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B Pawińskiego Str., 02–106 Warsaw, Poland

Received October 05, 2010, in final form October 12, 2010

3

There are two very important subjects in physics: Symmetry of dynamical models and nonlinearity. All really4

fundamental models are invariant under some particular symmetry groups. There is also no true physics,5

no our Universe and life at all, without nonlinearity. Particularly interesting are essential, non-perturbative6

nonlinearities which are not described by correction terms imposed on some well-defined linear background.7

Our idea in this paper is that there exists some mysterious, still incomprehensible link between essential,8

physically relevant nonlinearity and dynamical symmetry, first of all, of large symmetry groups. In some sense9

the problem is known even in soliton theory, where the essential nonlinearity is often accompanied by the10

infinite system of integrals of motion, thus, by infinite-dimensional symmetry groups. Here we discuss some11

more familiar problems from the realm of field theory, condensed matter physics, and analytical mechanics,12

where the link between essential nonlinearity and high symmetry is obvious, although not fully understandable.13
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1. Symmetry versus nonlinearity in metrical and tetrad grav itation. Com-17

parison with mechanical toy models18

Something close to the Anthropic Principle and similar ideas:19

There is no Our Cosmos and no Life without Nonlinearity.20

In various aspects, quite trivial, every-day-life ones, and very fundamental structural problems.21

Concerning the every-day life, e.g., there is no thermal expansion of bodies without nonlinearity22

expressed by non-symmetric shape of diagram of the interparticle potential energy as a function of23

distance. Biological and ecological systems are based on the limit cycles impossible without nonlin-24

earity. Similarly, without nonlinearity, at least in some background, it is impossible to reconcile the25

field equations and equations of motion, e.g., in Maxwell electrodynamics. Without nonlinearity26

there is no stochastization, no equipartition of energy and thus no thermodynamics. It is instruc-27

tive to think of some crazy model of condensed matter as a system of mutually coupled harmonic28

oscillators, based, e.g., on the isotropic Lagrangians of the form:29

L =
1

2

∑

A

mA

dxi
A

dt

dxj
A

dt
gij −

1

2

∑

A 6=B

κAB

(
xi

A − xi
B

) (
xj

A − xj
B

)
gij , (1.1)

where g denotes the metric tensor, κAB = κBA are the elastic constants, and mA are the particle30

masses. The corresponding equations of motion have the form:31

mA

d2

dt2
xi

A = −
∑

B

κAB

(
xi

A − xi
B

)
. (1.2)

Let us notice that the metric tensor does not enter (1.2) at all, although it is explicitly present32

in (1.1). This is one of its ambiguous roles in equations of physics. But, never mind, the point is that33
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the model (1.1), (1.2) does prevent the decay of the system, but it does not prevent its collapse. 1

The only anti-collapse means of (1.1), (1.2) is the centrifugal barrier. But this is physically non- 2

sufficient, and the true anti-collapse repulsive potentials must be positively-singular at coincidences 3

of particles; the corresponding forces will be certainly non-harmonic and the model essentially 4

nonlinear. As harmonic models always split into mutually non-interacting one-dimensional normal 5

modes, in quantum field theory, and classical field theory as its kindergarten, one accepts the view 6

that the true interaction is encoded within the anharmonic sector. From this point of view the 7

harmonic models are “non-interacting”, although there exist some “springs” between non-normal 8

modes. Finally, let us recall the immortal and in any case still unresolved problem of quantum 9

decoherence. There is an “infinity” of ideas about it, one of them is some fundamental nonlinearity 10

hidden somewhere beyond the usual pragmatic framework of linear quantum mechanics. 11

Nonlinearity is physically desirable, just unavoidable, but, at the same time, linear models are, 12

in principle, explicitly treatable. This motivates a kind of compromise often dealt with in prac- 13

tice. Namely, one considers a certain linear background model with some extra imposed nonlinear 14

perturbations. These perturbations are often considered to be “small”, or to be more precise, they 15

are controlled by some coupling parameter. The vanishing value of this parameter corresponds 16

to the background linear model. To solve nonlinear problems, one employs certain perturbation 17

techniques, expansions with respect to the “small” parameter, and the search of solutions in terms 18

of asymptotic series (by collecting coefficients at the same power of the parameter). Of course, 19

such a procedure is always more or less “tricky”, certainly non-reliable. One never knows a priori 20

if the underlying linear background is structurally stable under perturbations. And, what is more 21

important, there exist fundamental theories and models which are essentially nonlinear. They are 22

nonlinear from the very start and there is no natural splitting into linear background and nonlinear 23

correction term. Let us mention general relativity, ’tHooft-Polyakov-Kleinert strings, Born-Infeld 24

electrodynamics and its generalizations, Euler equation for ideal fluids which are all profound exam- 25

ples in fundamental field theory and in condensed matter physics. Incidentally, the two disciplines 26

are not sharply distinct, and the border between them is rather diffused [1–8]. 27

It very often happens in fundamental theories that the tensorial structure of considered objects 28

just canonically induces certain coupling schemes and certain canonical nonlinearities. This is 29

just the case with the mentioned examples, where one is faced with the peculiar convolution 30

of two things: the essential non-perturbative nonlinearity and the huge symmetry groups. This 31

convolution is in no way accidental and may be heuristically explained within the framework 32

of variational theories. This is not an essential restriction, because usually, dissipative models 33

presume a certain self-adjoint background, and besides, with certain modifications, the very idea 34

works for them as well. Simply, it is quite easy to comprehend them using Lagrangian concepts. 35

Namely, from the geometric point of view Lagrangian is a scalar W-density of weight one, built 36

of dynamical variables, i.e., “fields”, and their derivatives with respect to independent variables, 37

let us say, “space-time” coordinates. In fundamental theories one deals in principle with first-order 38

derivatives, but with certain delicate points concerning general relativity. However, to construct 39

scalar densities or scalars from “fields”, one usually needs certain “tools”, which enable one to 40

define invariant derivatives with respect to “space-time” coordinates, and to contract tensorial 41

spatio-temporal or internal indices. In specially-relativistic or Galilean physics those tools are 42

usually some metric tensors and their by-products such as affine connections, volume forms, etc. 43

They are absolute objects of the theory. When they are kept fixed, symmetries of the theory are 44

rather poor, because they should respect and preserve those objects. In linear theories the metric 45

tensors enter Lagrangians via coefficients of quadratic forms built of dynamical quantities, e.g., 46

in kinetic energy, in kinetical terms of field Lagrangians, etc. [8]. It also enters through covariant 47

derivatives of fields, integration element, etc. When kept fixed as an absolute, controlling object, 48

it restricts the symmetry group to the finite-dimensional isometry group of g. But it was just the 49

general covariance idea of Hilbert that no absolute objects may exist in really fundamental theory 50

[8]. If so, g must be included into physical degrees of freedom and then the symmetry group of the 51

theory becomes just Diff M , the group of all diffeomorphisms of the space-time manifold M . This 52

is a huge, infinite-dimensional group. And automatically the theory becomes essentially nonlinear, 53
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without any linear background to be perturbed. And this is a rule: in linear variational theories1

the quadratic forms underlying Lagrangians, automatically restrict the symmetry group to some2

(pseudo-)Euclidean group. To escape this restriction, one must include the quadratic form itself into3

degrees of freedom, and this self-interaction brings about some essential nonlinearity [7, 8]. Non-4

Abelian gauge theories provide another example of the relationship between essential nonlinearity5

and symmetry groups. The inherent nonlinearity and self-interaction of gauge fields (the “radiating6

radiation”, so to speak) is exactly due to their symmetry group. Let us also mention the solitons,7

where one observes the very peculiar coincidence of the essential nonlinearity and the rich groups of8

hidden symmetries (hierarchy of constants of motion, the total intergrability). Generalized Born-9

Infeld-type models (including ’tHooft-Polyakov-Kleinert) offer some very interesting mechanisms10

of essential nonlinearity, apparently without a direct link to symmetry [8–11]. However, a more11

detailed analysis shows that some important symmetries are also intimately connected with them.12

It is very instructive to review the structure of nonlinearities quoted above, with the special13

stress on their geometric background, first of all, but not only, on symmetry groups. Certain14

common features of field theory, mechanics of continua, condensed matter theory, and analytical15

mechanics are then exhibited and the borders between them diffuse in a sense.16

In general relativity, the Hilbert Lagrangian of the metric field g on the space-time manifold17

M is given by [12]18

LH [g] = LH

(
g, ∂g, ∂2g

)
= − 1

2κ
R[g]

√
|g| (1.3)

with the obvious meaning of symbols: κ is proportional to the gravitation constant (the propor-19

tionality factor depends on the system of units), R[g] is the curvature scalar built of g, and |g| is20

an abbreviation for the absolute value of det[gµν ] in a given coordinate system. Geometrically |g|21

is a scalar W -density of weight two, and because of this, LH[g] is a scalar W -density of weight one,22

just as any correctly defined Lagrangian should be. Sometimes one modifies (1.3) by adding the23

cosmological term24

Lcosm[g] = Λ
√
|g|, (1.4)

Λ is here a constant parameter usually referred to as cosmological constant.25

Some comments are necessary here. Namely, Lagrangian (1.3) depends on second derivatives,26

but the corresponding variational principle is essentially first-order one. The point is that LH27

quasilinearly depends on second derivatives, i.e., linearly with coefficients depending algebraically28

on g, but not on its first derivatives. The second derivatives in (1.3) may be absorbed into a total29

divergence term and removed from the action functional,30

LH[g] = GH[g]
√
|g|+ “Div” = GH(g, ∂g)

√
|g|+ “Div”. (1.5)

The first-order Lagrangian GH

√
|g| is “non-aesthetic” in that it is not a scalar density of weight31

one. Instead, it is a strange “object” which transforms under the change of coordinates as a density32

modulo some additive correction by a total divergence. Nevertheless it works. Hilbert, led by his33

mathematical intuition, guessed (1.3) immediately as the only geometrically correct possibility (up34

to the “cosmological” term). Unlike this, the back-breaking attempts by Einstein were rather based35

on qualitative physical ideas full of mistakes, sometimes quite funny.36

The structurally dominant term of (1.3), (1.5) has the form (modulo constant factor):37

gµνgαγgβδ (∂µgαβ) (∂νgγδ)
√

|g|. (1.6)

Obviously, without the next terms, this is a completely non-tensorial expression [13, 14], but it38

just focuses and visualizes the very essence of nonlinear self-interaction of g.39

Lagrangian of matter fields, denoted symbolically by Ψ, is given by40

Lmatt[g,Ψ] = Lmatt (g, ∂g; Ψ, ∂Ψ) . (1.7)

The metric g is used here for contracting the tensorial indices of Ψ, and its first derivatives ∂g41

occur in the Levi-Civita affine connection used for tensorially invariant differentiation of Ψ. The42

total Lagrangian43

Ltot[g,Ψ] := LH[g] + Lmatt[g,Ψ] (1.8)
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is invariant under the huge infinite-dimensional group Diff M of all diffeomorphisms of M onto 1

itself, 2

Ltot[ϕ∗g, ϕ∗Ψ] = ϕ∗Ltot[g,Ψ] (1.9)

for any ϕ ∈ Diff M . This concerns separately both terms, and obviously the action functional, just 3

as its both terms separately, is invariant in the sense: 4

I[g,Ψ|Ω] = I[ϕ∗g, ϕ∗Ψ|ϕ(Ω)]. (1.10)

Obviously, the action over the Ω-domain is given by 5

I[g,Ψ|Ω] =
∫

Ω

L[g; Ψ]d4x; (1.11)

it is a well-defined scalar because L is a scalar density of weight one. The gravitational Hilbert 6

and matter actions IH, Imatt are defined separately in the same way. If LH is replaced by GH

√
|g|, 7

then the invariance (1.10) is replaced by the invariance modulo some additive term depending only 8

on the values of fields on the boundary ∂Ω. Obviously, this does not affect the invariance of the 9

Euler-Lagrange field equations. 10

Let us remind that the field equations have the form: 11

Rµν − 1

2
Rgµν = κTµν ,

∂Lmatt

∂ΨA
− D

Dxµ

∂L
∂ΨA,µ

= 0, (1.12)

where Rµν = Rα
µαν is the Ricci tensor, R = gµνRµν is the curvature scalar, and Tµν is the metrical 12

(thus, symmetric) energy-momentum tensor of matter, 13

Tµν = − 2√
|g|

δImatt

δgµν
, (1.13)

where, obviously, one must carefully distinguish between covariant and contravariant components 14

of tensors. In particular, on the right-hand side of (1.13) one performs the variational procedure 15

with respect to the contravariant inverse of g. 16

Without matter, i.e., in empty space-time, field equations reduce to 17

Rµν = 0, (1.14)

and, by analogy to (1.6), the first, leading term has the d’Alembert structure, 18

gµν∂µ∂νgαβ + . . . = 0. (1.15)

Of course, this gives a correct insight into the dynamical structure of field equations, but one must 19

remember that the “d’Alembert” term is not to be meant literally, because it has no well-defined 20

tensorial structure. 21

It is interesting to mention a finite-dimensional counterpart of this framework, the one within 22

the domain of Hamiltonian dynamics [14–18]. Namely, let us imagine some physics the area of 23

which is not a general differential manifold, but rather some affine space M with the linear space 24

of translations V . Instead of relativistic four-dimensional metric of the normal-hyperbolic signature, 25

we have an Euclidean metric (positive one) in the usual space. Assume this metric to be a dynamical 26

object, and its “kinetic energy” to be an expression of the form: 27

T [g] =
I

2
gikgjl

dgij
dt

dgkl
dt

+
K

2
gijgkl

dgij
dt

dgkl
dt

, (1.16)

K, I being constants. 28
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By analogy with Hamiltonian systems on groups, this may be written as:1

T [g] =
I

2
Tr

(
Ωl

2
)
+

K

2
(Tr Ωl)

2
=

I

2
Tr

(
Ωr

2
)
+

K

2
(Tr Ωr)

2
, (1.17)

where the quantities Ωl ∈ V ⊗ V ∗ ≃ L(V ), Ωr ∈ V ∗ ⊗ V are defined as follows:2

Ωl
a
b := gac

dgcb
dt

, Ωra
b =

dgac
dt

gcb. (1.18)

Of course, in spite of certain formal similarities, one should be aware of the difference between this3

model and that of Hamiltonian systems on groups [15, 16, 19–21].4

It is easily seen that (1.16), (1.17) is a finite-dimensional toy model of (1.3), (1.5), (1.6). The5

self-interaction structure of g and its characteristic, non-perturbative nonlinearity is in principle6

like in the Hilbert principle. As a geodetic model in analytical mechanics, (1.16) is based on the7

following metric tensor G on the manifold of all metric tensors in V :8

G = Jgikgjldgij ⊗ dgkl +Kgijgkldgij ⊗ dgkl . (1.19)

This metric tensor is evidently non-Euclidean and the corresponding Riemannian structure on9

Sym(V ∗ ⊗ V ∗) (or rather on its submanifold consisting of the positive metrics g) has a non-10

vanishing curvature tensor. By analogy to (1.7), (1.8) one can put g into interaction with “matter”,11

e.g., with the “particle” of massm, moving in M , then the total kinetic energy (xi denoting particle12

coordinates) is given by13

T = T [g] + Tmatt[g, x] =
I

2
gikgjl

dgij
dt

dgkl
dt

+
K

2
gijgkl

dgij
dt

dgkl
dt

+
m

2
gij

dxi

dt

dxj

dt
. (1.20)

Obviously, the same may be easily done for the system of particles. Expression (1.20) is based14

on the following metric tensor G on M × Sym+(V ∗ ⊗ V ∗):15

G = mgijdx
i ⊗ dxj + Jgikgjldgij ⊗ dgkl +Kgijgkldgij ⊗ dgkl . (1.21)

The analogy is obvious. The “matter” term may be extended by introducing some “potential16

energy” V , e.g., as a function of the “radial” invariant17

r2 = gijx
ixj . (1.22)

Kinetic energy (1.20) and its underlying metric (1.21) are invariant under the affine group18

GAff(M), which, after the choice of some origin O ∈ M , may be identified with the semi-direct19

product GL(V ) ×
∼
V . The algebraic invariant (1.22) is invariant only under GL(V ), or more pre-20

cisely, under the centro-affine group GAff(M,O) ⊂ GAff(M) preserving the origin. When dealing21

with multi-particle material system in M , one can obtain the total affine symmetry, replacing the22

quantity (1.22) by the system of translationally-invariant functions rAB on the configuration space23

Q = M × Sym+(V ∗ ⊗ V ∗); these “radial-like” quantities are defined as24

rAB =

√
gij

(
xi

A − xi
B

) (
xj

A − x
j
B

)
, (1.23)

where xi
A are affine coordinates of the A-th particle. It is seen that the symmetry GAff(M) is25

analogous to the general covariance Diff M of General Relativity and those are just those huge26

symmetry groups which are “responsible” for the strong, non-perturbative nonlinearities of the27

models. The group GAff(M) acts on metrical degrees of freedom through its quotient linear group28

GL(V ), in the sense29

A ∈ GL(V ) : [gij ] 7→
[
(A∗g)ij

]
=

[
gkl A

−1 k

i A−1 l

j

]
. (1.24)
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Let us mention that there are also some other generalized potentials, i.e., the ones depending 1

on generalized velocities, compatible with those invariance demands. But there is no place here for 2

analyzing this problem more in detail. 3

Let us now concentrate on something else. In the toy models discussed above we were dealing 4

with models in analytical mechanics which had two kinds of degrees of freedom: translational 5

ones in the physical affine space and internal ones, represented by the metric tensor as a kind of 6

collective variable. This picture remains with certain instructive analogy to the metrical (generally- 7

relativistic) model of gravitation. Analytically, the internal modes were described by matrices. But 8

we also mentioned another class of mechanical models, namely, the one where internal/collective 9

degrees of freedom were represented by elements of some Lie groups, to be more precise, by elements 10

of linear Lie groups, or by other manifolds of linear mappings. Analytically they are also represented 11

by matrices. However, and this is geometrically important, they are other objects, namely, mixed 12

tensors, whereas scalar products are twice covariant tensors. Objects with spaces of mixed tensors 13

as configuration spaces were investigated, e.g., by us and others in mechanics of so-called affinely- 14

rigid bodies. And they may be considered as mechanical toy models of certain alternative models 15

of gravitation, namely, tetrad models in their various versions. And this has again very much, 16

just even more, to do with the link between symmetry and nonlinearity, and with some more or 17

less diffused interpenetration between field theory and condensed matter physics, in particular, 18

relativistic mechanics of structured continua. 19

Let us again go back to gravitation ideas and relativistic structured media, this time within 20

the framework of more or less modified tetrad models [7, 8, 22]. Historically, the tetrad mod- 21

els, originating from Weyl and Einstein, were thought to be some bridge between specially- and 22

generally-relativistic theories. Later on, it turned out that they provide much richer class of models 23

than the material Hilbert/Einstein model. And the most deciding point was the Dirac theory of 24

generally relativistic spinors, impossible to be formulated within the metrical framework. The main 25

reason is that the universal covering group of GL(4,R) unlike GL(4,R) itself, is not linear, i.e., 26

cannot be faithfully realized by finite matrices. The same is true for any dimension n > 3. 27

Instead of the metric field g, one uses the field of linear frames e = (. . . , eA, . . .) as the system 28

of gravitational potential. Equivalently, one can use the dual field of co-frames e−1 = (. . . , eA, . . .), 29

where 30〈
eA, eB

〉
= eAµe

µ
B = δAB ; (1.25)

they uniquely determine each other. 31

The next object is the corresponding teleparallelism connection Γ[e, tel] [8, 13, 14, 22], defined 32

uniquely by the condition that e is parallel with respect to the corresponding covariant differenti- 33

ation ∇[e, tel]: 34

∇eA = 0, a = 1, . . . n. (1.26)

When no ambiguity occurs, we use the abbreviation Γ[tel], ∇[tel], or just Γ, ∇. One proves imme- 35

diately that in local coordinates 36

Γ[e, tel]µνλ = eµAe
A
ν,λ = −eµA,λe

A
ν . (1.27)

Obviously, the curvature tensor of Γ[tel] vanishes, but in general its torsion 37

S[e, tel]µνλ =
1

2
eµA

(
eAν,λ − eAλ,ν

)
(1.28)

is a non-vanishing tensor; incidentally, it is well-known in the theory of dislocations. Here it plays 38

the role of tensorially invariant derivative of the field e. 39

Let η denote some symmetric non-degenerate metric tensor in the target space of the field e. 40

Analytically it is given by a constant and nonsingular symmetric matrix [ηAB]. For physical reasons 41

its signature is normal-hyperbolic; in the physical dimension n = 4, we usually put it as 42

[ηAB] = Diag (1,−1,−1,−1) . (1.29)

43103-6



PR
O

O
FS

Geometric nonlinearities

The contravariant inverse is denoted by
[
ηAB

]
:1

ηACη
CB = δA

B. (1.30)

The Weyl-Dirac-Einstein metric tensor is given by2

h[e] = ηABe
A ⊗ eB, h[e]µν = ηABe

A
µ ⊗ eBν . (1.31)

The linear group GL(n,R) (GL(4,R) physically), as a structural group of the principal bundle3

of linear frames FM or its dual F ∗M , physically is a group of internal transformations of the field4

e (or dually, e−1). It acts according to the rule:5

e = (. . . , eA, . . .) 7→ eL =
(
. . . , eBL

B
A, . . .

)
,

(1.32)

e−1 =
(
. . . , eA, . . .

)
7→ (eL)

−1
=

(
. . . , L−1A

Be
B, . . .

)
,

for arbitrary L ∈ GL(n,R). This is a global action, and in geometry one considers also the local6

action of the fields L : M → GL(n,R), according to the rule:7

e(x) 7→ e(x)L(x), e(x)−1 7→ (e(x)L(x))−1
. (1.33)

One can also restrict the values of L to the Lorentz subgroup O(n, η) ⊂ GL(n,R) (physically8

O(1, 3) ⊂ GL(4,R)), when9

ηCDLC
AL

D
B = ηAB . (1.34)

Obviously, h[e] is invariant under the local Lorentz action (1.33), (1.34). Unlike this, S[e] is invariant10

only under the global (x-independent) action (1.32) of the total GL(n,R) and its Lorentz subgroup.11

But both the prescription e 7→ h[e] and e 7→ S[e] are generally covariant,12

h[ϕ∗e] = ϕ∗h[e], S[ϕ∗e] = ϕ∗S[e]. (1.35)

Using the tensors h[e], S[e] as algebraic brick-stones, one can construct some byproduct quantities.13

First of all, let us quote some tensors built of the tensor S[e] alone:14

γµν = 4Sα
µβS

β
να = γνµ , γµ = Sα

µα ,

Γµν = 4Sα
βαS

β
µν = −Γνµ = 2γαS

α
µν . (1.36)

These are the only tensors built algebraically of S alone in a quadratic or linear (γµ) way.15

Another important quantities are scalars built in a quadratic way of S, with coefficients built16

algebraically of h[e], so-called Weitzenböck invariants [7, 8, 22]:17

J1 = hαµh
βνhγκSα

βγS
µ
νκ ,

J2 =
1

4
hµνγµν = hµνSα

µβS
β
αν ,

J3 =
1

4
hµνγµγν = hµνSα

µβS
β
να . (1.37)

There are also plenty of other concomitants of S[e], h[e], but the above ones are distinguished18

by their property of be quadratic in derivatives of e (with the exception of γµ, which is linear19

in derivatives). No doubt, such quantities are geometrically distinguished when constructing La-20

grangians. Let us notice the particular role of γµν . Being symmetric, it is an alternative candidate21

for the metric tensor of M ; i.e., alternative with respect to the Einstein-Weyl-Dirac metric h[e]. It22

is still more important that if (. . . , eA, . . .) form a semi-simple Lie algebra with respect to the Lie23

bracket,24

[eA, eB] = CK
ABeK , (1.38)
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CK
AB being (structure) constants such that 1

det
[
CK

ALC
L
BK

]
6= 0, (1.39)

then locally M may be identified with a semi-simple Lie group, and γ[e]µν becomes its non- 2

degenerate Killing tensor [13, 14]. This is interesting, the more so that the signature of γµν is not 3

introduced “by hand”; instead it is a consequence of something more fundamental. 4

It is important that all the above quantities are built of the field e in a generally-covariant way, 5

so they satisfy 6

F [ϕ∗e] = ϕ∗F [e] , ϕ ∈ Diff M. (1.40)

Their invariance status under internal transformations GL (n,R), operating on the capital indices 7

(target space transformations) is a more complicated matter. Certainly the torsion tensor S, the 8

Killing and similar objects like (1.36), built algebraically of S alone, are invariant under the global 9

action of GL (n,R), (1.32). The same concerns, of course, all Diff M -invariant scalars built of S 10

alone. Incidentally, one can show that all such scalars are homogeneous functions of degree zero 11

built of S. The dependence of the Dirac-Weyl-Einstein metric h[e] of e is invariant under the local 12

action of O (1, 3) ⊂ GL (4,R) (O (n, η) ⊂ GL (n,R)), i.e., under (1.33) with values of L restricted 13

to the Lorentz subgroup. Certainly e 7→ h[e] is not invariant under GL (4,R) (GL (n,R)) even in 14

the global sense. Moreover, it is not invariant under any subgroup of GL (4,R) larger than the 15

Lorentz group. The same concerns the Weitzenböck invariants (1.37). There is, however, some 16

delicate point with very important and far-reaching consequences. Namely, substituting to the 17

Hilbert Lagrangian (1.3) the metric h[e] instead of g, one obtains the following expression for LH 18

as a function of (e, ∂e): 19

LH[e] = − 1

2κ
(J1 + 2J2 − 4J3)

√
|h[e]| − 2

κ
∂µ

(
Sα

αβh
βµ

√
|h|

)
. (1.41)

The fourth term is a well-defined scalar density of weight one, because it is a usual partial-derivative 20

divergence of the contravariant vector density of weight one. The symbol ∂µ in this term may be 21

replaced by the covariant derivative ∇µ with respect to the Levi-Civita affine connection built 22

of h[e]. This fourth term absorbs all second derivatives ∂2e of the basic field e. Being a total 23

divergence, it may be simply neglected. Then we obtain the effective Lagrangian explicitly free of 24

second derivatives, 25

L[e] = − 1

2κ
(J1 + 2J2 − 4J3)

√
|h[e]|. (1.42)

It is very important that unlike GH

√
|g| in (1.5), the expression (1.42) is a well-defined scalar 26

density of weight one. It is generally-covariant, 27

L[ϕ∗e] = ϕ∗L[e], ϕ ∈ Diff M. (1.43)

As concerns the total action of the internal Lorentz group, i.e., (1.33) with L(x) satisfying (1.34) 28

for any x ∈ M , obviously (1.42) is variationally invariant, i.e., invariant modulo some divergence 29

term. 30

Once derived, (1.42) may be generalized to a wide class of Lagrangians. First of all, the ratio 31

of coefficients at J-s needs not be necessarily 1 : 2 : (−4). And in fact, it turns out that for a 32

wide range of coefficients c1, c2, c3 at J1, J2, J3 such modified Lagrangians are compatible with 33

experimental data. The more serious modifications consist in admitting Lagrangians depending in 34

a general, including nonlinear, way on the Weitzenböck invariants, 35

L[e] = f(J1, J2, J3)
√
|h[e]|, (1.44)

f being some real function of three variables. Nonlinearity of such models may be incomparatively 36

stronger than that of tetrad Hilbert model (1.42) or its modified-coefficients version: 37

L[e] = (c1J1 + c2J2 + c3J3)
√
|h|. (1.45)
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Historically, there were some attempts to avoid certain difficulties of General Relativity, by admit-1

ting the form (1.44) [22].2

Obviously, models (1.44) other than (1.42) are only globally, no longer locally, invariant under3

the internal Lorentz group. But having once admitted such models, one is immediately faced4

with the very natural temptation: why not try to construct generally-covariant Lagrangians L[e]5

invariant under the total linear group GL(4,R) (perhaps GL(n,R) in n-dimensional space-times)?6

This is a very natural idea, because a priori GL(4,R) (GL(n,R)), the structure group of the7

principal bundle of frames, is the most natural internal group, while any restriction of GL(n,R) to8

a subgroup seems to be non-motivated by any “first principles”. Any Lagrangian invariant under9

Diff M and GL(n,R) must be built algebraically of S alone. One can show that it is always a10

homogeneous function of degree n = dimM of the tensor S. And now, something very interesting11

results. It turns out that Lagrangians of this type have automatically a generalized Born-Infeld12

structure [7–10]. The simplest of them have the form:13

L[e] =
√
| det[Lµν ]| , (1.46)

where Lµν , referred too as the Lagrangian tensor, is a linear combination of tensors γµν , γµγν , and14

Γµν , cf. (1.36):15

Lµν = Aγµν +Bγµγν + CΓµν , (1.47)

where A,B,C are real constants. One can also admit a purely imaginary C. Then the tensor Lµν16

is hermitian, Lµν = Lνµ, and its determinant is real. There also exist more complicated models,17

where A,B,C are scalar functions of S. One can also multiply the total square root by some scalars18

built of S alone. One can show that generally-covariant scalars built algebraically of S alone are19

always homogeneous functions of degree zero. Typical structure of such scalars is as follows: If γµν20

happens to be non-degenerate, then it may be used to the raising of indices. Then one can construct21

of (1.36) various mixed tensors, their traces, etc; in a natural way scalars may be obtained on the22

basis of trace-taking. Introducing such scalars into (1.46), (1.47) would drastically complicate the23

model, but probably without a serious chance of obtaining something essentially new.24

There are some very interesting peculiar features of the model (1.46), (1.47). Namely, it is clear25

that Lagrangian L, i.e., integrand of the action functional, is a scalarW -density of weight one. This26

is necessary if the action I (1.11) is to be a scalar quantity, and obviously, physically it should be so.27

There is one, almost canonical prescription for obtaining such densities. Namely, scalar densities of28

weight two usually appear as determinants of matrices of twice covariant tensors. Then the scalar29

W -densities are obtained as square roots of the absolute values of those determinants. Another30

approach is to interpret Lagrangian as a differential n-form. Those are in principle equivalent31

formulations. However, there are some subtle points concerning the orientation of M .32

In any case, it is quite natural to say that the primary notation of variational theory is Lagrange33

tensor Lµν depending algebraically on a given field Ψ, its derivatives ∂Ψ and eventually on the34

space-time point x,35

Lµν (x,Ψ(x), ∂Ψ(x)) . (1.48)

What is usually referred to as Lagrangian L, is a by-product, scalar density of weight one, given36

by (1.46). In commonly used theories, one uses some metric tensor gµν and the scalar representation37

L of L given by the factorization:38

L = L
√
|g|. (1.49)

This is the language used in General Relativity.39

The “Born-Infeld” property of (1.46) is that it is the square-root of the determinant of “some-40

thing”, and the “something”, i.e., Lagrange tensor, is a low-order, in this case second-order poly-41

nomial of field derivatives.42

In traditional Born-Infeld electrodynamics, Lagrangian has the form [9, 10]:43

L = b2
√
|det [gµν ]| −

√
|det [bgµν + Fµν ]| , (1.50)
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where, obviously, the first term is non-dynamical. In Special Relativity it is simply constant; in 1

General Relativity it is x-dependent, but still independent of the electromagnetic field. Dynam- 2

ical quantities of the theory are Aµ, i.e., components of the four-potential covector; Fµν is the 3

electromagnetic tensor, 4

Fµν = ∂µAν − ∂νAµ . (1.51)

The only, rather artificial, role of the first term in (1.50) is to make the Lagrangian and energy 5

vanishing when F does vanish. The true dynamics is encoded purely in the second term. The 6

Lagrange tensor is given by 7

Lµν = bgµν + Fµν , (1.52)

so, it is a first-order polynomial of derivatives of dynamical fields. It is just the peculiarity of 8

the electromagnetic field that linear (or rather affine, linear-inhomogeneous) Lagrange tensors do 9

exist, although some alternative models with quadratic dependence on derivatives may be also 10

constructed. In general, the quadratic dependence on derivatives is the simplest possibility. The 11

model (1.50) was motivated by certain difficulties of classical electrodynamics. Due to the square- 12

root structure, it predicts the saturation of electromagnetic field, by analogy to the maximal 13

velocity, i.e., velocity of light in relativistic point mechanics. Because of this, the energy of point 14

charges, i.e., electromagnetic mass, was finite. For many physical reasons, the model (1.50), (1.52) 15

is a canonical nonlinearity compatible with electrodynamics [9, 11]. Incidentally, in spite of certain 16

current views, classical electrodynamics is still full of mysteries. Born-Infeld nonlinearity has to do 17

with many of them [1, 5, 6]. Let us notice, however, that in (1.46), (1.47) the “Born-Infeld” structure 18

follows from something very fundamental, namely, from the invariance assumptions: The model was 19

to be generally-covariant, i.e., invariant under Diff M , and invariant under GL(n,R) (physically 20

GL(4,R)) as internal symmetry group. The “huge” symmetry Diff M ×GL(n,R) just implies the 21

“Born-Infeld” nonlinearity, i.e., self-interaction, as the simplest possible model. Lagrange tensor 22

(1.47) is quadratic in derivatives of field variables. In a sense, this is another “pole” of physical 23

“simplicity”, alternative to linearity. In linear (and quasilinear) models, Lagrangians are quadratic 24

in derivatives. In “Born-Infeld” models it is no longer Lagrangian, but Lagrange tensor that is 25

quadratic (sometimes linear) in derivatives. In these models one deals with the essential, non- 26

perturbative nonlinearity, i.e., essential, strong self-interaction. This self-interaction is deeply based 27

on geometry. And due to this geometric background and the underlying symmetry group, the 28

resulting nonlinearity is not artificially complicated. As concerns simplicity, it is as close to linear 29

systems as possible. This kinship is based on the alternative: 30

Quadratic Lagrange Tensor – Quadratic Lagrangian. 31

In a sense, in tetrad models, the opposition between field theory and continuum theory (condensed 32

matter) diffuses. From some point of view, the tetrad field is a gravitational potential, but at the 33

same time it may be physically interpreted as the relativistic micromorphic continuum. Roughly 34

speaking, integral curves of the time-like “legs” of tetrads are world-lines of continuum particles. 35

The remaining “legs” represent internal degrees of freedom of this continuum, attached frames. So, 36

it is really something like micropolar (Cosserat) or micromorphic (Eringen) continuum medium 37

[2, 3, 23, 24]. 38

Now, let us close the circle of analogies in our study of essential nonlinearities and geometric 39

self-interactions. From General Relativity we passed to its finite-dimensional models based on 40

(1.16), (1.17), (1.19)–(1.21), etc., where the “spatial” metric g was a kind of the internal/collective 41

variable. Then, the tetrad models of gravitation were briefly discussed, with the special stress on 42

the Born-Infeld type of self-interaction. Let us go back to finite-dimensional analytical mechanics. 43

There is an analogy between transition from General Relativity to tetrad models and the transition 44

from (1.16), (1.17), (1.19)–(1.21) to the so-called affinely-rigid bodies, i.e., bodies rigid in the sense 45

of affine geometry [25–51]. The configuration space of internal/collective modes will be given then 46

by F(V ), the manifold of linear frames in V . So, the configuration space M × Sym+(V ∗ ⊗V ∗) will 47

be replaced by M × F(V ). Generalized coordinates are (xi, eiA), where eiA are components of the 48

frame vectors eA with respect to spatial coordinates xi. By analogy with (1.31) one can use the 49
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metric1

h[e] = δABe
A ⊗ eB, h[e]ij = δABe

A
i e

B
j , (1.53)

where, obviously, (. . . , eA, . . .) is the co-frame dual to (. . . , eA, . . .). If some metric tensor g ∈2

V ∗ ⊗ V ∗ is fixed, then the usual reasoning leads to the following kinetic energy form:3

T =
m

2
gij

dxi

dt

dxj

dt
+

1

2
gij

deiA
dt

dejB
dt

JAB, (1.54)

where JAB is the co-moving, thus, constant, tensor of inertia, i.e., quadrupole momentum of the4

mass distribution in representation of co-moving axes given by the moving frame e = (. . . , eA, . . .)5

[7, 8, 28–50, 52–56]. If the mass distribution within the body is isotropic with respect to the6

co-moving frame, then7

JAB = IδAB; (1.55)

this is an affine analogue of the spherical rigid body.8

Kinetic energy (1.54) is invariant under the Euclidean group E(M, g), in particular, under9

spatial translations and under orthogonal group O(V, g) ⊂ GL(V ); more precisely, under its centro-10

affine versions E(M, g;O), whereO ∈ M is a fixed origin inM . It is also invariant under the internal11

(material) J-orthogonal group O(n, J) ⊂ GL(n,R). The latter group consists of matrices L such12

that13

LA
CL

B
DJCD = JAB. (1.56)

If J is isotropic, then (1.55) holds and O(n, J) becomes just the usual orthogonal group O(n,R).14

In formulas (1.16), (1.17) we just objected against the fixed g; it was to be dynamical. If we15

follow the ideas of tetrad theory of gravitation, then it seems natural to do something else, namely,16

to substitute in (1.54) h[e] instead of g,17

T =
m

2
h[e]ij

dxi

dt

dxj

dt
+

1

2
h[e]ij

deiA
dt

dejB
dt

JAB. (1.57)

This may be written as follows:18

T =
m

2
δAB v̂

Av̂B +
1

2
δABΩ̂

A
CΩ̂

B
DJCD, (1.58)

where v̂A and Ω̂K
L are e-co-moving components of translational velocity and the so-called affine19

velocity, respectively:20

v̂A = eAi

dxi

dt
= eAiv

i, Ω̂K
L = eKi

deiL
dt

. (1.59)

The corresponding spatial affine velocity Ωi
j is defined and related to Ω̂ as follows:21

Ωi
j =

deiK
dt

eKj = eiKΩ̂K
Le

L
j . (1.60)

Ω, Ω̂ are Lie-algebraic objects, affine counterparts of angular velocity. Let us notice that h[e]22

is identical with the Cauchy deformation tensor of elasticity theory, or rather, its special case23

corresponding to homogeneous (affine) deformations.24

It is very interesting that (1.57), (1.58) is invariant under GAff(M), the total affine group in25

M . This is a finite-dimensional counterpart of Diff M , the group of general covariance in (1.3),26

(1.42), (1.44), (1.45). And if JAB = IδAB (isotropy of the inertial tensor), then (1.58) becomes27

T = Ttr + Tint =
m

2
δAB v̂

Av̂B +
I

2
δABΩ̂

A
CΩ̂

B
DδCD (1.61)

and in addition to the spatial GAff(M)-invariance, we have the “internal” invariance under O(n,R),28

the orthogonal group in n dimensions. This is an analogue of the global internal Lorentz invariance29

in (1.44), (1.45). Physically, the F(V )-degrees of freedom are collective/internal variables, which30
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are in a sense more “subtle” than Sym+(V ∗ ⊗ V ∗). They introduce affine invariance and the 1

corresponding essential nonlinearity. The question arises as to the finite-dimensional analogues of 2

something like (1.46), (1.47). In other words: how can we extend the internal orthogonal symmetry 3

O(n,R) of (1.61) to the full linear group GL(n,R), by analogy with extending the Lorentz internal 4

symmetry of (1.44), (1.45) to the full linear one like in (1.46), (1.47)? To be honest, this is impossible 5

for the total kinetic energy of affine body. It may be affinely invariant either in M or internally in 6

R
n, but not simultaneously in both spaces. But the internal part may be affinely invariant both in 7

M and in R
n; roughly speaking, simultaneously left and right affinely invariant. 8

And such models were already briefly mentioned after the formula (1.16). Namely, they are 9

built of the second and first Casimir invariants, 10

T [e] =
I

2
Tr

(
Ω2

)
+

K

2
(Tr Ω)

2
=

I

2
Tr

(
Ω̂2

)
+

K

2

(
Tr Ω̂

)2

. (1.62)

The corresponding metric tensor on F(V ) is given by 11

G = Iωi
j ⊗ ωj

i +Kωi
i ⊗ ωj

j = Iω̂A
B ⊗ ω̂B

A +Kω̂A
A ⊗ ω̂B

B , (1.63)

where I,K are constants and ωi
j , ω̂

A
B are differential forms on F(V ) given respectively by the 12

following formulas: 13

ωi
j = eAjde

i
A , ω̂A

B = eAide
i
B , (1.64)

thus, they are interrelated by 14

ωi
j = eiAe

B
jω̂

A
B . (1.65)

Obviously, the main term is that controlled by I; the K-term is merely a correction, just by a 15

complete analogy with (1.17), (1.18). 16

The metric tensor G (1.63) on the manifold of frames F(V ) is essentially Riemannian, its 17

curvature tensor is non-vanishing. At the same time, this metric has a large isometry group GL(V )× 18

GL(n,R), or rather its quotient with respect to the non-effectiveness kernel 19

{(λIdV , λ−1In) : λ ∈ R, λ 6= 0}. (1.66)

Obviously, in the last formula, IdV denotes the identity mapping in V , and In is the n×n identity 20

matrix. 21

The large isometry group is, as usual, correlated with the essential nonlinearity, i.e., essential 22

self-interaction of the geodetic problem based on (1.62), (1.63). This is a finite-dimensional pattern 23

for the field-theoretic models (1.46), (1.47). Affine symmetry and the absence of any metrical 24

background in M or V are their common structural features. 25

It turns out that dynamical models based on (1.46), (1.47) and (1.62) possess certain interesting 26

solutions [7, 8, 28–50, 52–56]. The ones for (1.46), (1.47) admit certain cosmological interpretation. 27

They are also interesting from the point of view of relativistic structured continuum. Geodetic 28

models on F(V ) or GL(V ) based on (1.62), (1.63) are applicable in nonlinear elasticity. This 29

is particularly suggestive when GL(V ) is constrained to SL(V ) or, equivalently, when in F(V ) we 30

impose holonomic constraints according to which the volume of frames is preserved. In anholonomic 31

language such constraints may be described by any of the two equivalent conditions: 32

Tr Ω = 0, Tr Ω̂ = 0. (1.67)

It turns out that although the group SL(V ) is non-compact, and so is its any orbit in F(V ), the 33

geodetic models based on (1.62) as a Lagrangian predict some open family of bounded solutions 34

describing nonlinear elastic vibrations, even without any use of potential energy. Above some 35

threshold there is an open set of non-bounded “escaping” solutions (“dissociation threshold”). 36

Such a model is interpretable from the point of view of integrable one-dimensional latices. The 37

“lattice points” onR appear as deformation invariants.Without incompressibility constraints (1.67) 38

(isochoric motion) the “volume” of e is either constant or behaves in a singular way, collapsing 39

to the point or infinitely expanding. However, this effect may be stabilized by introducing some 40

auxiliary potential depending only on det[eiA] and preventing both the collapse and decay. 41

The usefulness of the geodetic (no-potential) model of elastic vibrations consists in that its 42

analysis may be to some extent reduced to calculating matrix exponents [7, 8, 28–50, 52–56]. 43
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2. General covariance versus Born-Infeld nonlinearity1

Our idea here is that there exists some link between essential, non-perturbative nonlinearity2

and invariance under “large” symmetry groups. More precisely, nonlinearities following from invari-3

ance demands turn out to be physically most interesting. The general covariance, i.e., invariance4

under Diff M , so fundamental for General Relativity, is the best known example. Nonlinearity of5

Euler equations for ideal fluids is intimately connected with the invariance under the group of all6

volume-preserving diffeomorphisms of R3 [16, 57]. The characteristic Born-Infeld-type nonlinearity7

of our “tetrad” models (1.46), (1.47) is implied by the joint demand of general covariance and8

the invariance under GL(4,R) (GL(n,R)), i.e., internal invariance. Both models have some finite-9

dimensional counterparts, namely, (1.16)–(1.21) and (1.57), (1.61), (1.62). Analytical mechanics10

offers here some toy models of general covariance and internal symmetry. Incidentally, those toy11

models may be quite practically useful as description of some internal or collective degrees of12

freedom.13

Two main ideas did appear: general covariance and Born-Infeld structure. Apparently, they14

seem to be different things, in spite of some generally-relativistic motivation for the electrodynam-15

ical Born-Infeld ideas. Nevertheless, the Born-Infeld structure of (1.46), (1.47) was just a direct16

consequence of the demand of invariance under Diff M × GL(n,R) (physically n = 4). Is this17

accidental?18

A more general question arises as to the very relationship between general covariance and the19

Born-Infeld type of nonlinearity, namely, the characteristic square-root structure and the second-20

order polynomial dependence of the Lagrange tensor Lµν on field derivatives. In our model (1.46),21

(1.47) it was a quite canonical kinship. How is it in general?22

Let us begin with the very idea of general covariance. Not every kind of physical field does23

admit a generally-covariant variational principle. The twice covariant tensor, e.g., metric tensor,24

does it. And every system of fields containing metric does so as well. This is the very idea of General25

Relativity. And there was a wrong view that it is the only possibility. Obviously, the tetrad (n-leg)26

field is also good from this point of view. But what are other possibilities? The peculiarity of the27

metric field is that it is a twice covariant tensor field, i.e., field of scalar products. What about28

mixed second-order tensors, i.e., fields of linear mappings? Let X , analytically Xµ
ν be such a29

field. It turns out that X does admit a generally-covariant variational principle, but the simplest30

thing one can invent is rather complicated and the only possibility is just of the “Born-Infeld”31

type. Namely, it is a well-known fact that with every pair of mixed (once contravariant and once32

covariant) tensor fields X , Y one can associate the so-called Nijenhuis torsion S(X,Y ), which is33

once contravariant, twice covariant and antisymmetric in covariant indices. Perhaps it would be34

rather obscuring to quote the explicit formula, which belongs to the realm of advanced differential35

geometry [13]; in any case the point is that S(X,Y ), analytically S(X,Y )µνλ, is algebraically36

built of the components of X , Y and their first-order derivatives. For any vector field X we can37

invariantly define the tensor field S(X) := S(X,X) and its byproducts, like, e.g., the Lagrange38

tensor39

L[X ]µν = ASλ
µκS

κ

νλ +BSλ
µλS

κ

νκ + CSλ
κλS

κ

µν , (2.1)

where A, B, C are real constants. Nothing more natural (“more clever”) may be invented. The40

only possibility of generally-covariant Lagrangian is just (1.46) with (2.1) as the Lagrange tensor.41

It would be difficult to decide at this stage what would be the physical usefulness of such42

models. Nevertheless, they are well-defined and they witness that the Born-Infeld scheme in many43

situations is the only one compatible with geometry of degrees of freedom.44

But let us try to be more concrete with the problem. The question arises what might a general45

scheme for generally-covariant field models be. In this formulation it is too general to be effectively46

discussed. We know about the models of degrees of freedom admitting generally-covariant dynami-47

cal principles. Those are, among others, analytically speaking, “matrix fields”, like, e.g., the metric48

field, i.e., the field of twice covariant tensors, the field of mixed tensors, or the field of co-frames,49

i.e., analytically speaking, the n-tuple of covector fields on the n-dimensional manifold (“space-50

time”). In any case, in a generally-covariant field theory in n-dimensional “space-time” manifold,51
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the field should have more than n components. Because, roughly speaking, the general covariance 1

may reduce any of n field components to an arbitrarily given function form, e.g., identifying them 2

locally with “space-time” coordinates. The simplest, academic model is that of some N -component 3

scalar field in n-dimensional “space-time” [9, 58, 59]. As mentioned, the general covariance implies 4

that N > n, otherwise any generally-covariant model will be either trivial (every field is a solution) 5

or empty (no solutions at all). 6

Let the target space V of dimension N be endowed with some pseudo-Riemannian metric η. 7

Obviously, the simplest situation is the one when V is a linear space and η ∈ V ∗ ⊗ V ∗ is some 8

“constant” (pseudo-)Euclidean metric. We may quite well assume V to be a complex linear space 9

and h some sesqulinear hermitian form. However, let us focus our attention on the simplest case 10

of a linear space with (pseudo-)Euclidean metric. Any V -valued scalar field Ψ : M → V , i.e., 11

analytically speaking, the multiplet of N real scalar fields ΨA on M (some basis in V fixed) 12

induces some kind of Ψ-dependent metric in M , namely, the pull-back 13

g[Ψ] = Ψ∗ · η, g[Ψ]µν = ηABΨ
A,µ Ψ

B,ν ; (2.2)

comma, as usual, denoting the partial derivative. 14

Let us stress that there is no fixed metric in M , the space-time manifold is absolutely amor- 15

phous. The only absolute element, η ∈ V ∗ ⊗ V ∗, is an inhabitant of the target space V , it lives in 16

“Heaven”, not on “Earth”. Incidentally, there are linear spaces or manifolds with intrinsic metrics, 17

e.g., Lie algebras, Lie groups, manifolds of scalar products as discussed above, etc. So, this “abso- 18

lutism” of η need not be taken too seriously. Let us stress that in this sense our tetrad/n-leg model 19

was just completely amorphous, because nothing but the linear space structure was assumed in 20

the target space R
n (physically R

4). The simplest model now is the one, in which the Lagrange 21

tensor Lµν just coincides with gµν . One can also consider some “potential” terms U , e.g., the ones 22

built of ‖Ψ‖2 = ηABΨ
AΨB, and take 23

Lµν = U (Ψ) g[Ψ]µν . (2.3)

Of course, this is a re-definition of η in a sense and it is essential only when η is a constant 24

(pseudo-Euclidean) metric in a linear space. 25

Euler-Lagrange equations resulting from (2.2) with U = 1 may be invariantly written down as 26

follows: 27

gµν∇µ∇νΨ
A = 0, A = 1, . . . , N, (2.4)

where, obviously, gµν are components of the contravariant inverse of g[Ψ], and ∇µ are operators of 28

the covariant differentiation in the sense of the Levi-Civita connection built of g. Although (2.4) 29

formally looks like the d’Alembert equation for the multiplet ΨA, A = 1, . . .N , this system of 30

differential equations is strongly nonlinear, just essentially, non-perturbatively nonlinear, because 31

gµν and the Christoffel coefficients depend on Ψ. This dependence results in the mutual coupling 32

of equations. For any fixed A, the coefficients in the equation for ΨA depend on all the fields ΨB. 33

The nice invariant form (2.4) may be explicitly, but ugly, written down as follows: 34

gµνΨA
,µν +ΨA

,ν

(
1

2
gµνgαβ − gµαgνβ

)
gαβ,µ = 0. (2.5)

Geometrical meaning of equations (2.3), (2.4) is that the submanifold Ψ(M) ⊂ V is a minimal 35

surface in the sense of pseudo-Euclidean geometry; its mean curvature does vanish [58]. This 36

geometrical interpretation is generally true, not only in the situation when (V, η) is flat. The 37

system (2.4) is redundant; this is a consequence of the gauge arbitrariness corresponding to the 38

general covariance. The Diff M -invariance implies that among the N fields ΨA there are, roughly 39

speaking, only (N −n) independent ones, while n equations are superfluous and have the status of 40

identities. There are n purely gauge variables among ΨA and those may be fixed by something like 41

coordinate conditions. The simplest, although in a sense most “brutal”, way of eliminating gauge 42
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variables is to identify some n-tuple of fields ΨA, e.g., Ψµ, µ = 1, . . . , n (physically n = 4), with1

space-time coordinates, i.e., to put2

Ψµ = xµ, µ = 1, . . . , n. (2.6)

The gauge condition may be chosen in the form:3

(
1

2
gµνgαβ − gµαgνβ

)
gαβ,µ = 0, (2.7)

quite independently of the convention (2.6); this condition is more general. This gauge condition4

implies that (2.5) acquires the usual “d’Alembert” form in the sense that5

gµνΨA
,µν = 0. (2.8)

Obviously, equation (2.7) is non-tensorial and this is correct, otherwise it would not be a coordinate6

condition, i.e., fixation of gauge within the Diff M -invariant scheme. If we assume (2.6), which7

is locally always correct (globally there are, obviously, some subtle problems), then our gauge8

equations (2.7) become identities, and they are trivially satisfied. The fields Ψa, a = n+ 1, . . . , N ,9

are genuine degrees of freedom.10

It is convenient to choose coordinates in the target space in such a way that the matrix of η11

splits into blocks:12

hµa = 0, µ = 1, . . . , n, a = n+ 1, . . . , N. (2.9)

Then we have13

gµν = ηµν + ηabΨ
a
,µΨ

b
,ν , (2.10)

the summation convention is meant in the sense of indices a, b = n+1, . . . , N . The true dynamics,14

free of gauge, is described by “d’Alembert” equations for Ψa:15

gµνΨa
,µν = 0, a = n+ 1, . . . , N. (2.11)

These are Euler-Lagrange equations for the effective Lagrangian based on the effective Lagrange16

tensor17

L (eff)µν = ηµν + ηabΨ
a
,µΨ

b
,ν . (2.12)

The coefficients ηµν play the role of something like the analytical representation of some fixed18

space-time metric, although, as a matter of fact, such a metric was not assumed here. Without the19

block-structure assumption (2.9), the effective Lagrange tensor would be given by20

L (eff)µν = ηµν + 2ηa(µΨ
a
,ν) + ηabΨ

a
,µΨ

b
,ν , (2.13)

again with the summation convention extended over Latin indices a = n+ 1, . . . , N .21

The Born-Infeld structure, in the classical form known from electrodynamics, is easily readable22

here. Under the square-root sign in the effective Lagrangian we recognize the field-independent23

effective metric ηµν , the term linear in (gauge-free) field derivatives, and the term quadratic in24

field derivatives. The linear one is like in Born-Infeld electrodynamics, the quadratic one resembles25

our tetrad model (1.46), (1.47). Nevertheless, let us mention that the term quadratic in Fµν is26

also possible in certain modifications of Born-Infeld electrodynamics. The corresponding Lagrange27

tensor might be given by something like28

Lµν = bgµν + Fµν + dgαβFµαFβν + kgαβgκλFακFβλgµν , (2.14)

where b, d, k are constants. For the fields which are not too strong, the predictions of (1.52), (2.6)29

are in good agreement. Another thing is that (2.6) will not certainly show any important features30

of the traditional model (1.52), because the latter is canonical and unique in a certain sense.31

The scalar Born-Infeld models based on the effective Lagrange tensors (2.12) with N = n+ 132

(physically n = 4) were used in nonlinear scalar optics, i.e., in situations where the polarization33
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effects may be neglected. In any case, we have found the link between general covariance and the 1

Born-Infeld structure of Lagrangians based on Lagrange tensors with at most quadratic depen- 2

dence of field derivatives. In the scalar Born-Infeld electrodynamics, solutions appear as stationary 3

surfaces (“minimal surfaces”) of dimension four in the five-dimensional target space V . The corre- 4

sponding metric η has the signature (++−−−). If we denote 5

[ηab] = diag(η, 1,−1,−1,−1), (2.15)

then the effective Lagrangian is based on Lagrange tensor 6

L (eff)µν = ηµν + ηΨ,µΨ,ν . (2.16)

It is interesting that for the field Ψ we obtain solutions of exactly the same form as the one for 7

the scalar potential A0 in the “usual” four-covector electrodynamics: 8

Ψ(r) =

√
A

η

r∫

0

dx√
A+ x4

, (2.17)

where A > 0 is some integration constant. This small fact is very interesting in itself. 9

To summarize, let us repeat some important special cases, which are not only suggestive but 10

also physically interpretable. 11

1. N is arbitrary, n = 1 – geodetic curves. 12

2. N = 3, n = 2 – rubber films, soap bubbles, etc. 13

3. N = 4, n = 1, η is Minkowskian. This is relativistic point mechanics. Obviously, for the free 14

particle the effective Lagrangian is given by 15

L (eff) = −mc2

√
1− v2

c2
. (2.18)

4. N = 4, n = 2, η is Minkowskian. These are strings, ’tHooft-Polyakov-Kleinert models. 16

5. N is arbitrary, n = 1, η is Riemannian, U = 2(E − V ), cf. (2.3), E is the fixed total energy, 17

V is potential. We easily recognize the Maupertuis variational principle. 18

The scalar models provide an interesting “Kunst der Fuge”, the exercise for the study of essential 19

nonlinearity in the context of general covariance. Let us stress that our n-leg model is in a sense 20

“better” than all scalar Born-Infeld model, because it does not assume any target metric. 21
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Геометричнi нелiнiйностi в теорiї поля, конденсованiй матерiї
та аналiтичнiй механiцi

Я.Я. Славяновскi

Iнститут фундаментальних технологiчних дослiджень Польської академiї наук,
Варшава, Польща

1

У фiзицi є два важливих предмети дослiджень: симетрiя динамiчних моделей i нелiнiйнiсть.2

Всi дiйсно фундаментальнi моделi є iнварiантними щодо певних груп симетрiї. Без нелiнiйностi3

також нема нi справжньої фiзики, нi нашого Всесвiту, нi життя взагалi. Особливо цiкавими4

є незбуренi нелiнiйностi, якi не описуються поправками, що накладаються на деякий добре5

визначений бекграунд. Iдея цiєї статтi є така, що iснує деякий таємничий, все ще незбагненний6

зв’язок мiж суттєвою фiзично важливою нелiнiйнiстю i динамiчною симетрiєю, насамперед,7

великих груп симетрiї. В деякому сенсi ця проблема є вiдомою навiть в теорiї солiтонiв, де8

суттєва нелiнiйнiсть часто супроводжується нескiнченною системою iнтегралiв руху – таким9

чином, нескiнченновимiрними групами симетрiї. Тут ми обговорюємо загальновiдомi проблеми з10

царства (областi?царини?) (from the realm) теорiї поля, фiзики конденсованого стану та аналiтичної11

механiки, де зв’язок мiж суттєвою нелiнiйнiстю i високою симетрiєю є очевидним, хоча не повнiстю12

зрозумiлим.13

Ключовi слова: електродинамiка Борна-Iнфельда, конденсована матерiя загальна вiдноснiсть i14

тетради, незбурена нелiнiйнiсть, релятивiстичний структурований континiум, динамiчна симетрiя15
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