P N Nay‘rh 1
”]I]-l- & 39th Solid Mechanics Conference H\VM eCri
Zakopane, Poland, September 1-5, 2014 30' 2014 P153

POLSKA AKADEMIA NAUK
DAN COMMITTEE
ON MECHANICS

ON PARALLELIZATION OF THE LOOP OVER ELEMENTS FOR COMPOSITE
SHELL COMPUTATIONS

P. Jarzebski, K. Wisniewski

Institute of Fundamental Technological Research, Warsaw, Poland

1. Introduction

The multi-scale models used in computation of composite shells require a significant
computational power and, therefore, a finite-element code should take advantage of such
techniques as: 1) parallel solvers, e.g. PARDISO, MUMPS, PaStiX, 2) parallelization of
the loop over elements using e.g. OpenMP, and 3) domain decomposition and spreading
tasks over a cluster of computers, using e.g. MPI. A significant programming effort is
needed to convert a large and complicated existing FE code into a parallel one, especially
when implementing the most effective hybrid approach.

In this paper, we focus on parallelization of the loop over elements using OpenMP
standard [2], which we apply to the finite element program FEAP [1]. We shall discuss
basic features of our implementation as well as demonstrate correctness and speed up
ratio of the code. Several numerical examples of shell benchmarks will be presented.

2. Parallelization of the loop over elements

Personal computers have processors with several (2-32) cores, which makes them
shared memory architectures, for which communication is implicit. An appropriate paral-
lelization technique for such architectures is a threading parallelism, which may be based
on the OpenMP standard [2], specifying parallelization in terms of compiler directives,
library routines and environment variables. OpenMP defines the ’fork-join’ parallelism,
because it launches multiple parallel threads (fork) in parallel regions of the code and joins
them into a single thread (the master one) for serial processing in non-parallel regions [3].

To parallelize FEAP, we apply the “parallel do” directive to the loop over elements,
for which OpenMP creates a set of threads and distributes the iterations of the loop
across them for parallel execution. The pivotal question is the choice as to whether a
variable is shared or private. If too many variables are made private then OpenMP has
to make additional and unnecessary work of initialization and copying extra variables for
each thread. On the other hand, for shared variables more critical sections are needed to
synchronize data. The additional difficulty is that FEAP uses many common blocks, and
passes varying data through them. Finally, we have to properly treat critical sections, as
they have a tremendous impact on the speed up ratio. These issues will be discussed in
more detail during the presentation.

3. Pinched hemisphere shell example

Our OMP parallelization of FEAP was tested on the pinched hemispherical shell with
18° hole loaded by two pairs of equal but opposite external forces, applied in the plane
z = 0, along the X and Y axes, so the shell undergoes strong bending, see [4] p. 445.
The geometry of the shell and the load are shown in Figure la. The shell was computed
for two thicknesses, h = 0.4 and h = 0.04 using three different elements. The numerical

228 P. Jarzebski, K. Wisniewski — On Parallelization of the Loop Over Elements...

a) 183 b) 200 T T T T T T T 7
SS HW43 serial I
SS HW43 OMP b
HR14 serial oo X
150 +FHR14 OMP o K .

100

Load

50

0 I 1 I I 1 I I
0 1 2 3 4 5 6 7 8

Inward displacement at force P

Fig. 1. Pinched hemispherical shell. E = 6.825 x 107, v = 0.3: a) initial geometry and load,
b) displacement (—u, X% 100) for serial and parallel version for thin shell.

tests were performed on 1 node of the cluster GRAFEN [6]. One node has two 6-core
processors Xeon X5650 2.66 GHz and 24 GB RAM.

The thick shell (h = 0.4) was computed using our 3D displacement-type 8-node solid
element using 10 elements through the shell thickness. The mesh consisted of 316 x316 x 10
elements (about 3.3 millions unknowns). The results for computation of a tangent matrix
and a residual vector for a linear problem are given in Table 1, and we see a good speed
up ratio with the number of threads.

Table 1. Time of computation and speed up ratio for thick shell.

. . OMP, number of threads
Version Serial
1 2 4 6 8 10 12
Time [secs| 52.48 | 53.61 | 27.08 | 13.63 | 9.45 | 7.11 | 5.68 4.79
Speed up ratio 0.98 1 1.98 3.93 | 5.67 | 7.54 | 9.44 | 11.19

The thin shell (h = 0.04) was computed using two non-linear elements: our solid shell
element HW43 as well as the shell element with 2 rotational dofs of FEAP [5] (which we
denote HR14), to demonstrate that the user as well as the FEAP elements are operational
in the parallel version. The Newton method was used The results of nonlinear analyses
are given in Fig. 1b, and we see that both versions, the serial and the parallel one, give
exactly the same results. This indicates that our implementation of the OpenMP standard
in FEAP is correct indeed.

References

1. Taylor R.L. (2013). FEAP 8.3, http://www.ce.berkeley.edu/projects/feap.

2. OpenMP Architecture Review Board, OpenMP Application Program Interface (2013).
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf.

3. Pantale O. (2005), Parallelization of an object-oriented FEM dynamics code: influence of the strategies
on the Speedup, Advances in Engineering Software, 361-373.

4. Wisniewski K. (2010). Finite Rotation Shells, Springer.

5. Simo J.C., Tarnow N. (1992). On a stress resultant geometrically exact shell model. Part VI 5/6 dof
treatments, Int. J. Numerical Methods in Engineering, 34, 117-164.

6. GRAFEN, http://info.grafen.ippt.pan.pl/

