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Summary 

The goal of this study was to find the macroscopic characteristics of the random nature of 
ultrasonic backscattering signals which would be sensitive to the temperature changes. The sample 
made of Polyvinyl Alcohol – Cryogel (PVA-C, the pre-freezing in one cycle aqueous solution of 
PVA) was heated in a water bath starting from the room temperature up to the temperature below 
the soft tissue ablation temperature. The RF signals were collected during the heating/cooling 
process and the signals envelopes had been calculated. The wavelet approximation of subsequent 
level worked as a low-pass filter what qualitatively improved the temperature estimating. The 
latter was realized by observing the variations of the shape parameter of K-distribution. The trend 
of the shape parameter variation with temperature was calculated including the wavelet 
decomposition and was compared with the real temperature changes measured by the 
thermometer. We have found that tracking changes in echoes envelope statistics allows to 
distinguish between heating and cooling process, and determine the time required to reach 
maximum temperature. 
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1. Introduction1 

Therapeutic and surgical applications of low 
and/or high intensity focused ultrasound require 
monitoring of local temperature rises induced 
inside tissues, cf. [1, 2]. In this paper, one of the 
methods from the quantitative ultrasound research 
is used for the assessment of the soft tissue 
phantom microstructure changes caused by 
temperature increase/decrease. Namely, the 
dependencies between the variations in statistics 
of ultrasonic eches envelope and temperature 
variations are studied. The randomness of the RF 
signal envelope is described by the probability 
distribution function (PDF) of K-distribution. The 
PDF is characterized by two parameters, the scale 
and the shape parameter. In [3-5] the sensitivity of 
the shape parameter values to the number of 
scatterers within the resolution cell has been 
justified. Assuming existence of the direct relation 
between temperature level and scatterers statistics 

                                                      
1(c) European Acoustics Association 

          

the values of the shape parameter of K-distribution 
probability function of the signals envelopes have 
been used to estimate the temperature changes, cf. 
[6]. In the paper the shape parameter values 
calculated for the different levels of wavelet 
approximations of different levels of the envelope 
signals are discussed from the point of view of 
their usefulness to improve the estimation of 
temperature. The wavelet analysis is also used to 
smooth the curve of the shape parameter 
temperature dependence, obtaining more accurate 
tracking of temperature process.  
 The backscattered FR signals had been 
registered during 1 hour of the temperature 
increase from T0=20.6 oC to T1=48.8 oC and 
subsequently temperature decrease from 
T1=48.8 oC to T3= 25.8 oC during next 2 hours. 
The description of the performed experiment and 
short introduction to the wavelet analysis are 
given in Section 2.  
 Then the role of the wavelet applications is 
presented in Section 3. There wavelet method is 
applied in two steps. First, the wavelet 
approximations of signals are the starting point for 
evaluation the shape parameter temperature 
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dependence. It is demonstrated that the use of the 
wavelet approximations allows for better (less 
noisy) estimation of temperature dependence in 
comparison to the case when non-approximation 
signal is used. Secondly, the function describing 
the variation of the shape parameter with 
temperature is decomposed by the wavelet 
decomposition obtaining the approximations and 
the details. The comparison of the calculated 
temperature increase/decrease including the 
wavelet approximations, and the experimentally 
measured temperature changes is done in 
Section 4. 

 
2. Elements of wavelets theory and 

experiment description  

2.1. Wavelets  

The main idea of this method is that any 
function  ts  integrable with the second power 
may be represented in the form  
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where   is a chosen wavelet function,   is the 
corresponding to   scaling function. The set of 
functions  kj,  is constructed as 
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the set  kj,  may be obtained by using the 
additional relations for functions   and   (see, 
e.g. [7]). The value of nj  denotes the level of 
decomposition whose scale coefficients g  and 
detail coefficients h  are calculated for each 
chosen wavelet family.  
 

 
 
 
 
 
 
 

Fig. 1. Reflected ultrasonic impulse and Daubechies 6 

wavelet. 

The Daubechies 6 wavelets family [7] had 
been chosen as analyzing wavelet due to its pre-
defined properties and the special form of the 
function which is similar to the shape of the 
transmitted ultrasonic signal (see Fig. 1). In the 
left image of the Fig. 1 the solid line represents the 

transmitted signal, the dash line represents the 
reflected impulse signal in water, in the right 
image there is Daubechies 6 wavelet function. For 
statistical analysis we use the signal wavelet 
approximation and reconstruction up to 5th level. 
The whole procedure is described in [6], and it 
was also used for the investigation the RF-signals 
in [8-9]. 

2.2. Experiment 

The PVA-C sample was heated in a water bath 
during 1 hour and was cooled by 2 hours. The 
thermostat controlled the linear increase of 
temperature from 20.6oC to 48.8oC during one 
hour. Next the heating was switched off and after 
2 hours temperature of water reached 25.8oC. 
Measurements of RF signals had been carried out 
by means of ultrasound (ULTRASONIX 
SonixTOUCH, British Columbia, Canada) with 
the ultrasonic head (L14-5/38) was placed over the 
sample in the bath. Data were collected at 
frequency of 8 MHz every half minute 
(361 images), details are described in [10]. The 
transmitted pulse comprises 2 periods of the sine 
wave of 0.25 microseconds duration. Ultrasonic 
data, RF echoes have the form of the complex 
analytical signal, which module gives the envelope 
the RF signal that was stored as a 3615011001   
matrix. In calculation this data was limited to 
heated area only what reduced the matrix to the 

361501601   matrix. 

2.3. Statistics 

The K-distribution was chosen as the best 
estimation of the obtained data and according to 
the reults of the Kolmogorov-Smirnov two-way 
test at the significance level of 0.05. 
The probability density function of K-distribution 
depending of two parameters has the form: 
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where x  represents the amplitude of the signal, 
0a and 0b  are scale and shift distribution 

parameters respectively,   is the Euler gamma 
function, and 

1
K  denotes the modified Bessel 

function of the second kind of order 1 . The 
follwing parameter was taken as a esimator of the 
number of scatterers 
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Here the  2xE  and  4xE denotes the second and 
the fourth moments of the signal’s envelope 
amplitude respectively. 
 

3. Wavelet applications 

3.1. Wavelet approximations of signal   

The procedure of pre-transformations 
described in [6] have been performed for the RF 
signal envelopes. Than there had been obtained 
the decomposition with Daubechies 6 wavelets up 
to the 5th level with respect to each image 

360,1,0 t . There were constructed the 

functions  ts
app

 and, which denote the 

approximation and reconstruction, respectively. It 
is important to note that the reconstruction of the 
function  ts

rec
 may be considered as the function 

 ts  because the estimated difference is of the 

order 710 , i.e.  

    710 tsts
rec

. 

Next the shape parameters of K-statistics  t
app,0

  

and  t
rec,0

  were calculated with formula (3) for 

different levels of the wavelet approximation 
 ts

app
 and reconstruction  ts

rec
.  

The dependence  Tt
app

,
,0

  on the time and 

temperature sinultaneously had been discussed 
in [6]. The values  t

app,0
  and  t

rec,0
  are 

examined in order to show that there is more 
precise to investigate the statistical papameters of 
wavelet approximation then the signal envelope 
itself as it was made in [10]. Hence we consider 
the functions  t

app,0
  and  t

rec,0
 , 360,1,0 t  

as the initial data. First the full decomposition 
with Daubechies 6 was made. According to the 
length of each dataset equal to 361, the full 
decomposition consisted of 8 levels as 

98 25123612256  . These decompositions 
are presented in the Figs. 2 - 3. 

The notations the images are as follows: on the 
left s is the original, i.e. the  t

0
  dependence for 

each case, ai are the ith level approximation 
coefficients, i = 1..5. On the right: cfs represent the 
coefficients distribution at all 5 levels 
respectively, and di are the ith level detail 
coefficients, i = 1..5. The approximation and detail 
coefficients form low-pass and high-pass filters 
correspondingly.  
 

 

 

Fig. 2 The full decomposition of the parameter  t
app,0

 .  

Fig. 3 The full decomposition of the parameter  t
rec,0

 . 

The initial function  ts  may be composed from 

the approximation coefficient 
8

a  and detail 

coefficients 
j

d , 8,1 j , by formula (1). Here 

n = 8, so 
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To approximate the parameters 
0

  there was 

chosen the 5th level of decomposition (Figs. 4 - 5). 

 

 

 

 

Fig. 4. The 5th level wavelet approximation for 

 t
app,0

 . 
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Fig. 5. The 5th level wavelet approximation for 

 t
rec,0

 . 

In Figs 4-5 s  denotes the original functions 

 t
app,0

  and  t
rec,0

  and ss  shows their 5th level 

approxiatiom which is called the synthesized 
signal. 

The values of descriptive statistics  t
app,0

  and 

 t
rec,0

  itself, their 5th level approximation and the 

residuals as well as for their normalized values 
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are given below in the tables. There were 
computed and analyzed the following 
characteristics: mean, minimum and maximum 
values, range, standard deviation (SD), mean 

absolute variation (MAV). 
 

Table 1. Statistics on the  t0  and normalized  t0 . 

 Non-normalized  Normalized 

  t
app,0

   trec,0   t
app,0

   trec,0  

Mean  0,357 1,12 0,7909 0,9345 

Maximum  4,509 1,199 1 1 

Minimum  2,835 1,054 0,6287 0,8789 

Range 1,674 0,1452 0,3713 0,1211 

SD 0,364 0,0337 0,0807 0,0281 

MAV 0,289 0,0283 0,0641 0,0236 

Table 2. 5th level approximation 

 Non-normalized Normalized 

  t
app,0

   trec,0   t
app,0

   trec,0  

Mean 3,565 1,12 0,7907 0,7905 

Maximum   4,277 1,176 0,9487 0,9544 

Minimum  3,111 1,07 0,69 0,6799 

Range 1,167 0,1062 0,2588 0,2746 

SD 0,335 0,031 0,0742 0,0745 

MAV 0,2695 0,263 0,0598 0,0622 

 

Table 3. Residuals statistics. 

 Non-normalized Normalized 

  t
app,0

   trec,0   t
app,0

   trec,0  

Mean 0,00084 0,00014 0,00019 0,000115 

Maximum  0,3218 0,04194 0,07137 0,03498 

Minimum  -0,4902 -0,0359 -0,1087 -0,02994 

Range 0,812 0,07784 0,1801 0,06492 

SD 0,1408 0,01362 0,03122 0,01136 

MAV 0,11 0,01109 0,02441 0,009247 

 
From the table 2 it follows that the parameters 
obtained for the wavelet approximations are better 
in the statistical sense, namely, it has less range, 
less variance and less mean absolute variation than 
the same obtained for the reconstructed signal. 

Comparing the properties of the normalized 
signal it occurred that the wavelet approximation 
has less ratios of standard variation to range and 
mean absolute variation to range than the 
reconstructed signal (see table 4). 
Table 4. 

  t
app,0

   trec,0  

SD/Range 0,217 0,232 
MAV/Range 0,173 0,195 

Besides, the residuals also fulfill the same 
relations, i.e. residua of wavelet aproximation has 
less ratios of the stanard variation to the range and 
mean absolute variation to range than the residuals 
of reconstructed signal (see table 5).  
Table 5. 

Residuals  t
app,0

   trec,0  

SD/Range 0,173 0,175 
MAV/Range 0,135 0,195 

3.2 Wavelet approximation of  0 t   

Here the wavelet decomposition of  t
app,0

  

and  t
rec,0

  at th 4th and 5th levels was performed 

and the comparison of the corresponding 
approximation and the temperature changes 
measured experimentally was made. The behavior 
of 

0
  as a function of the time/temperature is 

depicted in Fig. 5.  
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Fig. 5. The trend of the  t
0

   

 
In Fig.5 there the trend of the  t

0
  versus 

variable time variable (minutes) are presented 
calculated for different levels of approximation: 
a)  t

rec,0
  at the 4th approximation level; 

b)  t
app,0

  at the 4th approximation level; 

c)  t
rec,0

  at the 5th approximation level; 

d)  t
app,0

  at the 5th approximation level  

e)  t
rec,0

  at the 6th approximation level; 

f) the experimentally measured temperature 
changes. 

As it is seen from these figures, the  t
app,0

  at 

the 5th level (image d) represents the most correct 
temperature behaviour. This also explains the 
choice of the approximation level in the previous 
part. 

4. Final remarks 

In the first step of wavelet application we 
analyzed the approximations and reconstructions 
of the signal at different levels of wavelet 
decomposition. The successive approximations of 
signal envelopes at different levels are working as 
low-pass filters. That means they “throw away” 
information about the high frequency components 
in the backscattering field, called “details” in the 
wavelet decomposition. The details have the 
ranges of values one or more order of magnitude 
smaller than the range of approximations. In the 
full reconstruction they all are added and it is clear 
that neglecting the details in the signal 
approximation changes the shape of the histogram. 
The value of the shape parameter of K-distribution 
designated for this histogram has been increased. 
The approximation of the signal looks now like 
scattered signal from the ensemble of larger 
number of effective scatterers. The process of 
filtering is stopped on that level of approximation 

in which the approximation is still enough reach to 
design random scattering process. It was 
calculated by the Smirnov-Kolmogorov test that 
starting from the 6th level of approximation we 
lose the opportunity to prove the hypothesis that 
the approximation values are drawn from the K-
distribution. It is a reason that an estimation of the 
whole amplitude the 5th level of wavelet 
approximation is considered. The comparative 
analysis between two different functions of the 
shape parameter temperature dependence have 
been performed. Namely, calculations performed 
on the whole data:  t

rec,0
 , and on the basis of the 

5th level of wavelet approximation  t
app,0

 . The 

statistical analysis of shape parameter time 
dependence underlines the positive role of the 
wavelet filtering, the  t

app,0
  has less range, less 

variance and less mean absolute variation than the 
 t

rec,0
 , so it is less noisy and will be better 

candidate for temperature marker.  
In the second area of the wavelet application 

the full decomposition of the shape parameter of 

K-distribution 0  as a function of time 

(temperature) has been calculated for two cases, 
the transformed signal approximation and the 
reconstructed signal, independently. The trend, 
understand here as 5th level of approximation, of 
the shape parameter time (temperature) 
dependence is more similar to temperature 
changes experimentally measured by the 
thermometer. Besides, the behavior of the detail 
coefficients in the cooling period is significantly 
different in the case 

0
  being decomposition for 

signal 5th level approximation from the cooling 
period, there is no symmetry at all. In the second 
case (the signal 5th level reconstruction) there may 
be noted the symmetry of heating and cooling 
periods, what is in contradiction to the real 
temperature changes.  

Additionally, let us notice, that the time point 
corresponding to the maximal temperature 
measured with thermometer is much more close to 
the maximal value of the  tapp,0  at the 5th level 

than to the maximal values of the  t
rec,0

  at the 

same level. It is due to the next beneficial role of 
the wavelet application. The short wavelength 
contributions (in the wavelet decomposition this 
are details) in the backscattered amplitude 
provides to the fictive translation of the maximal 
temperature position. If they are thrown away, i.e. 
only approximations are used for calculations, the 
shape parameter much better fulfills the role of the 
“acoustical thermometer”. 
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