
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 148.81.55.202

This content was downloaded on 12/05/2015 at 11:18

Please note that terms and conditions apply.

Dynamics and topology of a flexible chain: knots in steady shear flow

View the table of contents for this issue, or go to the journal homepage for more

2015 New J. Phys. 17 053009

(http://iopscience.iop.org/1367-2630/17/5/053009)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/17/5
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


New J. Phys. 17 (2015) 053009 doi:10.1088/1367-2630/17/5/053009

PAPER

Dynamics and topology of a flexible chain: knots in steady shear flow

SteveKuei1,2, AgnieszkaM Słowicka3,Maria L Ekiel-Jeżewska3, EligiuszWajnryb3 andHowardAStone1

1 Department ofMechanical andAerospace Engineering, PrincetonUniversity, PrincetonNJ 08544,USA
2 RiceUniversity, Department of Chemical and Biomolecular Engineering, Houston, TX 77005,USA
3 Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5b, 02-106Warsaw, Poland

E-mail:mekiel@ippt.pan.pl

Keywords: knots, lowReynolds number flows,multipolemethod

Supplementarymaterial for this article is available online

Abstract
Weuse numerical simulations of a bead–springmodel chain to investigate the evolution of the
conformations of long andflexible elasticfibers in a steady shear flow. In particular, for rather open
initial configurations, and by varying a dimensionless elastic parameter, we identify two distinct
conformationalmodeswith different final size, shape, and orientation. Through further analysis we
identify slipknots in the chain. Finally, we provide examples of initial configurations of an ‘open’
trefoil knot that the flowunknots and then knots again, sometimes repeating several times.

1. Introduction

One area of complexfluids concerns themotion and topology of elastic filaments influidflows, which is inspired
by both natural and industrial phenomena, such asflagellarmotion [1–3],fluid-structure interactions, e.g.
[4, 5], and polymer processing, e.g. [6–10]. Such long flexiblefilaments can have non-trivial dynamics, e.g. drift
across streamlines can occur, e.g. [7, 11, 12], and topologies. For example, knots are found in Brownian systems
such as bacterial DNA, protein structures, and polymer chains, and non-Brownian systems such as ordinary
string, elastic fibers and chains of linked beads [13, 14]. In this paper we report the time-dependent shapes of
flexible non-Brownian filaments in a steady shearflow and identify conditions that allow an ‘unknotting–
knotting’ transition, where an unknotted filament is later observed to form an (open) knot as it rearranges
continually in the flow.

For rigid non-Brownian particles in shearflow,when the Reynolds number is low, a straight elongated
particle has a Jeffery orbit, which is the basis formany studies, and helps organize those initial states that have
orientation and rolling about the vorticity axis from those that primarily alignwith and tumble periodically
about theflowdirection. For flexible or deformable objects, characterizing the shape of the particle inflow, and
the corresponding dynamics, ismore challenging. For example, experimentalmeasurements offiber dynamics
commonly useDNA as amodel polymer [15], and computer simulations are based onmolecular dynamics or
Brownian dynamics [16]. On a larger length scale where Brownian effects are less significant, linked colloidal
chains are also used as experimentalmodels of aworm-like chain [17, 18], the actin filament [19] and the cellular
flagellum [20]. In all of these cases, dynamics in a single plane aremeasured, but it is difficult experimentally to
simultaneously track dynamics in both the shear and vorticity directions [21].

On the other hand, numerical simulationsmake possible the visualization ofmultiple viewing planes and the
detailed analyses of shape and topology offlexiblefilaments. Previouswork, some ofwhich includes Brownian
effects and some ofwhich does not, has identified and tracked the tumbling offlexiblefilaments (e.g. polymers)
in detail, relating the tumbling period and shape to polymer length, flexibility and shear rate, as well as rates of
rotation both in and out of plane [12, 22–25].However, due to computational constraints, these simulations of
fibers are generally bead-chains with aboutN= 50 beads, with the longest ones containingN=100 beads; an
alternative approach to some of these questions is to use slender-body theory, e.g. [26, 27].

In recent years, knots in long chains have been studiedmorewidely, including the observation of thermally
driven knotting and unknotting of a polymer chain [28], the influence of chain tension on a knot, e.g. [29, 30],
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and the influence of electric fields on knots [31]. Also, the untying of a knot in an extensional flowhas been
studied recently [32], and has the spirit of the present paperwherewe ask about the effects offlow. In contrast,
for non-Brownian systems other kinds of forcing, such as vibration, can produce knotting of chains of linked
spheres [13, 14].We are not aware of any similar studies, experimental or numerical simulations, highlighting
conditions that lead to long non-Brownian chains forming knots inflows.

Thus, while significant steps have been taken towards understanding the detailed dynamics offlexible non-
Brownianfibers, to understand topology ismuchmore difficult: it requires three-dimensional detail and very
flexible, long and thinfibers as, in theory (when there is noflow), the probability of knotting in a randomwalk
increases exponentially with the length of thewalk [33].Moreover, the initial conditionsmaymatter and an
operational definition is needed for a knot in an open fiber.

In this paper, we focus on the dynamics and topology of long, flexible, non-Brownian chains of beads in a
steady shearflow and use numerical simulations to investigate whether knots in the fiber occur as a result of the
flow.Wewillfind that unknotted fibers are capable of forming (open) knots, and in some cases we document a
sequence of unknotting–knotting transitions. The numerical solution of this kind of problem requires tracking
themotion ofN beads, where hydrodynamic interactions between the beadsmean that the dynamics of the
topology of the object involve N3 coupled nonlinear ordinary differential equations. Not surprisingly, such
dynamics should be expected to be chaotic thoughwe have not attempted in this paper to link our study of
complex shapes and the unknotting–knotting transition to the underlying chaotic dynamics. Our results
highlight new aspects of the dynamics offlexiblefilaments inflow.

2. Simulationmethods

2.1. Afiber as a string of spherical beads
Weconsider a long non-Brownianflexiblefiber in steady undisturbed shear flow γ= zv e˙ x0 of afluidwith
viscosity η (figure 1). The vorticity vector is in the y-direction. Thefiber deforms owing to elastic and bending
forces and ismodeled as a chain ofN identical spherical beadswith diameter d (figure 1(a)) [12, 34]. The
parameters of these forces are k, the spring constant normalized by πη γd ˙ ,A, the bending stiffness normalized by

πη γd ˙4 , andℓ0, the equilibriumdistance between the closest bead centersmeasured in units of d. All distances are
measured in units of d, and time in units of γ1 ˙ . Thus, there are four-dimensionless parameters that characterize
the chain: k,A,N andℓ0.Wework close to the inextensible limit with ℓ∣ − ∣ ≪1 10 and ≫k 1and focus on the
dynamics for a wide range of values ofA.

Figure 1.Coordinate systems and notation for the simulations. (a) A ‘candy-cane’ shape, which is one of two typical initial
configurations studied in this work. The expanded view labels beads i and −i 1. Also, ri is the position vector of each bead center and
ti is the vector connecting two adjacent bead centers. (b) A configurationwith shading to indicate the chain’s ellipsoid of revolution.
The shear flow is shown in the background. Themajor axis of the chain’s configuration is shownwith an arrow, while the red and blue
coloring of beads denote twohalves of the fiber for visual clarity. The orientation ismeasured by the angles θ andϕ, such that θ
measures the inclination from the vorticity axis (y) andϕmeasures the orientation in the xz-plane,measured from the z-axis.
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Weassume that the particle-scale Reynolds number ismuch smaller than unity, i.e. = ≪ργ
η

Re 1d˙ 2

, where ρ

is thefluid density and thefluid flow satisfies the quasi-steady Stokes equations, with no-slip boundary
conditions at the bead surfaces. The equations are solved using themultipole expansionmethod, which
accounts for lubrication corrections to speed up the convergence of the frictionmatrix as the order of the
multipole truncation is increased. This solution yields the velocities of the beads, as explained in [12]. The
algorithm and its numerical implementation HYDROMULTIPOLE are described in [35, 36]. Also, the application of
these tools tomodel dynamics offlexiblefibers is outlined in [12]. The time-dependent translational velocities of
the bead centers, evaluated by the HYDROMULTIPOLE numerical code, are used by an adaptive fourth-order Runge–
Kutta procedure, fromwhich the positions of every bead are updated.

We focus on the dynamics of longfibers ( ≈N 100–150), which, inflow, tend tofluctuate from elongated
shapes to compact shapes with some of the beads coming close together. Spurious overlaps of beads can occur,
which can significantly influence the time scales of the dynamics of close particles [37]. Therefore, we analyzed
different procedures that allow the dynamics to be continued once an overlap occurs and chose a procedure that
caused the least number of overlaps. If the distance between two bead centers <r 1, then the lubrication
correction for this pair is evaluated for the rescaled configuration ϵ+1 lub, where ϵ = −10lub

4 is the integration
accuracy per step, and the dynamics of the original positions are continued. The details of this original
simulation approach for handling close particle pairs are provided in the next section.

In the simulations reported here, the initial geometry is chosen first from a random rotation of a ‘candy-
cane’ shapewithN=152, i.e. a straight chain that bends into a semi-circle at one end; see figure 1 and
appendix A. The candy-cane shape is convenient for startingwith an elongated initial configuration that breaks
the symmetries associatedwith shearflow. Also, we have performed calculations with a trefoil as an initial
conditionwithN=99 (see section 4 and appendix B). For each simulationwe fix ℓ = 1.020 and k=500, and vary
A systematically.We evolve the shape in a steady shearflowusing the HYDROMULTIPOLE algorithm [35].

2.2. A simulation procedure for compact structures
As introduced in the previous section, andwill be clear when themany simulations in this paper are shown, long
flexiblefibers can form compact structures with some of the beads coming very close to other beads. As a result,
it sometimes happens that surfaces of pairs of beads spuriously overlap. This complicationwill be faced by all
numericalmethods and for the long-time dynamics of long flexiblefibers, which are the focus of this paper, such
artifacts cannot be avoided. The physical problem is that the friction andmobility coefficients are not defined for
the distance between the bead centers less than their diameter (equal to one in our units). In the literature, there
exist differentmethods that allow the dynamics to be continued once an overlap takes place (e.g. see the brief
review in [37]). In this sub-sectionwe present a new approach for the problemof overlaps; the reader interested
only in the results of thefiber dynamics, including the unknotting–knotting transition that we have identified,
can skip this sub-section.

Not surprisingly, it is known that numerical procedures for handling the interaction of close pairs can
sometimes significantly influence time scales of close-particle dynamics. In particular, examples are knownof
systems of particles where spurious overlaps increase the period of oscillations, even by a factor of 2 [37].
Therefore, it is important to choose a numerical treatment of overlaps thatminimizes the time-dependent
number of overlapping pairs and also prevents the particle surfaces from remaining overlapped for a long time.

We have observed that spurious overlaps of beads sometimes can significantlymodify compact shapes of
flexiblefibers, lead to their orientation along the y (vorticity) axis, and change properties of the dynamics. In
particular, a larger number of overlaps leads to a larger fiber curvature and a smaller radius of gyration.
Therefore, to address themain questions of this paperwe found it essential to use an optimal procedure once an
overlap takes place. After analyzing and comparing a few suchmethods, we proposed a newone.Here we
provide a brief description of this procedure (called BWE), whichwe have applied to continue evolution of the
systemof equations in case of spurious overlaps of beads.Our new approach gives a small number of
overlapping pairs of the beads, which, in addition, usually do not remain overlapped for a long time.

The procedure is based onmodification of the lubrication correction δ r( )ij
(2) in the case when the beads i

and j overlap. To explain the idea, wefirst briefly explain the general idea how the lubrication correction is
constructed [35, 36]. Truncating themultipole expansion at the order L, we evaluate themultipole
approximation ζL

N( ) for the frictionmatrix of theN-bead system. This step can be accomplished even if the
distance rij between the centers of beads i and j is close to but smaller than one (here, = …i j N, 1, , ).We need

to add a lubrication correction δL
N( ) to speed up the convergence of themultipole expansion,

ζ ζ δ= +¯ .L
N

L
N

L
N( ) ( ) ( ) This correction is the sumof all pairwise contributions, ≠k l

δ ζ ζ= −r r r( ) ( ) ( ), (1)kl kl L kl
(2) (2) (2)
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where rkl is the relative position vector of particles k and l. Here, ζ r( )kl
(2) and ζ r( )L kl

(2) are, respectively, the two-
body frictionmatrices—the exact one and itsmultipole approximation of the order L.

Now, consider a pair of overlapping beads i and j, i.e. ⩽r 1ij , for which elements of thematrix ζ(2) are not
defined—they diverge at the contact.We overcome this problemby rescaling the lubrication correction for the
overlapping pair of beads

δ δ ϵ⟶ +( )r
r

r
( ) 1 , (2)ij

ij

ij

(2) (2)
lub

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

and evaluate the dynamics from the unchanged positions of all of the particles. Themultipole approximation
ζL

N( ) for the frictionmatrix of theN-bead system and the lubrication corrections for non-overlapping beads are
notmodified.

The key idea of themethod is to take ϵlub equal to the integration accuracy per step, which in this work is
equal to 10−4. Owing to this choice, the time of a spurious overlap is reduced in comparison to smaller values of
ϵlub. Indeed, a typical overlap depth is of the order of the accuracy. Therefore, by assigning to the relative velocity
of the beads the new, quite large value, which corresponds to the gap size between their surfaces, i.e. ϵlub equal to
a typical overlap depth, we obtain the required result that the overlapped beads can be disconnected easily, i.e. in
relative terms they quickly separate their surfaces from each other.

3. Results: elongated initial configurations

Upon starting the shearflow, the fiber, whichwas initially in the candy-cane configuration, described in
appendix A, aligns approximately with the flowdirection and undergoes a ‘tumbling’ or ‘yo–yo’motion
(figures 2(a), (d); the chain halves are colored for clarity), similar to observations in studies offlexible polymers
in shearflow [21, 38–40].We identify two distinct behaviors for the dynamics, depending on the value ofA. To
quantify the dynamics, we report the time-dependent approximate shape and orientation of the chain.

3.1. Typical simulations and geometric characterization
First, for a given configuration, we calculate themoment of inertia tensor [41]

∑∑= − −
= =

T
N

r r r r
1

2
(3)nm

i

N

j

N

i
n

j
n

i
m

j
m

2
1 1

⎡⎣ ⎤⎦⎡⎣ ⎤⎦

with theCartesian coordinates =n m, 1, 2, 3, and the labels i j, of the vertices of each of theN beads. The
lengths a, b, and c denote the three semi-axes of the ellipsoid of inertia associatedwith a configuration
(figure 1(b)). These lengths are related to the three eigenvalues λn ofTnm, i.e. λ=a 3 1 , λ=b 3 2 , and

λ=c 3 .3 The largest eigenvalue a gives the primary axis of the ellipsoid, and the orientation angles of the
associated eigenvector, θ andϕ, aremeasured from the vorticity and z axes, respectively, as shown infigure 1(b).
We use a, b, and c to visualize thefiber shape: if ≈ ≈a b c , the configuration is roughly spherical, whereas if

≫ ≈a b c, the shape is prolate ellipsoidal, and if ≈ ≫a b c, the shape is oblate spheroidal.
Also, we calculate the radius of gyrationRg of each configuration, i.e. = ∑ −=R r r( )

N i
N

ig
2 1

1 cm
2, by comparing

the coordinates of each bead ri to the center ofmass rcm. Since =R Ttrace nmg
2 then λ λ λ= + +Rg

2
1 2 3 [42].

With thesemeasures θ ϕR a b c{ , , , , , }g , we track a given chain’s size, shape, and orientation as it evolves in
theflow.

For a given initial orientation, specified in appendix A, chains with lower values ofA, e.g. <A 2, behave
differently than chains with higher values, ⩾A 3; qualitatively, the former form tight coils alignedwith and
rolling in the vorticity direction, while the latter formsmore open tumbling configurations, by analogy to the
results of [43].We present detailed results from each category, starting from the same initial ‘candy-cane’
geometry.

First, we focus on a simulation of amoreflexible chainwhereA=1; the evolution is shown infigure 2(a) and
movie 2(a) and the dynamics are quantified infigure 2(b). Initially, the chain extends and orients in the flow
direction, resulting in a large radius of gyration and highly skewed axes lengths ( ≫a b c, ); the orientation
angles of themain axis are θ π≈ 2 and ϕ π≈ 2, i.e. theflowdirection. As time continues, the two ends fold
towards the center,Rg decreases significantly, while a decreases and becomes comparable to b and c. At still later
times, the configuration remains relatively constant in the formof a prolate ellipsoid ( ≫a b c, ) parallel to the
vorticity axis; also,ϕ systematically increases, which is consistent with a ‘rolling’motion.

Wenext consider a simulation of a stiffer chain, whereA=3; see figures 2(c), (d) andmovie 2(d). The time
dynamics is different than the case ofA=1, e.g. the collapse of the initially extended chain leads to a less compact
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shape that does not resemble a prolate spheroid. Formost times, the orientation angles of themain axis remain
close to theflowdirection.

Finally, we examine the number of close pairs for both =A 1and =A 3. For each time-step, we check the
distance between each pair of beads; we consider beads a close pair when dij, the distance between beads i and j, is
less than some threshold, and the beads are not the closest neighbors, i.e. ≠ ±i j 1. Herewe set the threshold

=d d 1.05ij , slightly larger than the dimensionless equilibrium inter-bead spacing ℓ = 1.020 .We notice that the
number of close pairs in themore flexiblefiber (A=1) is around four times greater than the number in the less
flexiblefiber (figures 2(b), (c)). These observations are consistent withA=1 yielding a tightly packed coil and
A=3 resulting in a less compact shape.

The characteristic features of themode I ofmore flexiblefibers (smallerA) andmode II ofmore stiff fibers
(largerA) are listed in table 1.

Both visually, as seen infigures 2(a), (d) andmovies 2(a), (d), and quantitatively, through figures 2(b), (c),
and table 1, a change inA can result in considerably different dynamics. A closer inspection of the configurations
shows that the chainsmay become self-entangled. For example, in panel (V) of figure 2(d), the blue end has
passed through a loop formed at the opposite red end. Visual inspection shows that this is a slipknot (see
section 3.3), but such shapes raise the question of whether or not simple flows can cause chains to tie themselves
into knots, and how to identify and classify such configurations.

3.2. Knot classification
For a given configuration at a given time, we then study the topology of a chain. A knot is a topological state of a
closed curve, where no set of simple line deformations, e.g. ‘pushing’ a strand, without passing one strand
through another, can change its state to that of an open circle, or an ‘unknot’. To classify knots, polynomials

Table 1.Characteristics of twomain shapemodes offlexible fibers in shear
flow. In the columnwhere (2k + 1) π/2 is indicated, here k=0, 1, 2, ...

Parameter⧹mode I II

a b c, , ≫ ≳a b c ≫ ≫a b c

Θ ≈0 or π π≈ 2

Φ Increasing ≈π
2
or π+k(2 1)

2

Close pairs Many A few

Figure 2.Dynamics of chains for different values ofA. (a) Time evolution of a chain, labeled (i)–(v), with =A 1. The first three frames
show a tumbling chain alignedwith theflow, as the red and blue ‘halves’have switched. At later times the shape is oriented along the
vorticity y( ) axis. (b) For =A 1, radius of gyrationRg, axes lengths a, b, and c, and the orientation of themain axis asmeasured by θ and
ϕ each plotted versus time. Close pairs denote the number of beads that are within a distance =d d 1.05ij of another bead, not
counting nearest neighbors in the chain. The dashed vertical lines denote times that correspondwith the shapes (i)–(v). (c) The same
measures plotted as function of time for =A 3. (d) Time evolution of a chain, panels (I)–(V), with =A 3.
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known as knot invariants, which uniquely identify each curve to a knot type, can be calculated [44]. Here, we
calculate the Alexander polynomial of each configuration (see appendix C).

Any open curve, i.e. a curvewith free ends, can always be ‘untied’ by line deformations and cannot be
considered knotted in a rigorous sense. However, these ‘open knots’ still have characteristics that can be
classified, and affect the properties of a chain, such as its shape, size, and relaxationmodes [41]; the classification
of open knots remains a subject of study. In general, an open curvemust have its ends joined together to form a
closed curve, fromwhich the topological state can be calculated. There are several well-studied closure schemes
[45], but as thesemethods can result in different topological states for the same open configuration, there is
inherently ambiguity.

We use the stochastic closure scheme [46]. For each open configuration, we draw a sphere centered at the
center ofmass of the chain, with radius ten times the radius of gyration. A point is randomly chosen on this
sphere [47], andwe connect by a straight line the two ends of the open curve to this point to create a closed curve
that can be analyzed for its Alexander polynomial. Repeating this procedure with different randompoints on the
sphere (here, 1000 randomly chosen points), we build a spectrumof knots; i.e. each configuration of theflexible
chain can be described as a superposition state of various knot types.

This approach effectively provides a statisticalmeasure of the self-entanglement of each chain, whichwe
report with a knotted fraction kf, i.e. the fraction of the stochastic closures which result in a knot of any type. For
an open flexiblefiber, ‘a knot’ corresponds to kf close to 1.

Asmight be expected fromvisual analysis of the configurations shown infigure 2, for the initial candy-cane
configuration, no knots have been observed for the time of the simulation even though the fiber shapes were
often very compact at long times. The calculated values of kf were always close to zero for all time steps in the
simulation.

Because the chains we study are highlyflexible, it is also necessary to understand the topology of sections of
the chain. Thus, for each subchain, the knotted fraction kf is calculated using the stochastic closure scheme and
the resulting values are combined into a knotmatrix K i j( , ), where = ⋯i j N, 1 . Each point (i, j) of thematrix
corresponds to starting and ending beads of the subchain, i and j, respectively. For example, the origin, at
(1, 152), refers to a subchain starting at i=1 and ending at j=152, i.e. the entire chain. Another point on the
matrix, such as (70, 152), refers to a subchain starting at i=70 and ending at j=152, which is the latter half of the
full chain. Therefore, every cell of thematrix K i j( , ) corresponds to a subchain of the original configuration.

The knotmatrix is symmetric, =K i j K j i( , ) ( , ), because the subchain that starts from i and ends at j is just
the same subchain that starts at j and ends at i. Therefore, it is sufficient to show values of the knotmatrix only
for ⩽i j .

3.3. Slipknots
Infigure 2(d)(V), we observe a configuration that has the blue end of the chain threaded through a loop formed
from the red half of the chain. As, intuitively, a knot requires the pulling of an ‘end’ through a ‘loop’, thewaywe
might tie a knot in a shoelace, these types of configurations bear further scrutiny. By closing the entire chainwith
the stochastic closure scheme, these configurations are shown to be unknotted—the fraction of nontrivial
closures is low, kf close to 0.

With this visualmotivation, next we studied the results of simulations at different values ofA, keeping an eye
out for possible knots. ForA=1.4, the knotmatrix K i j( , ) at an intermediate timewhen an self-entangled
configuration occurs is plotted infigure 3. Thewhite cells have zero knotted fraction, while the darker cells have
a higher knotted fraction.Wenote that the knotmatrix is not symmetric with respect to reflection in the line

= −y x152 , because, in general, (i, j) and − + − +j i(152 1, 152 1) are different subchains, and one of them
can be knottedwhile the other one is not. For example, the subchains (70, 152) and (1, 83) are not the same and
have different topological characteristics (black andwhite colors, respectively).

In plots such asfigure 3, dark regions can be identified as knot cores [48]. In these regions, the corresponding
subchains have kf approaching unity and are considered knotted, even though kf is close to 0 for the chain as a
whole. For example, as evident infigure 3, there is a darker block corresponding to a subchain that starts at the
bead 70 and ends at the bead 152. This knotted subchain is shown highlighted in red in the accompanying image
infigure 3. In the right panel offigure 3, the entire chain is shown, with the knotted subchain highlighted in red,
and the other part highlighted in blue. Thus, we have identified, qualitatively and quantitatively, the formation
of a slipknot in aflexible chain subjected to a steady simple shearflow.

4. Results: trefoils in steady shearflow

Now that we have explored one extended type of initial condition, we explore amore ‘knot-like’ initial
condition. Thus, we ask the question: can shearflowuntie a trefoil?We set an initial condition in a trefoil (31
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knot) shape (with one beadmissing), see appendix B, and vary the initial orientation of this shape relative to the
shearflow as shown infigure 4. Then, we evolve the chain for different relative bending stiffnessA. By using the
stochastic closure scheme and counting invariants, we can calculate and plot the fraction knotted kf at each time
step, i.e. howmany of the stochastic closures result in non-trivial knots. A knot corresponds to kf close to 1.

We used five different orientations of this shape, shown infigures 4(a)–(e). A trefoil withN=99 is shown in
figure 4(a) and denoted as =I a0 . Also, the orientations =I b0 and =I c0 (see figures 4(b) and (c)) were
obtained by rotating the configuration =I a0 along the x-axis by π 2 and π, respectively; the orientations =I d0

and =I e0 (see figures 4(d) and (e)) were obtained by rotating the configuration along the z-axis by π 2 and
π3 2, respectively.

4.1.Dynamics: an unknotting–knotting transition
Weperformed 29 simulations starting from a trefoil shape at different orientations =I a b c d e, , , ,0 shown in
figure 4, and several values of the bending stiffnessA. For certain I0 andA, we observed an unknotting–knotting
transition, bywhichwemean that the trefoil unties and then ties again. In table 2, we specify values of the
bending stiffnessA and the initial orientation I0 for which such a transitionwas (orwas not) observed. Inmost
cases, after a transient period, the trefoil unties but, in some cases, at later times the chain knots again, as
characterized by the knotted fraction, kf, decreasing to very small values and then rising up to almost one.

We have found 13 examples of the unknotting–knotting transition: forfibers withA=1.4, initially oriented
as =I b0 , and for fibers with =A 2.1, 2.2, 2.3, initially oriented as =I c0 . Inmost cases, the unknotting–
knotting transition is observedmore than once during evolution of the samefiber. Infigures 5–8 we plot the
time-dependent knotted fraction kf based on the stochastic closure scheme, and display some unknotted and
some knotted configurations. Also, in the figures we use different colors to help highlight the complex topology
of the complicated chain.

Two examples of the unknotting–knotting transitionwithA=2.2, visible in the time evolution of kf in
figure 5, are shown inmovie 5. In particular, infigure 5 it is also illustrated how the chain first unknots as kf
decreases below 0.1, and then knots again, as evidenced by kf then increasing to approach unity. Eventually,
however, the chain is visibly unknotted and kf remains near zero. The other examples of the unknotting–
knotting transitions that we have uncovered are shown inmovies 6–8 and the plots of the time-dependent kf in
figures 6–8. Specifically, forA=1.4, as displayed infigure 6 andmovie 6, a knotted fiber is unknotted after time

≈t 330 and knots again at time ≈t 380. At the end of the simulation, the chain remains in the knotted
configuration, with kf close to one. The evolution of afiberwithA=2.1 is shown infigure 7 andmovie 7. Again,
the initially knotted chain unknots and knots again several times. Finally, the chain is knotted and stays in this
form to the end of the simulation.

In yet another example, the dynamics of afiberwithA=2.3 is presented in the figure 8 andmovie 8. Thefiber
unties and knots againmany times, as shown in the graph of the knotting fraction kf. Finally, thefiber unties and

Figure 3. Left: example of a knotmatrix for =A 1.4, =N 152, =t 682.7. The axes denote thefirst and the last bead number of the
subchain. The cell is colored according to its knotted fraction: kf=1 is black, and kf=0 iswhite, as denoted in the inset scale. Awire-
like scheme of the knotted subchain corresponding to (70, 152) is shown. Right: the knot on the subchain (red) is only a slipknot in
the entire chain, with the subchain pictured in red and the other sections highlighted in blue.
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stays unknotted until the end of the computation. Thus, we have examples, at least for the time duration of our
simulations, of some cases that end up knotted and other cases that end up unknotted.

All of the configurations displayed infigures 5–8, can be seen in three-dimensions, and rotated using the
correspondingMATLABfig-files, given in the supplementary data (available at stacks.iop.org/njp/17/053009)
and labeled tomatch the numbers of the relatedfigures; for example, thefilefigure 5. Figure corresponds to the
first frame offigure 5 in the text.

Table 2.The existence of an unknotting–knotting transition as characterized by a trefoil unknot-
ting then knotting (1) or not (0), as a function of the stiffnessA and initial orientation I0. The table
summarizes the 29 different simulations that were performed.

⧹I A0 0.8 1.0 1.4 2 2.1 2.2 2.3 2.4 3.0

a 0 0 0 0 0

b 0 0 1 0 0

c 0 0 0 0 1 1 1 0 0

d 0 0 0 0 0

e 0 0 0 0 0

Figure 5.The unknotting–knotting transition for an initial trefoil shape,A=2.2,N=99. The time evolution of the chain is shown, see
alsomovie 5.Here kf denotes the knotted fraction based on the stochastic closure scheme described in the text.

Figure 4. Initial trefoil shape and five distinct orientations (see alsomovie 4).
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4.2. Characterizing configurations that display the unknotting–knotting transition
Comparing the different simulationswith each other, e.g.figures 5–8, we conclude that the existence of the
unknotting–knotting transition is not correlatedwith afinal knotted or unknotted state. The question then can
be asked if the existence of the unknotting–knotting transition for a trefoil is correlatedwith some specificmode
of the flexiblefiber dynamics, similar to those observed in the simulations that started from the initial candy-
cane configuration, whichwere shown infigure 2. For example, the characteristic features of the twomain
conformationalmodes where thefiber primary axis tends to be aligned along the vorticity axes (mode I) or the
flowdirection (mode II), discussed earlier in connection tofigure 2, and summarized in table 1.

Therefore, infigure 9, we compare the dynamics of trefoils with different bending stiffnessesA and initial
orientations I0 in terms of their characteristicmodes of conformation.We present evolution of the same
parameters of thefiber shapes as infigure 2, but this time forfibers that have an initial trefoil shape. For two sets
of the parameters, corresponding to the dynamics shown in columns (ii) and (iii), the unknotting–knotting
transition is observed. For two other sets of the parameters, related to columns (i) and (iv), the unknotting–
knotting transition is not observed.

Wefirst compare two cases for which the unknotting–knotting transition is observed, i.e. columns (ii) and
(iii) infigure 9. The snapshots form the evolution shown in columns (ii) and (iii) can be found infigures 5 and 7,
respectively. For example, the evolution displayed in column (iii) for larger times approximately corresponds to
mode I, which is characterized by an elongated shapewith relatively large aspect ratios, and the tendency to align

Figure 6.The unknotting–knotting transition for an initial trefoil shape, =A 1.4, =N 99. The time evolution of the chain is shown
(see alsomovie 6). Here kf denotes the knotted fraction based on the stochastic closure scheme described in the paper.

Figure 7.The unknotting–knotting transition for an initial trefoil shape, =A 2.1, =N 99. The time evolution of the chain is shown
(see alsomovie 7). Here kf denotes the knotted fraction based on the stochastic closure scheme described in the paper.
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with the vorticity direction and roll around it. For comparison, at long times, the dynamics visible in column (ii)
approximately corresponds tomode II, which is characterized by a smaller elongation, and no special features of
the dynamics related to the vorticity direction.

On the other hand, comparing columns (i) and (ii) infigure 9, we conclude that the samemode II
configuration is reached by fibers for which the unknotting–knotting transition, respectively, did not and did
take place. These examples of two topologically different behaviors correspond to different initial orientations of
the trefoil characterized by a single value ofA. The complementary comparison of columns (iii) and (iv) in
figure 9 demonstrates thatfibers with andwithout the unknotting–knotting transition can both later exhibit the
samemode I configuration. In this case, examples of two topologically different behaviors correspond to the
same initial orientation of the trefoil but different values ofA. Therefore, the examples displayed infigure 9

Figure 8.The unknotting–knotting transition for an initial trefoil shape, =A 2.3, =N 99. The time evolution of the chain is shown
(see alsomovie 8). Here kf denotes the knotted fraction based on the stochastic closure scheme described in the paper.

Figure 9.Dynamics of trefoils for different values of bending stiffnessA and initial orientations I0. Thefiber radius of gyrationRg,
length of the semi-axes a b c, , , orientation θ andϕ of the primary axes, and the number of close pairs are defined in themain text. The
unknotting–knotting transition is observed during evolution shown in columns (ii) (twice—for times around 200 and 270) and (iii)
(twice—for times around 480 and 900).

10

New J. Phys. 17 (2015) 053009 SKuei et al



illustrate that the existence of the unknotting–knotting transition is not correlatedwith the final configuration
mode I ormode II of the dynamics.

Finally, we investigate if the process of creating a knot is correlatedwith any simultaneous specific features of
thefiber shape. Two examples shown infigure 10 contribute to a negative answer. In both cases, the fiber starts
fromvery small knotted fraction kf, which increases up to almost one.However, in the first case (shown in the
left part offigure 10), thefiber is inmode II, and in the second case (shown in the right part offigure 10), thefiber
is inmode I. To conclude this discussion, we note that the process of knot creation takes place both forfiber
shapes that are compact (figures 6, 7) and loose (figures 5, 8).

5. Summary and conclusions

Wehave focused on the question of whether a simple shearflow can tie a knot in aflexiblefiber. If yes, then can
we predict the future existence of a knot based on thefiberflexibility and its initial shape and orientation? Also, is
the knot a transient effect or a stable configuration? To address these questions, the fiberwasmodeled as a chain
ofN beads connected by very stiff springs with additional elastic forces acting against the fiber bending. Thefiber
evolutionwas determined using the numerical code HYDROMULTIPOLE, based on the accuratemultipole algorithm
for solving the Stokes equationswith no-slip boundary conditions on the bead surfaces. In addition, to
characterize the topology a knot on aflexible openfiberwas defined as in [33–34] and associatedwith the
knotted fraction kf close to unity.

In thefirst part of our study, we investigated the evolution offibers of different flexibilities, but with the same
initial orientation and the same untied shape (with a vanishing knotted fraction).We concluded that for such a
simple initial configuration, a change offlexibility is not sufficient to cause formation of a knot, although
evidence of slipknots was observed.

Then, in the second part of our study, we constructed amore complicated initial shape: a trefoil with the
knotted fraction equal to one.We used the same initial shape at different initial orientations and forfibers of
differentflexibilities, andwe followed their evolution in a shearflow. A fewof themore flexiblefibers remained
knotted, butmost of the fibers untied after some time. In particular, we then observed that some of these untied
fibers again became knotted, as illustrated infigure 11 forA= 2.3 andN= 99. In this figurewe display two shapes
with the knotted fraction close to zero, which later on lead to evident knots (with the knotted fraction close
to one).

Therefore, indeed, a simple shearflow can tie a knot on aflexible fiber. Sometimes, such an unknotting–
knotting transition repeated several times during the evolution of the fiber dynamics.We observed 13 such
unknotting–knotting transitions in four (out of 29) simulations, for four different (moderate) flexibilities and

Figure 10.The process of creating a knot can take placewhen thefiber is inmode I (right) or II (left).
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two different initial orientations. Based on all of our observations, we conjecture that the formation of knots is a
transient effect andmay possibly be related to the chaotic properties of the dynamics of thisN bead system.

To conclude, we have analyzed basic features of the dynamics of long flexiblefibers in unbounded steady
shearflow. In particular, we give examples offlexible fibers, initially shaped as open trefoils, which are later
untied and then knotted again, sometimes several times, by the flow. Thisfinding provides a new perspective for
future studies of topological structures of long flexible non-Brownian chains evolving as they are entrained by
ambientflows. A straightforward future goal is to understand how the existence of the unknotting–knotting
transition depends on initial conditions. It is also of interest to studywhether the changes in topologymight be
reflected in changes in bulk rheological and/or transport properties.

Aswe noted in the introduction, the numerical solution of this problem requires the solution of N3 coupled
nonlinear ordinary differential equations for the positions of theN beads.We should expect such a dynamical
system to have all of the attributes of chaos [29, 51, 52].How the observed dynamics of knot formation and
unknottingmay (ormay not) link to the underlying chaotic trajectories is a subject for future investigations.

Finally, our focus has been self-entanglements of a single chain produced by flow. The entanglement of
different chains in solution is a topic of interest [49, 50] and is a possible direction for future research using the
approach developed in this paper.
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AppendixA. Initial configurations of a ‘candy-cane’ shape

In thefirst part of our study, we started simulations from initial configuration of afibermade of 152 beads,
shown infigure A1 . This ‘candy-cane’ shapewas generated from the equation +s s(20 cos , 20 sin 20, 0)with s
ranging from π− 2 to π 2 and the step ds=0.051 05. This equation is a semicircle of radius 20, and ds has been
chosen in such away that the distance between each point is equal to ℓ = 1.020 bead diameters. A rod starting
from −( 91.8, 0, 0), ending at (0, 0, 0) is then connected; the points are again ℓ = 1.020 apart, and described by:

− − s[ 1.02(91 ), 0, 0], (A.1)

with s ranging from1 to 90 in increments of 1. A rotationmatrix is randomly generated and applied to these
coordinates to rotate themout of the plane xy. Infigure A1, we show the initial conditionwhich is used as an
input for the simulations displayed in figure 2 and discussed in this paper.

Figure 11. Fromunknotted to knotted: examples that illustrate that simple shear flow can tie a knot in aflexible fiber. Knotted fraction
close to zero (left) is followed by knotted fraction close to one (right).A=2.3 andN=99.
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Appendix B. Initial configurations of a trefoil shape

The trefoil shape is constructedwith the use of the following equation

+ − −s s s s s[sin 2 sin(2 ), cos 2 cos(2 ), sin(3 )], (B.1)

fromwhich 100 evenly spaced points are chosenwith ℓ = 1.020 . Since the points are evenly spaced along the
path of the curve, there are slight variations in the straight-line distance between each point. One point was then
removed to ‘open’ the trefoil as an open curve. The resulting trefoil withN=99 and ≈k 0.98f is shown in
figure 4(a) and denoted as =I a0 .

AppendixC. Knot invariants

After our open curve is closed by the stochastic closure scheme, it can be analyzed for its polynomial knot
invariant. There are by nowmany different knot invariants, which have varying ability to distinguish knots; the
first one, whichwas discovered in 1928 byAlexander, is one of the simplest to compute. It has some drawbacks,
such as the inability to distinguish handedness (i.e. it cannot distinguish between twomirror images), but as we
only need to distinguish between an ‘unknot’ and a ‘knotted’ curve to calculate the knot fraction, the Alexander
polynomial is sufficient.

The invariant is calculated by projecting a curve into 2D, then identifying ‘crossing points’ and ‘regions’,
while keeping track of the ‘overlying’ and ‘underlying’ branches at each crossing. If there are n crossings, there
will be +n 2 regions in the knot diagram.Depending on the orientation of the overlying/underlying branches at
each crossing, the regions adjacent to the crossing are assigned different indices. A × +n n( 2) incidencematrix
is constructed from the indices at each crossing and region, and two columns corresponding to adjacent regions
are removed, to form a ×n n matrix. The determinant of thematrix is then the Alexander polynomial.More
details, and proof that removing two arbitrary columns (provided they refer to adjacent regions) results in the
same normalized Alexander polynomial, can be found in his 1928 paper [53].

We havewritten a custom code to compute the Alexander polynomial of any configuration, given the
x y z( , , ) coordinates of each bead in the chain, following the algorithmdescribed byAlexander, with the help of
functions fromother Alexander polynomial calculators [54].
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