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Abstract

In this paper the optimal control system for straight passage of moving load is considered. The magnitude of the moving force is
assumed to be constant by neglecting inertial forces. The response of the system is solved in modal space. The idea of semi-active
control manner for 1D continuum subjected to travelling load was first based on the numerical investigations. Then, the switching
control strategy was formulated. The methods of computing the optimal switching times was developed by means of adjoint state.
We present the efficient way of calculating such a switching times. The effect of pre-deflected guideway is also considered. Several
examples demonstrate the efficiency of the proposed techniques. The controlled system widely outperforms passive solutions.
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1. Introduction

Technological processes such as cutting (flame, plasma, laser,
textile, waterjet, glass cutting) or bonding (glueing, welding, sol-
dering) require precisely straight passage. Active methods of
control are, unfortunately, energy-consuming and complicated
in practical applications. Moreover, a poor control system can
supply energy in the antiphase and in extreme cases can damage
the structure. We will focus our research on semi-active systems
composed of dampers, which require lower energetic effort.

Most of the active and semi-active developed methods lead
to feedback controls determined by state-space measures. In
the case of a continuous system, such an approach is typically
complex due to observer design. The alternative method is pre-
computed open loop control. This is particularly useful in prob-
lems with a well defined excitation. In linear mechanical sys-
tems semi-active control methods usually result in switching op-
erations, where parameters to be controlled (damping, stiffness)
are switched between two or more values. Typically, the optimal
switching pattern results in a large number of switchings. If the
error occurs and the switching pattern is shifted in time domain,
then such a complicated control may immediately drive the sys-
tem to undesired or even unstable state. The aim of the approach
presented in the paper is to design an effective and safety switch-
ing method with reduced number of switchings. The paper is an
extension of the previous work published in the articles [1], [2],

[3].
2. Mathematical model

We consider the system composed of simply supported
Bernoulli-Euler beam, supported by a set of control dampers
(Figure 1). The magnitude of the moving force P is taken as
constant by neglecting the inertial forces. This is under the as-
sumption that the mass accompanying the travelling load is small
compared to the mass of the beam. The speed of travelling load

is v. The action of the massless dampers is proportional to the
relative velocities of displacements at given points.
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Figure 1: Euler - Bernoulli beam system supported by active vis-
cous dampers.

For such a system, we can write equations of motion as fol-
lows:
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Here, w(x, t) is the transverse deflection of the beam in the point
(z,t). The parameters of beam are EI, p and [ that stand for
bending stiffness, constant mass density per unit length and total
length of the beam, respectively.

Respecting the boundary conditions we can use a Fourier se-
ries method to transform PDE 1 to a system of ODEs.

3. Formulation of optimal control problem

For the sake of optimal control problem formulation we con-
sider the system given in the state space form. The straight pas-
sage can be achieved by minimizing the relevant norm of beam
deflection under a moving load. The problem can be formulated
as follows

ty
Minimize J :/ [w(vt, t)]* = 2
0
2
ty n/4 k ;
/ Zy%,g(t) sin ﬂ;} dt s (3)
0 k=1

subjectto  y(t) = Ay(t) + Zm:Biy(t) u (t) + £(2),

Yar—3(0) = Vi(k,0), yar—2(0) = Vi(k,0),
Yar—1(0) = Va(k,0), yar(0) = Va(k,0), k = 1,2,...,n/4
Ui(t) € [0, tmaa], VEE[0,t7], i=1,2,...m . )

To solve the problem we introduce the adjoint state and cal-
culate the derivative of cost functional. Then, the numerical pro-
cedures based on gradient values can be evaluated.

4. Numerical results

By applying the Maximum Pontryagin Principle [5] we can
easily check that the optimal solution of 4 is driven by so called
bang-bang controls. Below we present the numerical examples in
case of two (Figure 3), three (Figure 4) and four (Figure 2) active
dampers. By the passive case we mean the constant damping set
on maximum value.
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Figure 2: Extremal deflection trajectory and controls. Four active
dampers.
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Figure 3: Extremal deflection trajectory and controls. Three ac-
tive dampers.
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Figure 4: Extremal deflection trajectory and controls. Three ac-
tive dampers.

A performance of bang-bang control method has been veri-
fied for different system parameters and different number of ac-
tive dampers. The dampers placements significantly affect the
shape of the carriage trajectory. The best efficiency of proposed
control method is obtained at high travel speeds. The controlled
system can efficiently decrease the mass of the guideway. The
advantage of control strategy is its simplicity for practical design.
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