 
Table 2: Actual and found material parameters of the trabecular 
bone in the microscale 

Material 
parameters 

Actual Found Error % 

E [MPa] 3300.0 3305.5 0.16 

ν 0.330 0.329 0.30 
 
The history of the objective function F changes during 

optimization for two populations is presented in Figure 3.                      
The improvements of objective function values in 
subpopulations after migrations phase can be observed. 

 

F [MPa] 

 
  

Figure 3: History of the objective function for two 
subpopulations 

 

5. Conclusions 

It is seen very good agreement between actual and found 
material parameters. The identification problem in the 
multiscale modelling belongs to a new emerging methodology 
which is very useful in determining of some material parameters 
in the microscale having information about some measurements 
from the macroscale. 
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