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Abstract

We use numerical simulations of a bead—spring model chain to investigate the evolution of the
conformations of long and flexible elastic fibers in a steady shear flow. In particular, for rather open
initial configurations, and by varying a dimensionless elastic parameter, we identify two distinct
conformational modes with different final size, shape, and orientation. Through further analysis we
identify slipknots in the chain. Finally, we provide examples of initial configurations of an ‘open’
trefoil knot that the flow unknots and then knots again, sometimes repeating several times.

1. Introduction

One area of complex fluids concerns the motion and topology of elastic filaments in fluid flows, which is inspired
by both natural and industrial phenomena, such as flagellar motion [1-3], fluid-structure interactions, e.g.
[4,5], and polymer processing, e.g. [6—10]. Such long flexible filaments can have non-trivial dynamics, e.g. drift
across streamlines can occur, e.g. [7, 11, 12], and topologies. For example, knots are found in Brownian systems
such as bacterial DNA, protein structures, and polymer chains, and non-Brownian systems such as ordinary
string, elastic fibers and chains of linked beads [13, 14]. In this paper we report the time-dependent shapes of
flexible non-Brownian filaments in a steady shear flow and identify conditions that allow an ‘unknotting—
knotting’ transition, where an unknotted filament is later observed to form an (open) knot as it rearranges
continually in the flow.

For rigid non-Brownian particles in shear flow, when the Reynolds number is low, a straight elongated
particle has a Jeffery orbit, which is the basis for many studies, and helps organize those initial states that have
orientation and rolling about the vorticity axis from those that primarily align with and tumble periodically
about the flow direction. For flexible or deformable objects, characterizing the shape of the particle in flow, and
the corresponding dynamics, is more challenging. For example, experimental measurements of fiber dynamics
commonly use DNA as a model polymer [15], and computer simulations are based on molecular dynamics or
Brownian dynamics [16]. On alarger length scale where Brownian effects are less significant, linked colloidal
chains are also used as experimental models of a worm-like chain [17, 18], the actin filament [19] and the cellular
flagellum [20]. In all of these cases, dynamics in a single plane are measured, but it is difficult experimentally to
simultaneously track dynamics in both the shear and vorticity directions [21].

On the other hand, numerical simulations make possible the visualization of multiple viewing planes and the
detailed analyses of shape and topology of flexible filaments. Previous work, some of which includes Brownian
effects and some of which does not, has identified and tracked the tumbling of flexible filaments (e.g. polymers)
in detail, relating the tumbling period and shape to polymer length, flexibility and shear rate, as well as rates of
rotation both in and out of plane [12, 22-25]. However, due to computational constraints, these simulations of
fibers are generally bead-chains with about N= 50 beads, with the longest ones containing N = 100 beads; an
alternative approach to some of these questions is to use slender-body theory, e.g. [26, 27].

In recent years, knots in long chains have been studied more widely, including the observation of thermally
driven knotting and unknotting of a polymer chain [28], the influence of chain tension on a knot, e.g. 29, 30],
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(a) (b)

Figure 1. Coordinate systems and notation for the simulations. (a) A ‘candy-cane’ shape, which is one of two typical initial
configurations studied in this work. The expanded view labels beads iand i — 1. Also, r; is the position vector of each bead center and
t; is the vector connecting two adjacent bead centers. (b) A configuration with shading to indicate the chain’s ellipsoid of revolution.
The shear flow is shown in the background. The major axis of the chain’s configuration is shown with an arrow, while the red and blue
coloring of beads denote two halves of the fiber for visual clarity. The orientation is measured by the angles 6 and ¢, such that 8
measures the inclination from the vorticity axis (y) and ¢» measures the orientation in the xz-plane, measured from the z-axis.

and the influence of electric fields on knots [31]. Also, the untying of a knot in an extensional flow has been
studied recently [32], and has the spirit of the present paper where we ask about the effects of flow. In contrast,
for non-Brownian systems other kinds of forcing, such as vibration, can produce knotting of chains of linked
spheres [13, 14]. We are not aware of any similar studies, experimental or numerical simulations, highlighting
conditions that lead to long non-Brownian chains forming knots in flows.

Thus, while significant steps have been taken towards understanding the detailed dynamics of flexible non-
Brownian fibers, to understand topology is much more difficult: it requires three-dimensional detail and very
flexible, long and thin fibers as, in theory (when there is no flow), the probability of knotting in a random walk
increases exponentially with the length of the walk [33]. Moreover, the initial conditions may matter and an
operational definition is needed for aknot in an open fiber.

In this paper, we focus on the dynamics and topology of long, flexible, non-Brownian chains of beadsin a
steady shear flow and use numerical simulations to investigate whether knots in the fiber occur as a result of the
flow. We will find that unknotted fibers are capable of forming (open) knots, and in some cases we document a
sequence of unknotting—knotting transitions. The numerical solution of this kind of problem requires tracking
the motion of N'beads, where hydrodynamic interactions between the beads mean that the dynamics of the
topology of the object involve 3N coupled nonlinear ordinary differential equations. Not surprisingly, such
dynamics should be expected to be chaotic though we have not attempted in this paper to link our study of
complex shapes and the unknotting—knotting transition to the underlying chaotic dynamics. Our results
highlight new aspects of the dynamics of flexible filaments in flow.

2. Simulation methods

2.1. A fiber as a string of spherical beads

We consider a long non-Brownian flexible fiber in steady undisturbed shear flow vy = yze, of a fluid with
viscosity 7 (figure 1). The vorticity vector is in the y-direction. The fiber deforms owing to elastic and bending
forces and is modeled as a chain of Nidentical spherical beads with diameter d (figure 1(a)) [12, 34]. The
parameters of these forces are k, the spring constant normalized by z5dy, A, the bending stiffness normalized by
and*y, and £, the equilibrium distance between the closest bead centers measured in units of d. All distances are
measured in units of d, and time in units of 1/y. Thus, there are four-dimensionless parameters that characterize
the chain: k, A, Nand £,. We work close to the inextensible limit with | — 1| < 1and k > 1and focus on the
dynamics for a wide range of values of A.
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.12
We assume that the particle-scale Reynolds number is much smaller than unity, i.e. Re = % < 1,wherep

is the fluid density and the fluid flow satisfies the quasi-steady Stokes equations, with no-slip boundary
conditions at the bead surfaces. The equations are solved using the multipole expansion method, which

accounts for lubrication corrections to speed up the convergence of the friction matrix as the order of the
multipole truncation is increased. This solution yields the velocities of the beads, as explained in [12]. The
algorithm and its numerical implementation HYDROMULTIPOLE are described in [35, 36]. Also, the application of
these tools to model dynamics of flexible fibers is outlined in [12]. The time-dependent translational velocities of
the bead centers, evaluated by the HYDROMULTIPOLE numerical code, are used by an adaptive fourth-order Runge—
Kutta procedure, from which the positions of every bead are updated.

We focus on the dynamics of long fibers (N~ 100—150), which, in flow, tend to fluctuate from elongated
shapes to compact shapes with some of the beads coming close together. Spurious overlaps of beads can occur,
which can significantly influence the time scales of the dynamics of close particles [37]. Therefore, we analyzed
different procedures that allow the dynamics to be continued once an overlap occurs and chose a procedure that
caused the least number of overlaps. If the distance between two bead centers r < 1, then the lubrication
correction for this pair is evaluated for the rescaled configuration 1 + €y, where €1, = 107 is the integration
accuracy per step, and the dynamics of the original positions are continued. The details of this original
simulation approach for handling close particle pairs are provided in the next section.

In the simulations reported here, the initial geometry is chosen first from a random rotation of a ‘candy-
cane’ shape with N=152, i.e. a straight chain that bends into a semi-circle at one end; see figure 1 and
appendix A. The candy-cane shape is convenient for starting with an elongated initial configuration that breaks
the symmetries associated with shear flow. Also, we have performed calculations with a trefoil as an initial
condition with N =99 (see section 4 and appendix B). For each simulation we fix £ = 1.02 and k=500, and vary
A systematically. We evolve the shape in a steady shear flow using the HyDROMULTIPOLE algorithm [35].

2.2. A simulation procedure for compact structures

As introduced in the previous section, and will be clear when the many simulations in this paper are shown, long
flexible fibers can form compact structures with some of the beads coming very close to other beads. As a result,
it sometimes happens that surfaces of pairs of beads spuriously overlap. This complication will be faced by all
numerical methods and for the long-time dynamics of long flexible fibers, which are the focus of this paper, such
artifacts cannot be avoided. The physical problem is that the friction and mobility coefficients are not defined for
the distance between the bead centers less than their diameter (equal to one in our units). In the literature, there
exist different methods that allow the dynamics to be continued once an overlap takes place (e.g. see the brief
review in [37]). In this sub-section we present a new approach for the problem of overlaps; the reader interested
only in the results of the fiber dynamics, including the unknotting—knotting transition that we have identified,
can skip this sub-section.

Not surprisingly, it is known that numerical procedures for handling the interaction of close pairs can
sometimes significantly influence time scales of close-particle dynamics. In particular, examples are known of
systems of particles where spurious overlaps increase the period of oscillations, even by a factor of 2 [37].
Therefore, it is important to choose a numerical treatment of overlaps that minimizes the time-dependent
number of overlapping pairs and also prevents the particle surfaces from remaining overlapped for a long time.

We have observed that spurious overlaps of beads sometimes can significantly modify compact shapes of
flexible fibers, lead to their orientation along the y (vorticity) axis, and change properties of the dynamics. In
particular, alarger number of overlaps leads to alarger fiber curvature and a smaller radius of gyration.
Therefore, to address the main questions of this paper we found it essential to use an optimal procedure once an
overlap takes place. After analyzing and comparing a few such methods, we proposed a new one. Here we
provide a brief description of this procedure (called BWE), which we have applied to continue evolution of the
system of equations in case of spurious overlaps of beads. Our new approach gives a small number of
overlapping pairs of the beads, which, in addition, usually do not remain overlapped for a long time.

The procedure is based on modification of the lubrication correction §*) (1) in the case when the beads 7
and j overlap. To explain the idea, we first briefly explain the general idea how the lubrication correction is
constructed [35, 36]. Truncating the multipole expansion at the order L, we evaluate the multipole
approximation ¢ L(N ) for the friction matrix of the N-bead system. This step can be accomplished even if the
distance r;; between the centers of beads i and j is close to but smaller than one (here, i, j = 1, ..., N). Weneed
to add a lubrication correction 6 to speed up the convergence of the multipole expansion,

_L(N )= &™) + 6{N). This correction is the sum of all pairwise contributions, k # I

8P (ny) = @ () — €2 (), (1)
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where ; is the relative position vector of particles k and I. Here, £ (1) and & L(2) (ng) are, respectively, the two-
body friction matrices—the exact one and its multipole approximation of the order L.

Now, consider a pair of overlapping beads iand j, i.e. r;; < 1, for which elements of the matrix { () are not
defined—they diverge at the contact. We overcome this problem by rescaling the lubrication correction for the
overlapping pair of beads

i
8 (r) _)(3(2)[(1 + €lub)_]]> 2)
fij

and evaluate the dynamics from the unchanged positions of all of the particles. The multipole approximation
¢ L(N ) for the friction matrix of the N-bead system and the lubrication corrections for non-overlapping beads are
not modified.

The keyidea of the method is to take €)1, equal to the integration accuracy per step, which in this work is
equal to 10~*, Owing to this choice, the time of a spurious overlap is reduced in comparison to smaller values of
€1ub- Indeed, a typical overlap depth is of the order of the accuracy. Therefore, by assigning to the relative velocity
of the beads the new, quite large value, which corresponds to the gap size between their surfaces, i.e. €1, equal to
atypical overlap depth, we obtain the required result that the overlapped beads can be disconnected easily, i.e. in
relative terms they quickly separate their surfaces from each other.

3. Results: elongated initial configurations

Upon starting the shear flow, the fiber, which was initially in the candy-cane configuration, described in
appendix A, aligns approximately with the flow direction and undergoes a ‘tumbling’ or ‘yo—yo’ motion
(figures 2(a), (d); the chain halves are colored for clarity), similar to observations in studies of flexible polymers
in shear flow [21, 38—40]. We identify two distinct behaviors for the dynamics, depending on the value of A. To
quantify the dynamics, we report the time-dependent approximate shape and orientation of the chain.

3.1. Typical simulations and geometric characterization
First, for a given configuration, we calculate the moment of inertia tensor [41]

R
Tom = EZZ[HH - r]-"][rim - er] (3)

i=1j=1

with the Cartesian coordinates #n, m = 1, 2, 3, and thelabels i, j of the vertices of each of the N'beads. The
lengths a, b, and c denote the three semi-axes of the ellipsoid of inertia associated with a configuration
(figure 1(b)). These lengths are related to the three eigenvalues 4, of T,,,,,i.e. a = \/3_11 ,b= \/3_/12 ,and
c= \/% . The largest eigenvalue a gives the primary axis of the ellipsoid, and the orientation angles of the
associated eigenvector, 6 and ¢, are measured from the vorticity and z axes, respectively, as shown in figure 1(b).
We use g, b, and cto visualize the fiber shape:if a ~ b = c, the configuration is roughly spherical, whereas if
a > b = c,theshapeis prolate ellipsoidal, and if a & b > c, the shape is oblate spheroidal.

Also, we calculate the radius of gyration R, of each configuration, i.e. Rg2 = %Zﬁl (r; — Tem)?, by comparing

the coordinates of each bead r; to the center of mass r.,. Since Rg2 = trace T, then Rg2 =AM + Ay + A3 [42].
With these measures {R,, a, b, c, 8, ¢}, we track a given chain’s size, shape, and orientation as it evolves in
the flow.

For a given initial orientation, specified in appendix A, chains with lower values of A, e.g. A < 2, behave
differently than chains with higher values, A > 3; qualitatively, the former form tight coils aligned with and
rolling in the vorticity direction, while the latter forms more open tumbling configurations, by analogy to the
results of [43]. We present detailed results from each category, starting from the same initial ‘candy-cane’
geometry.

First, we focus on a simulation of a more flexible chain where A = 1; the evolution is shown in figure 2(a) and
movie 2(a) and the dynamics are quantified in figure 2(b). Initially, the chain extends and orients in the flow
direction, resulting in a large radius of gyration and highly skewed axes lengths (a > b, ¢); the orientation
angles of the main axisare @ ~ n/2 and ¢ =~ n/2,1i.e. the flow direction. As time continues, the two ends fold
towards the center, R, decreases significantly, while a decreases and becomes comparable to b and c. At still later
times, the configuration remains relatively constant in the form of a prolate ellipsoid (a > b, ¢) parallel to the
vorticity axis; also, ¢ systematically increases, which is consistent with a ‘rolling’ motion.

We next consider a simulation of a stiffer chain, where A = 3; see figures 2(c), (d) and movie 2(d). The time
dynamics is different than the case of A = 1, e.g. the collapse of the initially extended chain leads to a less compact

4
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Figure 2. Dynamics of chains for different values of A. (a) Time evolution of a chain, labeled (i)—(v), with A = 1. The first three frames
show a tumbling chain aligned with the flow, as the red and blue ‘halves” have switched. At later times the shape is oriented along the
vorticity (y) axis. (b) For A = 1, radius of gyration Ry, axes lengths a, b, and ¢, and the orientation of the main axis as measured by # and
¢ each plotted versus time. Close pairs denote the number of beads that are within a distance d;;/d = 1.05 of another bead, not
counting nearest neighbors in the chain. The dashed vertical lines denote times that correspond with the shapes (i)—(v). (c) The same
measures plotted as function of time for A = 3. (d) Time evolution of a chain, panels (I)-(V), with A =3.

Table 1. Characteristics of two main shape modes of flexible fibers in shear
flow. In the column where (2k + 1) n/2 is indicated, here k=0, 1,2, ...

Parameter\ mode I I
a, b, c a>b>c a>b>c
e} ~0orzm ~r/2
D Increasing N% or @
Close pairs Many Afew

shape that does not resemble a prolate spheroid. For most times, the orientation angles of the main axis remain
close to the flow direction.
Finally, we examine the number of close pairs for both A=1and A = 3. For each time-step, we check the

distance between each pair of beads; we consider beads a close pair when d;;, the distance between beads i and j, is

i
less than some threshold, and the beads are not the closest neighbors,i.e.i # j + 1. Here we set the threshold
djj/d = 1.05, slightly larger than the dimensionless equilibrium inter-bead spacing £, = 1.02. We notice that the
number of close pairs in the more flexible fiber (A = 1) is around four times greater than the number in the less
flexible fiber (figures 2(b), (c)). These observations are consistent with A = 1 yielding a tightly packed coil and

A =3 resulting in a less compact shape.

The characteristic features of the mode I of more flexible fibers (smaller A) and mode II of more stiff fibers
(larger A) are listed in table 1.

Both visually, as seen in figures 2(a), (d) and movies 2(a), (d), and quantitatively, through figures 2(b), (¢),
and table 1, a change in A can result in considerably different dynamics. A closer inspection of the configurations
shows that the chains may become self-entangled. For example, in panel (V) of figure 2(d), the blue end has
passed through a loop formed at the opposite red end. Visual inspection shows that this is a slipknot (see
section 3.3), but such shapes raise the question of whether or not simple flows can cause chains to tie themselves
into knots, and how to identify and classify such configurations.

3.2.Knot classification

For a given configuration at a given time, we then study the topology of a chain. A knot is a topological state of a
closed curve, where no set of simple line deformations, e.g. ‘pushing’ a strand, without passing one strand
through another, can change its state to that of an open circle, or an ‘unknot’. To classify knots, polynomials
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known as knot invariants, which uniquely identify each curve to a knot type, can be calculated [44]. Here, we
calculate the Alexander polynomial of each configuration (see appendix C).

Any open curve, i.e. a curve with free ends, can always be ‘untied’ by line deformations and cannot be
considered knotted in a rigorous sense. However, these ‘open knots’ still have characteristics that can be
classified, and affect the properties of a chain, such as its shape, size, and relaxation modes [41]; the classification
of open knots remains a subject of study. In general, an open curve must have its ends joined together to form a
closed curve, from which the topological state can be calculated. There are several well-studied closure schemes
[45], but as these methods can result in different topological states for the same open configuration, there is
inherently ambiguity.

We use the stochastic closure scheme [46]. For each open configuration, we draw a sphere centered at the
center of mass of the chain, with radius ten times the radius of gyration. A point is randomly chosen on this
sphere [47], and we connect by a straight line the two ends of the open curve to this point to create a closed curve
that can be analyzed for its Alexander polynomial. Repeating this procedure with different random points on the
sphere (here, 1000 randomly chosen points), we build a spectrum of knots; i.e. each configuration of the flexible
chain can be described as a superposition state of various knot types.

This approach effectively provides a statistical measure of the self-entanglement of each chain, which we
report with a knotted fraction kg i.e. the fraction of the stochastic closures which result in a knot of any type. For
an open flexible fiber, ‘aknot’ corresponds to k; close to 1.

As might be expected from visual analysis of the configurations shown in figure 2, for the initial candy-cane
configuration, no knots have been observed for the time of the simulation even though the fiber shapes were
often very compact atlong times. The calculated values of k; were always close to zero for all time steps in the
simulation.

Because the chains we study are highly flexible, it is also necessary to understand the topology of sections of
the chain. Thus, for each subchain, the knotted fraction ky is calculated using the stochastic closure scheme and
the resulting values are combined into a knot matrix K (i, j), where i, j = 1---N. Each point (3, j) of the matrix
corresponds to starting and ending beads of the subchain, i and j, respectively. For example, the origin, at
(1, 152), refers to a subchain starting at i = 1 and ending at j = 152, i.e. the entire chain. Another point on the
matrix, such as (70, 152), refers to a subchain starting at i = 70 and ending at j = 152, which is the latter half of the
full chain. Therefore, every cell of the matrix K (3, j) corresponds to a subchain of the original configuration.

The knot matrix is symmetric, K (7, j) = K (j, i), because the subchain that starts from i and ends at j is just
the same subchain that starts at jand ends at i. Therefore, it is sufficient to show values of the knot matrix only
fori <j.

3.3. Slipknots

In figure 2(d)(V), we observe a configuration that has the blue end of the chain threaded through a loop formed
from the red half of the chain. As, intuitively, a knot requires the pulling of an ‘end’ through a loop’, the way we
might tie aknot in a shoelace, these types of configurations bear further scrutiny. By closing the entire chain with
the stochastic closure scheme, these configurations are shown to be unknotted—the fraction of nontrivial
closures is low, k¢ close to 0.

With this visual motivation, next we studied the results of simulations at different values of A, keeping an eye
out for possible knots. For A = 1.4, the knot matrix K (i, j) atan intermediate time when an self-entangled
configuration occurs is plotted in figure 3. The white cells have zero knotted fraction, while the darker cells have
ahigher knotted fraction. We note that the knot matrix is not symmetric with respect to reflection in the line
y = 152 — x,because, in general, (3,j) and (152 — j + 1, 152 — i + 1) are different subchains, and one of them
can be knotted while the other one is not. For example, the subchains (70, 152) and (1, 83) are not the same and
have different topological characteristics (black and white colors, respectively).

In plots such as figure 3, dark regions can be identified as knot cores [48]. In these regions, the corresponding
subchains have kr approaching unity and are considered knotted, even though k¢ is close to 0 for the chain as a
whole. For example, as evident in figure 3, there is a darker block corresponding to a subchain that starts at the
bead 70 and ends at the bead 152. This knotted subchain is shown highlighted in red in the accompanying image
in figure 3. In the right panel of figure 3, the entire chain is shown, with the knotted subchain highlighted in red,
and the other part highlighted in blue. Thus, we have identified, qualitatively and quantitatively, the formation
of aslipknot in a flexible chain subjected to a steady simple shear flow.

4. Results: trefoils in steady shear flow

Now that we have explored one extended type of initial condition, we explore a more ‘knot-like” initial
condition. Thus, we ask the question: can shear flow untie a trefoil? We set an initial condition in a trefoil (3,

6
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Figure 3. Left: example of a knot matrix for A =1.4, N=152, t = 682.7. The axes denote the first and the last bead number of the
subchain. The cell is colored according to its knotted fraction: k¢= 1 is black, and k¢= 0 is white, as denoted in the inset scale. A wire-
like scheme of the knotted subchain corresponding to (70, 152) is shown. Right: the knot on the subchain (red) is only a slipknot in
the entire chain, with the subchain pictured in red and the other sections highlighted in blue.

knot) shape (with one bead missing), see appendix B, and vary the initial orientation of this shape relative to the
shear flow as shown in figure 4. Then, we evolve the chain for different relative bending stiffness A. By using the
stochastic closure scheme and counting invariants, we can calculate and plot the fraction knotted k; at each time
step, i.e. how many of the stochastic closures result in non-trivial knots. A knot corresponds to ks close to 1.

We used five different orientations of this shape, shown in figures 4(a)—(e). A trefoil with N=99 is shown in
figure 4(a) and denoted as I = a. Also, the orientations Iy = b and Iy = c (see figures 4(b) and (c)) were
obtained by rotating the configuration Iy = a along the x-axis by #/2 and z, respectively; the orientations I, = d
and I = e (see figures 4(d) and (e)) were obtained by rotating the configuration along the z-axis by z/2 and
37/2, respectively.

4.1. Dynamics: an unknotting—knotting transition

We performed 29 simulations starting from a trefoil shape at different orientations Iy = a, b, ¢, d, e shownin
figure 4, and several values of the bending stiffness A. For certain Iy and A, we observed an unknotting—knotting
transition, by which we mean that the trefoil unties and then ties again. In table 2, we specify values of the
bending stiffness A and the initial orientation I for which such a transition was (or was not) observed. In most
cases, after a transient period, the trefoil unties but, in some cases, at later times the chain knots again, as
characterized by the knotted fraction, ks decreasing to very small values and then rising up to almost one.

We have found 13 examples of the unknotting—knotting transition: for fibers with A = 1.4, initially oriented
as Iy = b, and for fibers with A = 2.1, 2.2, 2.3, initially oriented as I, = ¢. In most cases, the unknotting—
knotting transition is observed more than once during evolution of the same fiber. In figures 5-8 we plot the
time-dependent knotted fraction k; based on the stochastic closure scheme, and display some unknotted and
some knotted configurations. Also, in the figures we use different colors to help highlight the complex topology
of the complicated chain.

Two examples of the unknotting—knotting transition with A = 2.2, visible in the time evolution of k in
figure 5, are shown in movie 5. In particular, in figure 5 it is also illustrated how the chain first unknots as kf
decreases below 0.1, and then knots again, as evidenced by k; then increasing to approach unity. Eventually,
however, the chain is visibly unknotted and k; remains near zero. The other examples of the unknotting—
knotting transitions that we have uncovered are shown in movies 6-8 and the plots of the time-dependent k in
figures 6-8. Specifically, for A = 1.4, as displayed in figure 6 and movie 6, a knotted fiber is unknotted after time
t &~ 330 and knots again at time ¢ ~ 380. At the end of the simulation, the chain remains in the knotted
configuration, with k; close to one. The evolution of a fiber with A = 2.1 is shown in figure 7 and movie 7. Again,
the initially knotted chain unknots and knots again several times. Finally, the chain is knotted and stays in this
form to the end of the simulation.

In yet another example, the dynamics of a fiber with A = 2.3 is presented in the figure 8 and movie 8. The fiber
unties and knots again many times, as shown in the graph of the knotting fraction k. Finally, the fiber unties and

7



I0OP Publishing NewJ. Phys. 17 (2015) 053009 SKueietal

5 a 5 b 5 ¢
~N 0 ~ 0 N
-5 -5 -5
P g-\-\ - o 57 N -
- - 1 - 1 - 1
5, e ¢ e el ¢ B ey W
y ¥ Y
5 d 5 €
N N
-5 -5
i N B e, e B
-5 ~"10 ° -5 "0 °
y X y X
Figure 4. Initial trefoil shape and five distinct orientations (see also movie 4).
Table 2. The existence of an unknotting—knotting transition as characterized by a trefoil unknot-
ting then knotting (1) or not (0), as a function of the stiffness A and initial orientation I,. The table
summarizes the 29 different simulations that were performed.
Iy \A 0.8 1.0 1.4 2 2.1 2.2 2.3 2.4 3.0
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Figure 5. The unknotting—knotting transition for an initial trefoil shape, A = 2.2, N=99. The time evolution of the chain is shown, see
also movie 5. Here k; denotes the knotted fraction based on the stochastic closure scheme described in the text.

stays unknotted until the end of the computation. Thus, we have examples, at least for the time duration of our
simulations, of some cases that end up knotted and other cases that end up unknotted.

All of the configurations displayed in figures 5-8, can be seen in three-dimensions, and rotated using the
corresponding MATLAB fig-files, given in the supplementary data (available at stacks.iop.org/njp/17/053009)
and labeled to match the numbers of the related figures; for example, the file figure 5. Figure corresponds to the
first frame of figure 5 in the text.
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Figure 7. The unknotting—knotting transition for an initial trefoil shape, A =2.1, N=99. The time evolution of the chain is shown
(see also movie 7). Here k¢ denotes the knotted fraction based on the stochastic closure scheme described in the paper.

4.2. Characterizing configurations that display the unknotting—knotting transition

Comparing the different simulations with each other, e.g. figures 5-8, we conclude that the existence of the
unknotting—knotting transition is not correlated with a final knotted or unknotted state. The question then can
be asked if the existence of the unknotting—knotting transition for a trefoil is correlated with some specific mode
of the flexible fiber dynamics, similar to those observed in the simulations that started from the initial candy-
cane configuration, which were shown in figure 2. For example, the characteristic features of the two main
conformational modes where the fiber primary axis tends to be aligned along the vorticity axes (modeI) or the
flow direction (mode II), discussed earlier in connection to figure 2, and summarized in table 1.

Therefore, in figure 9, we compare the dynamics of trefoils with different bending stiffnesses A and initial
orientations I in terms of their characteristic modes of conformation. We present evolution of the same
parameters of the fiber shapes as in figure 2, but this time for fibers that have an initial trefoil shape. For two sets
of the parameters, corresponding to the dynamics shown in columns (ii) and (iii), the unknotting—knotting
transition is observed. For two other sets of the parameters, related to columns (i) and (iv), the unknotting—
knotting transition is not observed.

We first compare two cases for which the unknotting—knotting transition is observed, i.e. columns (ii) and
(iii) in figure 9. The snapshots form the evolution shown in columns (ii) and (iii) can be found in figures 5 and 7,
respectively. For example, the evolution displayed in column (iii) for larger times approximately corresponds to
mode I, which is characterized by an elongated shape with relatively large aspect ratios, and the tendency to align
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Figure 9. Dynamics of trefoils for different values of bending stiffness A and initial orientations I. The fiber radius of gyration R,
length of the semi-axes a, b, ¢, orientation § and ¢ of the primary axes, and the number of close pairs are defined in the main text. The
unknotting—knotting transition is observed during evolution shown in columns (ii) (twice—for times around 200 and 270) and (iii)
(twice—for times around 480 and 900).

with the vorticity direction and roll around it. For comparison, at long times, the dynamics visible in column (ii)
approximately corresponds to mode II, which is characterized by a smaller elongation, and no special features of
the dynamics related to the vorticity direction.

On the other hand, comparing columns (i) and (ii) in figure 9, we conclude that the same mode II
configuration is reached by fibers for which the unknotting—knotting transition, respectively, did not and did
take place. These examples of two topologically different behaviors correspond to different initial orientations of
the trefoil characterized by a single value of A. The complementary comparison of columns (iii) and (iv) in
figure 9 demonstrates that fibers with and without the unknotting—knotting transition can both later exhibit the
same mode I configuration. In this case, examples of two topologically different behaviors correspond to the
same initial orientation of the trefoil but different values of A. Therefore, the examples displayed in figure 9
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illustrate that the existence of the unknotting—knotting transition is not correlated with the final configuration
mode I or mode IT of the dynamics.

Finally, we investigate if the process of creating a knot is correlated with any simultaneous specific features of
the fiber shape. Two examples shown in figure 10 contribute to a negative answer. In both cases, the fiber starts
from very small knotted fraction k5 which increases up to almost one. However, in the first case (shown in the
left part of figure 10), the fiber is in mode II, and in the second case (shown in the right part of figure 10), the fiber
is in mode I. To conclude this discussion, we note that the process of knot creation takes place both for fiber
shapes that are compact (figures 6, 7) and loose (figures 5, 8).

5. Summary and conclusions

We have focused on the question of whether a simple shear flow can tie a knot in a flexible fiber. If yes, then can
we predict the future existence of a knot based on the fiber flexibility and its initial shape and orientation? Also, is
the knot a transient effect or a stable configuration? To address these questions, the fiber was modeled as a chain
of N'beads connected by very stift springs with additional elastic forces acting against the fiber bending. The fiber
evolution was determined using the numerical code HYDROMULTIPOLE, based on the accurate multipole algorithm
for solving the Stokes equations with no-slip boundary conditions on the bead surfaces. In addition, to
characterize the topology a knot on a flexible open fiber was defined as in [33—34] and associated with the
knotted fraction k; close to unity.

In the first part of our study, we investigated the evolution of fibers of different flexibilities, but with the same
initial orientation and the same untied shape (with a vanishing knotted fraction). We concluded that for such a
simple initial configuration, a change of flexibility is not sufficient to cause formation of a knot, although
evidence of slipknots was observed.

Then, in the second part of our study, we constructed a more complicated initial shape: a trefoil with the
knotted fraction equal to one. We used the same initial shape at different initial orientations and for fibers of
different flexibilities, and we followed their evolution in a shear flow. A few of the more flexible fibers remained
knotted, but most of the fibers untied after some time. In particular, we then observed that some of these untied
fibers again became knotted, as illustrated in figure 11 for A =2.3 and N = 99. In this figure we display two shapes
with the knotted fraction close to zero, which later on lead to evident knots (with the knotted fraction close
to one).

Therefore, indeed, a simple shear flow can tie a knot on a flexible fiber. Sometimes, such an unknotting—
knotting transition repeated several times during the evolution of the fiber dynamics. We observed 13 such
unknotting—knotting transitions in four (out of 29) simulations, for four different (moderate) flexibilities and
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two different initial orientations. Based on all of our observations, we conjecture that the formation of knotsis a
transient effect and may possibly be related to the chaotic properties of the dynamics of this N'bead system.

To conclude, we have analyzed basic features of the dynamics of long flexible fibers in unbounded steady
shear flow. In particular, we give examples of flexible fibers, initially shaped as open trefoils, which are later
untied and then knotted again, sometimes several times, by the flow. This finding provides a new perspective for
future studies of topological structures of long flexible non-Brownian chains evolving as they are entrained by
ambient flows. A straightforward future goal is to understand how the existence of the unknotting—knotting
transition depends on initial conditions. It is also of interest to study whether the changes in topology might be
reflected in changes in bulk rheological and/or transport properties.

As we noted in the introduction, the numerical solution of this problem requires the solution of 3N coupled
nonlinear ordinary differential equations for the positions of the N'beads. We should expect such a dynamical
system to have all of the attributes of chaos [29, 51, 52]. How the observed dynamics of knot formation and
unknotting may (or may not) link to the underlying chaotic trajectories is a subject for future investigations.

Finally, our focus has been self-entanglements of a single chain produced by flow. The entanglement of
different chains in solution is a topic of interest [49, 50] and is a possible direction for future research using the
approach developed in this paper.
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Appendix A. Initial configurations of a ‘candy-cane’ shape

In the first part of our study, we started simulations from initial configuration of a fiber made of 152 beads,
shownin figure A1 . This ‘candy-cane’ shape was generated from the equation (20 cos s, 20 sin s + 20, 0) with's
ranging from —7/2 to 7/2 and the step ds=0.051 05. This equation is a semicircle of radius 20, and ds has been
chosen in such a way that the distance between each pointis equal to & = 1.02 bead diameters. A rod starting
from (—91.8, 0, 0), endingat (0, 0, 0) is then connected; the points are again £, = 1.02 apart, and described by:

[-1.02(91 - 5), 0, 0], (A1)

with s ranging from 1 to 90 in increments of 1. A rotation matrix is randomly generated and applied to these
coordinates to rotate them out of the plane xy. In figure A1, we show the initial condition which is used as an
input for the simulations displayed in figure 2 and discussed in this paper.
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Figure Al. Initial candy-cane shape.

Appendix B. Initial configurations of a trefoil shape

The trefoil shape is constructed with the use of the following equation
[sins + 2 sin(2s), cos s — 2 cos(2s), —sin(3s)], (B.1)

from which 100 evenly spaced points are chosen with £ = 1.02. Since the points are evenly spaced along the
path of the curve, there are slight variations in the straight-line distance between each point. One point was then
removed to ‘open’ the trefoil as an open curve. The resulting trefoil with N=99 and k; = 0.98 is shown in
figure 4(a) and denoted as I = a.

Appendix C. Knot invariants

After our open curve is closed by the stochastic closure scheme, it can be analyzed for its polynomial knot
invariant. There are by now many different knot invariants, which have varying ability to distinguish knots; the
first one, which was discovered in 1928 by Alexander, is one of the simplest to compute. It has some drawbacks,
such as the inability to distinguish handedness (i.e. it cannot distinguish between two mirror images), but as we
only need to distinguish between an ‘unknot’ and a ‘knotted’ curve to calculate the knot fraction, the Alexander
polynomial is sufficient.

The invariant is calculated by projecting a curve into 2D, then identifying ‘crossing points’ and ‘regions’,
while keeping track of the ‘overlying’ and ‘underlying’ branches at each crossing. If there are n crossings, there
willbe # + 2 regions in the knot diagram. Depending on the orientation of the overlying/underlying branches at
each crossing, the regions adjacent to the crossing are assigned different indices. A n X (n + 2) incidence matrix
is constructed from the indices at each crossing and region, and two columns corresponding to adjacent regions
are removed, to form a n X # matrix. The determinant of the matrix is then the Alexander polynomial. More
details, and proof that removing two arbitrary columns (provided they refer to adjacent regions) results in the
same normalized Alexander polynomial, can be found in his 1928 paper [53].

We have written a custom code to compute the Alexander polynomial of any configuration, given the
(x, y, z) coordinates of each bead in the chain, following the algorithm described by Alexander, with the help of
functions from other Alexander polynomial calculators [54].
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