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ABSTRACT:

In this paper, we derived the corrected shape functions for 6-node triangular element using the

concept proposed in (Celia & Gray 1984). These shape functions were implemented in the two-dimensional
6-node triangular element for heat conduction as a replacement of the isoparametric ones. The numerical tests
indicate that, for distorted meshes, the new element is more accurate than the standard element. Comparisons of
the accuracy of a range of triangular and quadrilateral elements also are provided.

I INTRODUCTION

The corrected shape functions were proposed in
(Celia & Gray 1984) as a generalization of the standard
concept of isoparametric elements. They were derived
and tested for an 8-node (serendipity) quadrilateral ele-
ment for the heat conduction equation integrated by the
4 x 4 rule.

The corrected shape functions have been proven
useful also in plane elasticity problems solved by
9-node elements based on two-level interpolations of
strain (AS and MITC elements). It was shown in
(Wisniewski & Panasz 2013) that, besides the mod-
ified transformations, the corrected shape function
were one of the essential improvements of the MITC9
element, which enabled passing the patch test for some
irregular meshes. In (Panasz, Wisniewski, & Turska
2013), it was shown that several well known formu-
lations of nine-node elements for plane elasticity can
benefit from using the corrected shape functions.

In the current paper, we extend the range of applica-
tions of the concept of the corrected shape functions of
(Celia & Gray 1984) to the six-node triangular element
for heat conduction, which requires

1. generalization of the concept of the corrected shape
functions to the six-node triangular element, which
is formulated in terms of the area (barycentric)
coordinates. This is not so natural as in the case
of quadrilaterals, for which the natural coordinates
are used.

2. implementation of the corrected shape functions in
the six-node element and passing it through a range
of tests involving several types of mesh distortions.
The purpose is to confirm passing the patch test,
and to show their improved accuracy and reduced
sensitivity to mesh distortions.
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2 CORRECTED SHAPE FUNCTIONS

2.1 Corrected shape functions for one dimensional
element

Let us first present the corrected shape functions for
a one-dimensional three-node element. The standard
isoparametric shape functions of such an element are

Ne = [(1-8)(1-2¢), 40 =€), £26-1)], (1)

where the coordinate & € [0, 1]. If in derivation of these
functions a parameter « is used as a coordinate of
the middle node instead of zero, then we obtain the
corrected shape functions

R =[-8 -2 +20) 4(1-8) §EE-2-1)
iy 1+2a '1—4a? '’ 1-2a
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where the parameter & € (—1, +1) describes the posi-
tion of the middle node in the natural coordinates.
In other words, « is a shift of the middle node from
E= % ,and it can be calculated using distances of nodes
in the physical space. For « =0, the corrected shape
functions reduce to the standard ones.

2.2 Standard shape functions for six-node element

The standard shape functions for the six-node element
are as follows:

Ni(&,n) =& —C—mn), Na(€,m) =n(n—E—C),
N3(€,m) =C(C—n—E€), Ny(&,m) =46, 3)
‘?\"5(637?) = 47;‘(9 Nﬂ(.E'. 7?) = 4&‘;‘

where { = 1 — £ — n and the area (barycentric) coordi-
nates £, 1, £ € [0, 1]. The nodes are numbered as shown



Figure 1. Six-node element. Numbering of nodes and
positive values of distortion parameters a, 8, y.

in Fig. 1, where 1, 2, 3 are the corner nodes, and 4, 3,
6 designate the side nodes.

2.3 Corrected shape functions for six-node element

For the six-node element, the shifts of the side
nodes are described by 3 scalar parameters, a, .y €
(— 2,+ 1), see Fig.1. The corrected shape functions of
the 6—node element (obtained in an analogous way to
these for the one-dimensional element) are defined as
follows:
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When the parameters «, §, y are set to zero then the
standard shape functions of eq. (3) are recovered.

The procedure of determining a, f, y is as follows.
Let us determine « for the side curve 1-4-2 given in the
parametric form X(§)=N; - [X}, X, X3] and Y(§) =
Ne - [Y1, Y4, V2], where N is defined in eq. (2). The
fractional distance of node 4 relative to nodes 1 and 2
(along the boundary curve) is required to be identical
in the physical space and in the local space,

L]-’Z'HJ ﬁ}i,’2+t‘t d£

) (5)
L Jo dé
where the arc-length of the curve in the physical

space is

A
La_?‘ﬁ/u VI

and 4 €[0,1]. Eq. (5) can be transformed to a sin-
gle non-linear equation in « and solved using e.g. the
Newton method. The initial value of « is selected as
described in (Wisniewski & Panasz 2013).

dX /d€)? + (dY /de)* de, 6)

3 NUMERICAL TESTS

In this section, we present numerical tests of the two-
dimensional 6-node triangular element for the heat
conduction equation, in which the corrected shape
functions described in Sect. 2 are implemented. The
tested triangular elements are designated as follows:

1. “6” — 6-node, standard quadratic shape functions,
3-point Gauss integration,

2. “6¢” - 6-node, corrected quadratic shape functions,
3-point Gauss integration,

3. “3” — 3-node, standard linear shape functions,
1-point Gauss integration,

The new element is designated by “6¢”. For refer-
ence, we also use the triangular elements of ABAQUS
(Simulia 2010) and FEAP (Taylor 2010). The mesh for
3-node elements is obtained by dividing each 6-node
element into four 3-node elements and uses the same
nodes. Note that four “3” elements use more Gauss
points than one “6” or “6¢” element!

Besides, we provide results obtained by the quadri-
lateral elements for the heat conduction equation:

“8CG” and “8CGc” — the 8-node quadrilateral ele-
ments of (Celia & Gray 1984), which are based
either on the standard or the corrected quadratic
shape functions, respectively. 4 x 4 Gauss integra-
tion.

2. “8” and “8¢” — our implementation of the above
described elements “8CG™ and “8CGc” but written
in double precision instead of the single precision
used in the cited paper.

3. “9” and “9c¢” — our 9-node quadrilateral elements,
which are based either on the standard shape func-
tions or the corrected shape functions, respectively.
3 x 3 Gauss integration.

4. “4” — our bilinear 4-node quadrilateral element.
2 x 2 Gauss integration.

Note that the elements based on the corrected shape
functions are designated by the appended “¢”

We tacitly assume that any consistent set of units
can be used for the data in the numerical examples. In
all tests, the thickness s = 1.

3.1 Eigenvalues of single element

The eigenvalues of a tangent matrix of a single element
are checked. The boundary conditions are not imposed
and the thermal conductivity k = 10 is used.

Two geometries are considered: (1) the equilateral
triangle with regularly placed side nodes, and (2) the
irregular shape obtained by shifting the vertex A of the
triangle by the vector d =[0.25,0.25], which implies
different element’s shapes for the standard and the
corrected shape functions, see Fig. 2.

All the tested elements have a correct number of
zero eigenvalues (1) for the standard and the corrected
shape functions.
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Figure 2.
dinates of nodes imply different shapes of the element for:
a) standard shape functions, b) corrected shape functions.

Eigenvalues of single element. The same coor-
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Figure3. Eigenvaluesofsingle element. Shapes of distorted

element with coordinates specified by eq. (7): a) standard
shape functions, b) corrected shape functions.

Remark. We have checked that the 3-point Gauss inte-
gration does not yield negative eigenvalues regardless
of the positions of nodes, neither for the standard nor
the corrected shape functions. However, the 6-point
integration and the standard shape functions, which are
used e.g. by the DC2D6 element of ABAQUS, yield a
negative eigenvalue, for instance, for the nodes shown
in Fig. 3, and having the following coordinates:

{(0,0), (10,0), (10,10), (3.6,1.4), (11.4,3.6), (6.4.5)}, (7)

We see that a negative area at the vertex A appears
for the standard shape functions but not for the cor-
rected ones. Clearly, the elimination of the negative
arearemoves the negative eigenvalue. The 7-point inte-
gration rule, which is used e.g. by FEAP, also does not
yield a negative eigenvalue in this case.

3.2 Patch test

The concept of a patch test was proposed by (Irons
1966) and it is remains of crucial importance for
finite elements, see (Zienkiewicz, Taylor, & Zhu 2005,
p. 329). For heat conduction elements, it verifies that a
patch of irregular elements is able to reproduce exactly
the linear temperature field. We used the ten-element
patch shown in Fig. 4; the same patch is used e.g.
in ABAQUS (Simulia 2010). The temperature field is
defined in two ways:

1. Linear temperature field in two directions,

T(z,y) = 200z + 100y. (8)
2. Parabolic temperature field in one direction,

: 25
T(x) = 200z + E:J:(E} — 25z), (9)
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Figure 5. Ten-element patch test. Linear and parabolic
temperature fields, egs. (8) for y =0, and (9).

Figure 6. Ten-element patch test. Shifted nodes to obtain
distorted meshes,

obtained by adding a parabolic function with the
maximum equal to 1 to the linear field 200x, see Fig. 5.

The values of temperature calculated by the above
formulae are imposed at the external nodes (1,...,8)
while at the internal nodes (9,...,25) we check the com-
puted values; they must agree with these yielded by
either eq. (8) or (9). The thermal conductivity k = 1.0.

Typically, this test is performed for the regular mesh
of Fig. 4, but we also check 2 cases of distorted meshes,
with the side nodes 21.,...,25 shifted as follows: (1) in
the directions along the sides, and (2) in an arbitrary
direction, see Fig. 6. The positions of the shifted nodes
are independently randomly generated 1000 times and
a run is performed for each distorted mesh in order
to preclude passing this test accidently for a particular
combination of shifts. The shift of the node is a pseudo-
random real number generated in the range [—r,r],
where » = 0.008.



Table 1.  Patch test. Maximum relative error of eq. (10) (%).

Element Regular mesh Distorted mesh, shift:
along the side  arbitrary
Linear temperature of eq. (8)
3,6, 6¢c 0 0
4,8,8,9,9% 0 0 0
Parabolic temperature of eq. (9)
3 3.28897 3.37994 3.46666
6 2.22257 2.24071 2.26558
6c 2.22257 222351 2.24721
8 1.46792 1.75862 1.78442
8¢ 1.46792 1.46792 1.63673
9 2.05298 2.08153 2.10083
9c 2.05298 2.05298 2.05719
4 339125 3.39847 3.42160

First, for each run, we compute the max-norm in
R" for each component over the internal nodes /.
This norm is defined as 7' = || 7'|| . = max | T;|, where
max | 77| =max T; as T; > 0. Next, the relative error
for a particular run is computed using this norm and the
analytical solution 7, obtained by eq. (8) or eq. (9).
The final formula for the error is as follows

Z108 uur.L_T
eima.ij—.,(g—lx 100% > 0,

(10)
where the maximum is computed over all runs. The
results are presented in Table 1, and we see that

1. for the linear temperature field, all the tested ele-
ments yield zero errors, which means that they
pass the patch test also for shifted nodes. Note
that this result differs from that obtained for the
9-node elements based on the two-level interpola-
tion schemes, i.e. MITC9i in (Wisniewski & Panasz
2013) and the other 9-node elements in (Panasz,
Wisniewski, & Turska 2013).

2. for the parabolic temperature field, all the tested
6-node elements yield nonzero errors for shifted
nodes, which means that they fail this test. How-
ever, the element with the corrected shape functions
*6¢” is more accurate in all cases than the standard
element “6”. Besides, the shifts along the edge yield
smaller errors than the shifts in arbitrary directions,

3.3 Radial conduction problem

In this problem, temperature varies only with the radial
coordinate r and the effect of shifting the side nodes of
triangular elements in the radial direction is examined.

The finite element mesh and the boundary condi-
tions are shown in Fig. 7, where the inner radius r; = |,
the outer radius », =256, and Ary = 63.75. The val-
ues of temperature prescribed at the inner and the
outer boundary are 7; =r; and 7, =r,, respectively.
The thermal conductivity k = 1. The analytic solution

Tary

Figure 7. Radial conduction problem. Finite element mesh
and boundary conditions. Positive direction of shift d is
shown.

o i 100 150 200 "
Figure 8. Radial conduction, Analytic solution of eq. (11).
a
a) = b) =
T —d-—b

Figure 9. Radial conduction. Two positions of ‘central’
node: (a) at the middle of a diagonal, (b) at the middle of
an arc.

is as follows:
T;In(%) +T,,111(1-_’-l)

Tﬂna = R
In(2)

(11

see (Carslaw & Jaeger 1989, p. 189). It is plotted in
Fig. 8 and we see that it is highly nonlinear.

This problem is solved in (Celia & Gray 1984) using
the 8-node elements based on the standard and the
corrected shape functions and 4 x 4 Gauss integra-
tion. We divide each of the 8-node elements into two
6-node triangular elements, and locate the additional
‘central” nodes (1....,4) either at the middle of a diag-
onal (position A) or at the middle of an arc (position
B), see Fig. 9. Positions of the ‘central’ nodes are fixed
when the side-nodes are shifted.

The distorted meshes are obtained by shifting the
side-nodes of the triangles in the radial direction by
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Figure 10. Radial conduction. Error for triangular elements.
‘Central’ nodes A.
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Figure 11. Radial conduction. Error fortriangular elements.
‘Central’ nodes B.

d €[—0.3,0.3]. Totally, 61 meshes are used, for the
values of d differing by 0.01. The solution error is
calculated as in (Celia & Gray 1984),

e(d) = {i— / (Tuna — T(d)]2d-r}m >0,  (12)

where T'(d) is the FE solution for a distorted mesh.

The plots of errors for triangular elements as func-
tions of ¢, for both positions of the ‘central’ nodes, are
presented in Figs. 10 and 11, while for quadrilateral
elements in Figs. 12 and 13.

Besides, the average logarithmic error log,, e(d)
computed over the whole range of d € [-0.25,0.25]
is presented in Table 2. The range of d is narrowed to
compare to the results of (Celia & Gray 1984), Fig. 7,
which go to infinity for larger values of d.

The results obtained can be summarized as follows:

1. The triangular 6-node elements based on the cor-
rected shape functions are practically insensitive to
distortions, as the error remains constant regard-
less of d. They do not fail for large distortions
(|d| > 0.3) differently than the elements based on
the standard shape functions. Similarly behave 8-
and 9-node elements using the corrected shape
functions.
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Figure 12. Radial conduction. Error for quadrilateral ele-
ments. ‘Central’ nodes A.
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Figure 13. Radial conduction. Error for quadrilateral ele-
ments. ‘Central’ nodes B.

Table 2. Radial conduction. Logarithmic average error
log,, e ford € [-0.25,0.25].

Position of *central’ node

Element A B

6 2.13418 2.12711
6c 2.11904 2.12036
3 2.11574 2.10940
8 1.31058 1.31058
8¢ 1.32478 1.32478
BCG 1.20758 1.20758
8CGe 1.322 1.322

9 -l 1.41295
9c 1.32476 1.32476
4 1.9542% 1.96812

"Negative Jacobian at Gauss point encountered
2For “4” error was computed for d € (—0.20,0.25]

2. The order of average errors for triangular elements
is almost 1 order higher than for quadrilateral ele-
ments, which can be linked to the number of Gauss
points; only 3 in the case of 6-node triangles and 16
in the case of 8-node quadrilaterals of (Celia & Gray
1984) and 9 in the case of ours 9-node elements.
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Figure 14. Angular conduction. Finite element mesh and
boundary conditions.

3. The level of errors shown by all triangular ele-
ments is similar, although small differences can be
noticed, and “6¢” is more accurate than “6”. The
difference between the results for both positions of
the ‘central’ nodes is small,

4. A very strong sensitivity of the quadrilateral ele-
ment based on the standard shape functions of
(Celia & Gray 1984) to distortions is not shown
by our 8- and 9-node elements; compare the curves
“8CG”, “8” and “9" in Figs. 12 and 13. It is likely
that this sensitivity of “8CG” is caused by the single
precision used in calculations.

3.4  Angular conduction problem

In this example temperature varies with the angle #
and the effect of shifting of the side nodes of triangular
elements is examined.

The finite element mesh and the boundary con-
ditions are shown in Fig. 14; the temperate values
are prescribed only at the straight edges. The thermal
conductivity k= 1.

This problem is solved in (Celia & Gray 1984) using
the 8-node elements based on the standard and the
corrected shape functionsand 4 x 4 Gauss integration.
We divide each of the 8-node elements into two 6-node
triangular elements and locate the additional node at
the middle of a diagonal.

To change positions of side nodes of the triangular
elements, we perturb either (a) the radial coordinates
rgi, or (b) the angular coordinates of the inner and outer
boundaries, 6; and 6,, respectively, see Fig. 14.

The solution error is defined as follows:

- 1f2
e(d) = (%Zeiw) 20, ex(d) = Tana — Th(d), (13)
k

where Ti(d) is the FE solution at node & and # is the
number of nodes where temperature is computed. The
analytic solution is

20

Tanu:(TU_'Tl):r'_i'Tla ﬂiﬂég, (14)

1.5

0.5

0 L I 1
0 0.5 1 15

Figure 15. Angular conduction. Analytic solution of
eq. (14).

Loge

0.3 T 01 [
Distortion

Figure 16. Angular conduction. Error for triangular ele-
ments. Distortion 1.

see Fig. 15. Two cases of mesh distortions are tested:

1. The radial coordinates are changed as follows:
Tsis¥s3, Fss =d and ry, o4 = —d, i.e. identically but
in opposite directions. The angular coordinates 0,
and 6; remain unchanged.

2. The angular coordinates are changed as follows:
Af, =d and A6; = —d, where the nodes at 6, are
moved clockwise and those at §; counterclockwise.
The radial coordinates ry; are unchanged.

The plots of errors for triangular elements as func-
tions of d are shown in Figs. 16 and 17, while for
quadrilateral elements in Figs. 18 and 19. The log-
arithmic average error log, e(d) computed over the
whole range of distortions is presented in Table 3.
The results obtained can be concluded as follows:

1. The triangular 6-node elements based on the cor-
rected shape functions are insensitive to distortions.
They do not fail for large distortions (|d| > 0.3) dif-
ferently from the elements based on the standard
shape functions. This is similar to the behavior of
8- and 9-node elements using the corrected shape
functions.
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Figure 17. Angular conduction. Error for triangular
elements, Distortion 2.

Loge

c5oBBR.
¢ bents

e —— P e B e ey e e ]
03 02 a1 01 02 03

)
Distortion

Figure 18. Angular conduction. Error for quadrilateral
elements. Distortion 1.
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Figure 19. Angular conduction. Error for quadrilateral
elements. Distortion 2,

2. Comparing the level of errors for triangular ele-
ments we see that “6¢” is always more accurate than
“6”. The average errors for triangular elements are
always higher than for quadrilateral elements, and
for the distortions 1 the difference is about 7 orders!

3. Our 8- and 9-node elements are not so strongly
sensitive to distortions as the quadrilateral element
based on the standard shape functions of (Celia &
Gray 1984); compare the elements “8”, “9” and
“8CG” in Fig. 18. Besides, the error for “8CGc” of
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Table 3. Angular conduction. Logarithmic average error
log,g e(d).

Distortion cases

Element 1 2

6 —1.71925 —2.07996
6c —2.56305 —2.62282
3 —1.56278 —2.15933
8 —1.56620 —1.96007
8¢ —9.76461 —3.24304
8CG —1.52027 —2.31170
8CGe —4.10353 —3.15025
9 —2.90955 —1.95100
9¢ —9,72801 —3.28543
4 —2.42641 —2.06517
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Figure 20. Two-dimensional conduction. Mesh and bound-
ary conditions.

(Celia & Gray 1984) and our “8¢” also is very dif-
ferent, which is probably caused by the difference
in the precision of calculations, single in the cited
paper and double in ours,

3.5 Two-dimensional conduction problem

In this test the analyzed area is rectangular and the
effect of shifting the central node A is examined.
The finite element mesh and the boundary conditions
are shown in Fig. 20, the thermal conductivity k = 1.
The exact solution is
Tona(a,y) = 100 22200) Sin(ig)
sinh 7

; (15)
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Figure 21.
eq. (15).

Two-dimensional conduction. Exact solution of

Table 4. Two-dimensional conduc-
tion. Comparison of our triangular
elements and the control volume ele-
ments of (Charoensuk & Vessakosol
2010). Non-distorted mesh.

Element Error (%)
6c 1.016
6v 1.074
3 4.235
3v 4.235

see Fig. 21. The average error of the temperature field
is calculated as follows:

Tana — T(d)
Tﬂ T

1 n

e(d) = —Z

x 100%,
na

(16)

where T(d) is the FE solution and # is the number of
nodes.

The errors for the regular non-distorted mesh for
our “6¢” and “3” elements and the control volume ele-
ments “6v” and “3v” of (Charoensuk & Vessakosol
2010) are shown in Table 4.

The distorted mesh is obtained for two types of
shifts of the central node A: (1) along the diagonal
and (2) perpendicularly to the diagonal. The plots of
errors as a function of d € (—0.1, +0.1) for triangu-
lar elements are shown in Figs. 22 and 23 while for
quadrilateral elements in Figs. 24 and 25. The error of
eq. (16) for triangular and quadrilateral elements and
both distorted meshes is given in Table 5.

The obtained results lead us to the following con-
clusions:

1. The triangular 6-node element based on the cor-
rected shape functions “6¢” is more accurate than
the element based on the standard shape func-
tions “6”.

e (%)

0.05 a1

01 0.08 o
Distortion

Figure 22. Two-dimensional conduction. Error for triangu-
lar elements. Shift of node A along the diagonal.
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o A " i
0.1 008 0
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Figure 23. Two-dimensional conduction. Error for triangu-
lar elements. Shift perpendicular to the diagonal.
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+ Hid
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Figure 24. Two-dimensional conduction. Error for quadri-
lateral elements. Shift of node A along the diagonal.

2. For the non-distorted mesh, our element “6¢” is
slightly more accurate than the control volume ele-
ment “6v”, while the 3-node elements “*3” and *“3v”
have an identical accuracy, also nodewise. For the
distorted mesh, the average errors for triangular
elements are higher than for quadrilateral 9-node
elements and lower than for 8-node elements.

3. The 9-node elements are more accurate than
8-node elements despite fewer Gauss points,
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Figure 25. Two-dimensional conduction. Error for quadri-
lateral elements. Shift perpendicular to the diagonal.

Table 5. Two-dimensional conduction. Error (%) for
triangular and quadrilateral elements. Distorted mesh.

Distortion. Shift of A:

Elements along diagonal perpendicular to diagonal
6 2.66181 1.76076
6c 1.55317 1.71238
4.53207 4.89751
8 2.81351 2.37502
8¢ 2.50368 1.94347
9 0.75438 0.57428
9c 0.94083 0.89630
4 4.79235 4.62029

however, the corrected shape functions are not ben-
eficial for them and the error defined by eq. (16)
of “9¢” is bigger than of “9”.

4 FINAL REMARKS

In the current paper, the corrected shape functions
were formulated in terms of the area (barycentric)
coordinates and used, instead of the standard isopara-
metric ones, in the two-dimensional six-node element
for heat conduction. The basic features of the new
element are as follows:

1. it has a correct number of zero eigenvalues (1) for
regular and distorted meshes. The element shapes
implied by the corrected shape functions are more
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regular than these by the standard shape functions,
so the negative areas are less likely to appear.
The 3-point Gauss integration suffices to ensure
nonnegative eigenvalues.

2. it passes the patch test for the linear tempera-
ture field for regular and distorted meshes. For
the parabolic temperature field, the new element
is more accurate than the element based on the
standard shape functions.

The new element was subjected to the tests includ-
ing the radial, angular and two-dimensional conduc-
tion and its accuracy was compared to several other
triangular and quadrilateral elements for various mesh
distortions; the detailed conclusions are given in Sects.
3.3-3.5. Generally, we can say that the new element
is more accurate and less sensitive to mesh distor-
tions than the standard one. Hence, the corrected shape
functions are worthwhile implementing,
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