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 The aim of the paper is to find links between the dynamics of changes of statistical 
parameters and changes in spectral properties of the signal envelope of backscattered RF 
signals during the thermal process. We have shown previously that by using wavelet 
approximations these tendencies are better recognized in the case of the heating of a phantom 
sample than in the parallel analysis performed for a full signal envelope. Here we are 
currently expanding this statement to the case of heating a soft tissue sample in vitro. The 
shape parameter of the K- distributed random variable is considered as a statistical marker of 
temperature level changes. Additionally, the spectral properties of different levels of wavelet 
approximations are calculated and their sensitivity to temperature increase and decrease is 
demonstrated. Both approaches registering changes in temperature, are used in the case of 
the pork loin tissue sample in vitro, heated by an ultrasound beam with a different power. 

 
 

INTRODUCTION  

The studies of thermal processes in soft tissues due to the ultrasound irradiation are far 
advanced, their importance and different aspects are discussed in [1-5], cf. also references 
therein. Due to the fact that the changes in microstructure of the sample are invisible in the 
standard ultrasound B-scan during heating, cf. Fig.1, we are looking for a temperature 
measurement in the soft tissues sample by different approaches based on analysis of 
backscattered RF signal. 
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Fig. 1. The B-scan of the tissue sample. The left image shows the structure of the tissue at the initial 

moment and this, compared to  the middle shows the structure when the heating has been stopped, i.e. 
for 121t , and the last one is the end of the experiment for 241t .  

Linking the temperature increase with the received ultrasonic signal is very current field 
research, cf. e.g. [6-8]. At first, we are looking for “temperature tags” with a combination of   
the wavelet method with a statistical analysis of the signal envelope, what we have already 
done for the case of heating in a water bath a phantom sample made from Polyvinyl Alcohol – 
Cryogel, cf. [9]. Secondly, we present application of wavelet approximations to the 
visualization of changes taking place during the  thermal process in the signal spectrum. One 
can assume that during heating the sample material changes their physical properties, and the 
microstructure varies particularly. Measuring or at least approximating the characteristic 
length of microstructural inhomogeneities by the ultrasonic backscattering signal is still a 
significantly challenging problem in parametric imaging methods, see [6]. Backscattering 
signals are random and sensitive to the type of random distribution of scatterers as well as 
their sizes and physical properties i.e. how strongly they scatter the signal. Therefore the 
backscattering signal has various spatial frequency bands and hence a signal decomposition 
method is required to analyze the ultrasonic backscattering signals. In this study, the discrete 
wavelet transform (DWT) using a MATLAB decomposition algorithm was applied to 
ultrasonic backscattered signals acquired at successive temperature levels. The ultrasonic 
backscattered signals were decomposed into two parts: high frequency components called 
“Details” and low frequency components called “Approximation”. The latter is the low pass 
filter and we used it for improving the quality of temperature change differentiation. The 
paper is organized as follows. In Chapter 1 the experiment performed is described. In Chapter 
2 the preprocessing of a signal is given and elements of the wavelet method are introduced. 
Chapters 3 and 4 contain the main results, i.e. links between temperature level and the 
statistical parameter, and links between spectrum changes and temperature level. 

 
1. EXPERIMENT DESCRIPTION  

The pork source sample has been heated by the ultrasound beam produced by a focused 
spherical transducer. The system for heating consists  of generator (Agilent 332, Aprings 
Colorado, USA), an amplifier (ENI 1325LA, Rochester NY, USA), a spherical ultrasonic 
transducer (central frequency 2.2 MHz, diameter 44 mm, 44.5 mm focal length, area S = 15.2 
cm2) and an oscilloscope (Tektronix TDS3012B). Irradiation with 2 different powers: of 4W 
and 6 W (Watts) has been performed. During 10 minutes of heating and 10 minutes of cooling 
the temperature changes were recorded using thermocouples and registered by the USB 
module -TEMP. The temperature within the sample has been measured along the beam axis at 
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different distances from the head. The geometrical focus was located c/a 44.5 mm of the 
surface of the transducer, while the maximum temperature observed in the pattern was located 
at a distance of 25 mm of the surface of the transducer , cf. Fig 2. 

 

Fig. 2. The experimentally determined by thermocouples temperature changes at the point of focus 
(the highest heating) in the pork loin sample as a function of time / different values of power applied 

to the 4 and 6  W transducer, 10 min heating and 10 min cooling. 
 

The linear transducer (L14-5/38) located across the heating beam at a distance of 
40 mm from the transmitter has been used to produce images during heating by the focused 
transducer, see Fig. 3. Synchronization in time of both ultrasound sources has been carried out 
to ensure that the imaging process is free from the noise coming from the heating beam. The 
used ultrasound imaging system (Sonix TOUCH, ULTRASONIX, British Columbia, Canada) 
recorded images every 5 secs during 20 min of process. The sampling rate (sampling 
frequency) was 40 MHz and the imaging frequency was 8 MHz. The shape of the image 
scanned is a rectangle 36 mm x 16 mm, cf. Fig. 3.  

 
Fig. 3. The scheme of the experiment. 

 
 The date was collected with the help of Synthetic Aperture Technique. 

 
2. PREPROCESSING OF A SIGNAL AND ELEMENTS OF WAVELETS 

In order to perform the wavelet decomposition of the signal and the statistical analysis 
of the wavelet approximation it is necessary to carry out some previous transformations of the 
initial data. The dataset obtained from the experiment was modified by following steps. 
The experiment data array of the size 3615011001   had been reduced to the array 

361501601   by removing 200 points from each side. Let us define three dataset for each 
dimension: a set of points 600...,,1,0X , set of lines 500...,,1,0Y , and a set of images 
which is a scale discrete time-series 360...,,1,0T . Thus initial data may be assumed as  
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a discrete function  tyxf ,, , where Xx , Yy , Tt  . Fig. 4 represents the example of 

the signal function  00 ,, tyxf  for 2400 y  and 1200 t . 

 
Fig. 4. Example of the signal, image 160 line 250. 

 
Next, zero-phase digital filtering with the Butterworth filter has been performed [9]. 

Additionally a filter, which reduces the tendency of the changes with depth was used. The 

compensated signal will be denoted as  tyxf ,,
~

. We consider the obtained signal as a 

function    xftyxf ty,,,  , Xx , Yy , Tt  . 
In signal processing it is common to take into considerations the RF-envelope of the 

signal, which is an absolute values of the Hilbert transform of the function  xf ty,  with 
respect to the variable x . Hilbert (or RF) envelope was constructed  with respect to the 

variable x . Let    xftyxf ty,
~
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The signal example together with its Hilbert envelope is shown in Fig. 5. Here the blue 
line represents the example of the signal and the red line represents the Hilbert envelope of 
the signal.  
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Fig. 5. The example of signal and its Hilbert envelope. 

 

Then the data was averaged with respect to each line    
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  0,,~ txsE   is a mean value with respect to variable x  for each Tt 0 . 
In order to have enough high number of values in the statistical ensemble the data of 

each line had been considered together. The 361 images considered as discrete functions of 

300969 points had been constructed:      xStStxS tx , , Tt  , Xx
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These signals  tS x  have been normalized with respect to variable x : 

   
  xS

tS
txS

t
Xx

x

~max
,



 .   

 

 
Fig. 6. Signal function after all pre-transformations. 

 
The result of the pre-transformation steps for the image which corresponds to the 160t  is 
shown in the Fig. 6.  
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This data is concidered as initial for the following approximation of the function  xSt  

by using wavelet transform.  
The main idea of this method is that any function integrable with the 2nd power  tf  

may be represented in the form 



n

nnnn
jj

kjkj
k

kjkj dstf ,,,,)(  , where   is a chosen 

wavelet function,   is corresponds to the scaling function. The set of functions  kj,  is 

constructed as  ktj
j

kj  222
,  , the set  kj,  may be obtained by using the additional 

relations for functions   and   (see, e.g. [9], [10]). The value of nj  denotes the level of 

decomposition whose scale coefficients s  and detail coefficients d  are calculated for each 
chosen family.  

In our work the Daubechies 6 wavelets family [9] had been chosen as analyzing 
wavelet. This wavelet family is due to its possibility of pre-defined properties and also of the 
special form of the function which is similar to the shape of the transmit impulse signal (see 
Fig. 7).  

 
Fig. 7. Left: Reflected impulse signal in water - dashed line and the same signal transmitted 

through Phantom A and reflected – continuous line. Right: Daubechies 6 wavelet. 

The function was decomposed  xSt  4nj  for statistical analysis and 6nj  for 

spectral analysis. The whole procedure is described in [9], and it was also used for the 
investigation the RF-signals in [11-12]. 

3. STATISTICAL PARAMETER AND SPECTRAL PROPERTIES. 
TEMPERATURE DEPENDENCE 

Firstly, several probability distribution functions (PDF) have been used to estimate the 
histograms of a signal at different levels of temperature, which means at different time points. 
K –distribution have been chosen as the best estimate of the histogram (in the sense of least 
mean square error). Its probability density function  has the following from [6],[9]: 
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where A  represents the amplitude of the signal, 0, 0    is the shape and the scale 

parameter, respectively,  is the Euler gamma function, and pK  denotes the modified Bessel 

function of the second kind of order. Let us remember that the amplitude of the signal, 
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scattered from infinitely many small, the same scatterers being  non-uniformly distributed, is 
the K-distributed random variable. In the case when scatterers are grouped and in 
consequence, and K-distribution has the additional parameter measuring the degree of 
clusterization i.e. the shape parameter. The shape parameter is chosen here as a marker of 
temperature level, because one can expect the reorganization of the microstructure during 
temperature changes, which follows the changes of the values of the shape parameter. This is 
calculated from the real data with the help of the method of moments, cf. [6], which means 
that we approximate the values of the K-distribution shape parameter by the given function of 
the second and fourth moments alone. We compared the dependence of the calculated 
parameter, denoted by α0, to a temperature with the temperature dependence of α0 calculated 
for wavelet approximations of different levels. The level of approximation has been chosen by 
the criterium, that is to say: to obtain the function of the temperature with a variance as small 
as possible with respect to the local average, and with a resolution better than without 
approximations, but with the use of a data set many times smaller, cf. [9]. The results are 
depicted in Fig. 8 and Fig. 9. 
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Fig. 8. Dependence of shape parameter on image number (time), left: with the use of the wavelet 
approximation of the 5th level, right: without any approximations. 

 

  
 

Fig. 9. Dependence of the shape parameter on time and temperature, for  experiments with two powers 
of heating transducer, left image corresponds to the power of 4 W applied to the transducer and the  

right image corresponds to the power of 6 W. 

 The “long” signal obtained by the transformation described in Chapter 2 can be 
interpreted as the backscattered signal from one dimensional medium.  The wavelet 
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approximation, on some level, means that the frequency band is cut from above by the low 
pass filter. The FFT transform on initial data, which we named “transformed signal”, is not 
illustrative for temperature increase, in contrast to the FFT performed for the wavelet 
approximation, see Fig. 10. 

 

Image 
Number 

Transformed signal Daubechies 6,  6th-level approximation 

1 – 
beginning of 
heating, 
Temperature 
200 C 

 
 

121- middle 
point of 
heating 
time, 
maximal 
temperature 
level 380 C 

 

Fig 10. FFT transforms of signal and wavelet approximations. 

To identify the frequency range over which temperature changes are clearly visible, 
many estimations of FFT have been calculated. As the most informative we have found       
the polynomial approximations of the 10th degree of the absolute value of a complex 
spectrum, see Fig. 11 and 12.  

 
Fig. 11. Polynomial approximation of the 10th degree of the Fourier transform absolute value with 
Daubechies 6, 6th -level approximation of signal for different images; image 1 – 200 C, image 61 – 

35,2 0C, image 121 – 380 C, image 181 – 27,60 C, image 241 – 25,60 C. 
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Fig. 12. Polynomial approximation of 10th degree of the Fourier transform absolute value of 

Daubechies 6 6th -level approximation for image 1 (200 C) and middle time of the heating process, 
Image 121 (380 C). 

4. FINAL REMARKS 

 The shape parameter of K-distribution has been used by many researchers to 
differentiate the tissue microstructures of in vitro and in vivo samples. As far as we know 
there is no scientific paper, except our paper (in printing) [9], where this parameter is used as 
a temperature marker. Let us notice that in the Fig. 9 the rate of temperature changes is also 
well predicted by the parameter changes. This rate is strongly dependent on the power of the 
heating transducer and additionally, on the wavelet approximation level. The question of why 
there is a connection between the cutting off of some high frequencies from the signal (i.e. 
taking wavelet approximations) and a better fitting rate of temperature changes is the 
challenge for future research. 

 The main conclusion from spectral analysis is that using wavelet analysis we can 
identify the ranges of frequency which are the most  sensitive on temperature changes. They 
correspond to the range of characteristic scale of inhomogeneities in the microstructure  of   
the sample. This thesis has not yet been proved. Additionally, we observed division of the 
spectrum into four “effective” harmonics (that is to say a “group” of frequencies). The 
physical meaning of this fact has also until now not been clarified. We hope that we are able 
to find an answer of how to correlate microstructural properties of a sample material, i.e. soft 
tissue properties, and changes of temperature, which are measured by spectral properties and 
the shape parameter of K-distribution.  
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