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1. Introduction 
      Dynamics of micro-particles in water-based 
fluids and macroscopic properties of such dispersive 
systems are of fundamental importance for
numerous biological and industrial applications [1-7].
Typically, for such systems fluid inertia is
irrelevant, and the mechanisms of locomotion as 
well as basic features of the particle dynamics differ 
significantly from those valid at the macroscopic
scale.      Fluid motion at the micro-scale usually satisfies
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the stationary Stokes equations, which have to be supplemented by appropriate 
boundary conditions at the particle surfaces and at the interfaces, which 
confine the fluid [6, 7, 8]. Efficient and accurate methods of solving these 
equations are necessary to investigate Stokesian dynamics of micro-particles 
and to determine structure and effective transport properties of dispersive 
systems. For spherical non-deformable micro-particles, the method of interest 
is the spherical-multipole expansion, corrected for lubrication [9, 10]. Its 
main advantage is the high accuracy, which is controlled by the choice of the 
multipole order of the truncation. Moreover, the method has been 
implemented numerically, and the HYDROMULTIPOLE codes have been 
extensively tested and applied to many physical systems, with various types 
of particles and interfaces confining the fluid.  
 In this paper, an outline of the spherical-multipole expansion applied to 
the stationary Stokes equations is given, based on the algorithm developed by 
Cichocki, Felderhof, Jones, Schmitz and collaborators. In Sec. 2, geometry of 
the system is specified, as well as boundary conditions at the particle surfaces 
and at the interfaces, which confine the fluid. The generalized friction and 
mobility problems for the particles are formulated. The Stokes problem for 
the fluid flow is transformed into a set of boundary integral equations for the 
force density at the particle surfaces. In Sec. 3, these equations are solved by 
projecting onto a complete set of multipole functions, and truncating at a 
certain multipole order L, with the details explained in the Appendices. For 
close particles in relative motion, the multipole expansion is slowly convergent 
with the increasing L. Therefore in Sec. 4, the multipole expansion is corrected 
for lubrication and some estimates of the precision are given. In Sec. 5, 
modifications needed to describe motion of particle conglomerates are pointed 
out. Finally, Sec. 6 contains examples of applications. 
 
2. Fluid, particles and boundaries 
 Consider N particles immersed in a viscous fluid. Assume that the 
particles are non-deformable. Imagine that external (non-hydrodynamic) 
forces Fi and torques Ti are applied to each particle i = 1, ..., N, and there 
exist an ambient fluid flow v∞ (r). Each particle i = 1, ..., N has a spherical 
shape of radius ai, and moves with a translational and rotational velocity, Ui 
and Ωi. The resulting fluid flow is characterized by a very small Reynolds 
number Re ≪ 1 and the fluid inertia effects are negligible [6, 7]. Here Re is the 
product of a particle velocity and its radius, divided by the fluid kinematic 
viscosity. The Stokes number Sk is also much smaller than unity and the 
particle inertia is also irrelevant. Here Sk is the product of the particle velocity, 
its radius, and the larger of the particle and the fluid densities, divided by the 
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fluid dynamic viscosity [11]. The Peclet number is large, Pe≫1, and the 
Brownian motion is irrelevant [1]. Here Pe is the product of a particle velocity 
and its radius, divided by the diffusion constant. Moreover, the Strouhal 
number St is not much larger than unity, and the fluid flow is stationary [3]. 
Here St is the ratio of the characteristic frequency of the fluid velocity 
variations and the fluid velocity, multiplied by the characteristic dimension. 
 For such a system, the hydrodynamic friction forces and torques exerted 
by the moving particles on the fluid are equal to the external forces Fi and 
torques Ti imposed on the particles. In the generalized friction problem, the 
question is what are Fi and Ti, if the particle translational Uj and rotational Ωj 
velocities and the ambient flow v∞ (r) are given. In the generalized mobility 
problem, Fi, Ti and v∞ (r) are known while Uj and Ωj are searched for. 
Solving one of these problems (or a mixed one) corresponds to evaluation of 
hydrodynamic interactions between the particles. 
 In this paper, it will be outlined how to apply the spherical-multipole 
method to solve the generalized friction and mobility problems [9, 10] and 
evaluate the fluid flow. 
 
2.1. Basic equations for the fluid flow 
 For the system specified above, the fluid velocity v and pressure p satisfy 
the stationary Stokes equations [6, 7], 
 
η∇2v −∇p = 0,            (1) 
 
∇· v = 0,                (2) 
 
where η is the fluid dynamic viscosity. The above set of partial differential 
equations has to be supplemented by the corresponding boundary conditions 
at the surface Si of each spherical particle i = 1, ..., N, and at the interfaces, 
which confine the fluid.  
 The ambient-flow velocity v∞ and pressure p∞ satisfy the Stokes 
equations (1) in the absence of particles. When the group of N particles is 
immersed, it affects the surrounding fluid, but there is no change far away 
from the particles. For an unbounded fluid, the corresponding boundary 
condition at infinity reads,  
 
v(r) − v∞ (r) → 0,     for |r| → ∞.           (3) 
 
 For a confined fluid, both the ambient and the actual flows, v∞ (r) and 
v(r), have to satisfy the proper boundary conditions at the interfaces. The 
multipole method has been developed and applied for various geometries: 3D 
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or 2D-periodic boundary conditions [12-18] and for a fluid limited by one 
[19] or two parallel flat interfaces [20]. Such an interface may be a hard 
(solid) wall [21, 22], a free surface [23, 24], or a fluid-fluid boundary, with or 
without a surfactant [25, 26]. 
 These boundary conditions are explicitly listed in the next section. All of 
them can be also applied at the particle surfaces, and the multipole method 
has been developed to describe non-deformable spherical particles made of 
solid, fluid or gas, with the clean surface or covered with a surfactant [27-29]. 
For clarity of presentation of the basic concepts, this paper is mainly focused 
on solid particles and the stick boundary conditions on their surfaces, 
 
v(r) = wi(r) ≡ Ui + Ωi × (r − Ri),     for r ∈Si,       i = 1, ..., N,                      (4) 
 
where Ri stands for the position of the center of particle i. Modifications 
needed to describe hydrodynamic interactions between other types of 
particles and interfaces will be mentioned; the full treatment can be found 
e.g. in Refs. [27-29]. 
 
2.2. Boundary conditions 
 The multipole method has been developed for the following boundary 
conditions at the surface I confining the fluid and at the particle surfaces              
Si, i = 1...N.  
 If the fluid is in contact with a smooth solid surface, the stick (or no-slip) 
boundary conditions apply. The fluid velocity at the surface Si of a solid 
spherical particle i is equal to its rigid velocity, v(r) = wi (r), as in Eq. (4). If 
the fluid in a half-space z > 0 is limited at z = 0 by a flat surface I, which is 
the motionless hard wall, the stick boundary conditions at I have the form, 
 
v(r) = 0,     for r = (x, y, 0).          (5) 
 
 The above model can be generalized, allowing for a slip at the boundary. 
The mixed stick-slip boundary conditions at the particle i have the form [30], 
 
ni · v(r)  =  ni · wi(r),   for   r ∈Si,          (6) 
 

ti · (v(r) − wi(r)) = (λi/η) ti · σ(r) · ni,  for   r ∈Si,        (7) 
 
where ni = (r − Ri)/|r − Ri| and ti are the unit vectors normal and tangential to 
the particle surface Si. The first condition, Eq. (6), expresses the fact that no 
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fluid passes through the spherical surface. The second one, Eq. (7), states that 
the tangential component of the force exerted by the fluid on the unit surface of 
the sphere is proportional to the slip of the local tangential velocity, i.e. to the 
difference between the fluid-flow and the particle-surface velocities. The 
Cartesian components of the fluid stress tensors σ are given by the relation, 
 

( ) .pαβ α β β α αβσ η δ= ∂ + ∂ −υ υ           (8) 
 
 The value of the slip parameter λi = 0 in Eq. (7) corresponds to the stick 
boundary conditions, the value λi = ∞  to the perfect slip. 
 We consider now the boundary conditions at an interface between two 
fluids with different viscosities [3]. We assume that the interface is not 
deformable owing to a very high surface tension. 
 The spherical surface of a droplet with an internal viscosity η′ different 
from the viscosity of the host fluid η is described by the condition that the 
normal components of the flows v(r) and v′(r) outside and inside the droplet 
are the same and equal to the normal component of the droplet velocity Ui, 
 
ni · v(r) = ni · Ui, for r ∈Si,          (9) 
 
ni · v′(r) = ni · Ui, for r ∈ Si.        (10) 
 
 This condition expresses the fact that no fluid passes through the droplet 
non-deformable surface. Moreover, the tangential velocity and tangential 
stress are continuous, 
 
ti · v(r) = ti · v′(r),   for   r ∈Si,        (11) 
 
ti · σ (r) · ni = ti · σ′(r) · ni,   for   r ∈ Si,       (12) 
 
where the Cartesian components of the fluid stress tensors σ′ inside the 
droplet are given by 
 

( ) .pαβ α β β α αβσ η δ′ ′ ′ ′ ′= ∂ + ∂ −υ υ         (13) 
 
 Notice that the rotational velocity Ω is not a relevant variable in the 
description of the droplet motion, and it has to be excluded from the friction 
and mobility problems, formulated in Sec. 2.3. 
 The boundary conditions at the droplet surface can be easily modified to 
describe a flat fluid-fluid interface at z = 0, when the fluid in a half-space       
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z > 0 has the viscosity η, and the fluid on the other side of the interface has 
the viscosity η′,  
 
n · v(r) = n · v′(r) = 0,     for r = (x, y, 0),      (14) 
 
t · v(r) = t · v′(r),    for r = (x, y, 0),       (15) 
 
t · σ (r) · n = t · σ′(r) · n,    for r = (x, y, 0).       (16) 
 
where v(r) and v′(r) are the flows on the z > 0 and z < 0 sides of the 
interface.  
 For a fluid-fluid interface covered with an incompressible surfactant the 
tangential stress continuity relations (12) and (16) are replaced by the 
condition that the flow along the interface is incompressible, 
 
∇s · vs=0,          (17) 
 
where ∇s is the gradient operator along the interface and vs is the tangential 
component of the flow velocity. 
 It is of special interest to consider a gas-liquid interface (free surface). 
The corresponding boundary conditions can be obtained form those specified 
above in the limit η′ = 0. Across a free surface between a gas and a liquid, 
there is no liquid flow and the tangential stress is equal to zero at the 
interface. For a bubble,  
 
ni · v(r) = ni ·Ui,    for r ∈Si,       (18) 
 
ti · σ (r) · ni = 0,    for r ∈ Si        (19) 
 
 For a fluid in a half-space z > 0, limited by a flat free surface at z = 0, the 
free boundary conditions have the form, 
 
n · v(r) = 0,    for r = (x, y, 0),        (20) 
 
t · σ (r) · n = 0,    for r = (x, y, 0).       (21) 
 
2.3. Friction and mobility of the particles 
 Alternatively to the boundary conditions for the (unknown) fluid 
velocity, the effect of the suspended particles on the surrounding fluid can be 
also described in terms of the distribution of the (unknown) induced forces           
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f = (f1, ..., fN), exerted by the particles on the fluid [30-32]. For the stick 
boundary conditions, fi (r) = −δ(|r − Ri| − ai) σ (r) · n, where σ is the stress 
tensor and n is the unit vector normal to the particle surface, pointing into the 
fluid. The subsequent moments (integrals) of the force density are the forces 
Fi, torques Ti, stresslets Si exerted by the sphere i on the fluid, 
 

3 3 3( ) , ( ) ( ) , ( ) ( ) , ...d d d= = − × = −∫ ∫ ∫f r r r f r r S r f r rF Ti i i i i i i iR R  (22) 
 

where the bar over a tensor denotes its symmetric traceless part, and the 
higher moments are indicated by the dots. For a spherical particle, the 
Cartesian components of the stresslet are given as, 
 

3
, , , , ,

1 [( ) ( )] .
2

S dαβ α α β α β β= − + −∫i i i i ir R r R rf f         (23) 

 
 In the following, we combine the forces, torques and stresslets into          
F = (F1, ..., FN), T = (T1, ..., TN) and S = (S1, ..., SN), respectively. In 
analogy, we represent the particle translational and rotational velocities as              
U = (U1, ...,UN) and Ω  = (Ω1, ..., ΩN), respectively. In a similar way,                 
v∞ = (v∞1, ..., v∞N), ω∞ = (ω∞1, ..., ω∞N), g∞ = (g∞1, ..., g∞N), ... denote the 
ambient  flow  velocities,  their  gradients and  higher    derivatives, taken at the 
center of each sphere, with v∞i = v∞(Ri), ω∞i = 1

2  ∇ × v∞(r)|r=Ri and               
1

, 2 [ ( ) ( )] .
ii αβ α β β α∞ ∞ ∞ == + rr rg v v∇ ∇ R  

 Owing to linearity of the Stokes equations (1)-(2), F, T and S depend 
linearly on v∞ − U, ω∞ − Ω  and g∞, 
 

..

.. ,

..
: :: : : :

tt tr td

rt rr rd

dt dr dd

∞

∞

∞

⎛ ⎞ −⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟−⎜ ⎟⎜ ⎟ ⎜ ⎟= − ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

v U

S g

F
T

ζ ζ ζ
ωζ ζ ζ

ζ ζ ζ

Ω
     (24) 

 

where the components ζpq with p, q = t, r, d, ... form the generalized friction 

(or grand resistance) symmetric tensor [7, 33, 34, 35]. Each component ζpq 

consists of the elements ζ pq
ij  with i, j = 1...N. Each of them depends on the 

configuration of all the particles. In particular, the elements with p, q = t, r 
form the 6N×6N friction tensor for N spherical particles, in brief denoted as ζ, 
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.
tt tr

rt rr

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

ζ ζ
ζ

ζ ζ
         (25) 

 
 Evaluation of the generalized friction tensor is essential to solve the 
generalized friction problem [6, 34], i.e. to determine the hydrodynamic 
friction forces and torques exerted by the particles on the fluid, if their 
motion and the ambient fluid flow are known. 
 On the other hand, if the hydrodynamic friction forces and torques exerted 
by the particles on the flow and the ambient fluid flow are known, the particle 
motion is determined by solving the generalized mobility problem [6, 34],  
 

..

.. . ,

..
: :: : : :

tt tr td

rt rr rd

dt dr dd

∞

∞

∞

⎛ ⎞−⎛ ⎞ ⎛ ⎞⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎜ ⎟⎜ ⎟ ⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟
⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

v U

S g
Ω

µ µ µ
ω µ µ µ

µ µ µ

F
T

     (26) 

 
with the use of the generalized (grand) mobility tensor, which consists of the 
elements µpq, p, q = t, r, d, ... and depends on the configuration of all the 
particles. The elements with p, q = t, r only form the mobility tensor for N 
spherical particles, denoted as µ, 
 

.
tt tr

rt rr

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

µ µ
µ

µ µ
         (27) 

 
Note that µ is the inverse of ζ, 
 

1,−=µ ζ           (28) 
 
but the generalized mobility tensor is obtained by only a partial inverse of the 
generalized friction tensor. 
 In many applications, the question is what is the particle motion under 
given external forces F and torques T, and an ambient flow v∞ (r). Solution 
of this problem is constructed from Eq. (24), which is now rewritten as, 
 

,∞

∞

⎛ ⎞⎛ ⎞ ⎛ ⎞
= + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠

UFF
TT

ζ
Ω

        (29) 
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where F∞ and T∞ are hydrodynamic forces and torques exerted by the 
motionless particles on the fluid in the presence of an ambient flow, but the 
absence of external forces, 
 

 
..

. .
..

:

tt tr td

rt rr rd

∞

∞ ∞

∞ ∞

⎛ ⎞
⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟= − ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎜ ⎟
⎝ ⎠

v

g
F
T

ζ ζ ζ ω

ζ ζ ζ
      (30) 

 
Eq. (29) is now solved for the particle translational and angular velocities, 
 

,

:

∞

∞ ∞

∞ ∞

⎛ ⎞
⎜ ⎟−⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎜ ⎟= ⋅ = ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎜ ⎟
⎝ ⎠

v
U

gΩ
ω

µ µ
F F F
T T T

C      (31) 

 
where C is the convection operator [36], 
 

 
..

.
..

tt tr td

rt rr rd

⎛ ⎞
= ⋅ ⋅⎜ ⎟⎜ ⎟

⎝ ⎠
C

ζ ζ ζ
µ

ζ ζ ζ
        (32) 

 
 Evaluation of the generalized friction and mobility tensors is based on 
solving the boundary integral equation by the multipole expansion. These 
procedure will be outlined in the following sections. 
 
2.4. Boundary integral equation 
 With the use of the induced forces [30-32], the set of partial differential 
equations (1)-(2) for the fluid velocity and pressure can be transformed into a 
set of boundary integral equations for the density of the induced forces fi. 
This procedure will be outlined below. 
 The fluid flow field outside the particles can be represented as [9] 
 

3

1

( ) ( ) ( , ) ( ) ,
N

j
j

d∞
=

= + ⋅∑∫v r v r T r r f r r        (33) 

 
 In the above equation v∞ denotes the imposed ambient flow and the 
integral term describes the flow generated by the induced forces. Here 
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( , )T r r  is the Green function for the Stokes flow in the presence of the 
boundaries. It is convenient to write is as 
 

0( , ) ( ) ( , ),= − +T r r T r r T r r�         (34) 
 
where the Oseen tensor, 
 

0
ˆ ˆ1( ) ,

8 rπη
+

=
1 rrT r          (35) 

 
is the Green function for the Stokes flow in the unbounded space. In case of 
the unbounded space, ( , ) 0.=T r r�  Otherwise ( , )T r r�  describes the flow 
reflected from the interfaces, which confine the fluid.  
 For a fluid in a half-space z > 0, limited by a flat free surface at z = 0, i.e. 

for the boundary conditions given by Eqs. (18)-(19), the tensor T�  has the 
form [23, 21], 
 

0( , ) ( ) ,′= − ⋅T r r T r r P�          (36) 
 
where 
 

1 2 ,= −P nn             (37) 
 

( , , ),x y z′ = ⋅ = −r P r         (38) 
 
with ( , , )x y z=r  and the unit vector n normal to the interface pointing into 
the fluid. 
 For a fluid in a half-space z > 0, limited by a hard wall at z = 0, i.e. for 

the stick boundary conditions given by Eq. (5), the tensor T�  has the form [6], 
 

2 2
0 0 0( , ) ( ) 2 ( ) ( ) ,z z′ ′ ′= − − − ⋅ − ⋅ + − ⋅r rT r r T r r n T r r P T r r P

HJJJ� ∇ ∇    (39) 
 
where 
 

[ ( ) ] [ ( )] .αβ α
β

∂
=
∂

rW r W r
r

HJJ
∇         (40) 
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 To obtain the boundary integral equation for the force density fj , the integral 
representation (33) will now be combined with the boundary conditions. 
 In particular, for the stick boundary conditions (4) on the surface of 
particle i, 
 

3

1

( ) ( ) ( ) ( ) , .
N

i j i
j

d S∞
=

= + − ⋅ ∈∑∫w r v r T r r f r r r       (41) 

 
 Other boundary conditions on the sphere require more detailed analysis. 
In general, we decompose the flow around particle i into two flows 
 

in out( ) ( ) ( ),i i= +v r v r v r          (42) 
 

where in
iv  is the incident (regular) and out

iv  the scattered (singular) part of 

the total flow v(r) around the particle i. The singular flow is given by 
 

3
0

out ( ) ( ) ( ) ,i j d= − ⋅∫v r T r r f r r            (43) 
 
and it represents the flow scattered by the considered particle. 
 The induced force distribution fi on the surface of the particle i and the 

flow in
iv  incident to this particle are linearly related. The relation can be 

expressed in the form  
 

in( ) ( , ) [ ( ) ( )] ,i i i i i i d= − − − ⋅ −∫f r Z r r v r w r rR R
    

 (44) 

 
where the single-particle friction operator Zi depends on the specific boundary 
conditions only at the particle i, and is explicitly obtained by solving the Stokes 
equations for an isolated particle subject to an external flow [28, 37]. Examples 
of such explicit expressions are given in Refs. [27-29]. 
 In Eq. (44), the expression in

i i−v w  denotes the incident flow in the 

frame of  reference  moving  with  the  particle.  The Stokes     flow in
i i−v w  is 

fully determined by its boundary value on the particle surface Si and the 
condition that it is nonsingular in the region occupied by the particle. Thus 
Eq. (44)  can  be  interpreted  as a linear functional relation  between the force 
vector  field  fi  and   the incident flow in

i i−v w  on the surface Si. Since a non- 
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zero incident flow always produces a non-zero force distribution fi, the 
relation (44) can be inverted,  
 

1 3in ( ) ( ) ( , ) ( ) , .i i i i i i id S−− = − − − ⋅ ∈∫v r w r Z r r f r r rR R      (45) 

 
 By collecting relations (42), (43) and (45) we obtain the expression 
 

1 3 3
0( ) ( ) ( , ) ( ) + ( ) ( ) , ,i i i i i i id d S−= − − − ⋅ − ⋅ ∈∫ ∫v r w r Z r r f r r T r r f r r rR R (46) 

 
for the flow v(r) at the surface Si of the particle i. 
 Using the integral representation (33) at the surface Si of the particle i, 
and applying the boundary condition (46), we obtain the set of the boundary-
integral equations for the induced force densities fi [22], 
 

1 3

3
0

1

( ) ( ) ( , ) ( ) +

[(1 ) ( ) ( , )] ( ) , .

i i i i i

N

ij j i
j

d

d Sδ

−
∞

=

− = − − ⋅

− − + ⋅ ∈

∫
∑∫

w r v r Z r r f r r

T r r T r r f r r r�

R R
    (47) 

 
 For the rigid spheres, the boundary condition (46) reduces to the no-slip 
requirement, ( ) ( )i=v r w r  for ,iS∈r  and 1

0( , ) ( ),i i i
− − − = −Z r r T r rR R  

if , .iS∈r r  In this case, the boundary integral equation (47) has the simple 
form given in Eq. (41). 
 In the following section, the method of solving Eq. (47) will be outlined. 
The set of the boundary integral equations will be transformed into an infinite 
set of algebraic equations for the force multipoles. 
 
3. Multipole expansion 
 In this section, the basic idea of the spherical-multipole expansion [9, 34, 
35, 38] will be outlined. We apply this expansion to N spherical particles in a 
fluid under a general ambient flow ( ).∞v r  The procedure may be applied to 
different geometries of the boundaries, if the corresponding Green function is 
known. The forces, torques and velocities are projected on a basic set of 
multipole functions, and represented by the coefficients of this expansion (the 
so-called force and velocity multipoles), see Appendix A for the details. Here 
we use the real multipole vector functions ( ),iσ

+ −rlm Ru  with Ri denoting 
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the center of sphere i. The subscripts are the multipole indices l = 1, 2, ...,                 

m = 0,±1, ..,±l and σ = 0, 1, 2. The definitions of all σ
+
lmu  are given in Ref. 

[21] and also in Appendix A. The projection casts the integral equation (47) 
into an infinite set of algebraic equations, 
 

2

1 1 0

( ) ( , ) ( ),
N l

j l l

c M f
σ

σ σ σ σ
′∞

′ ′ ′ ′= = =− =

′ ′ ′ ′ ′ ′= ∑∑ ∑ ∑
m

ilm ilm jl m jl m           (48) 

 
which relate the force multipoles, 
 

3( ) ( ) ( ) ,i jf dσσ += − ⋅∫ r f r rlmjlm Ru        (49) 

 
to the velocity multipoles c(ilmσ), which are defined in terms of two 
contributions,  
 

( ) ( ) ( ),c c cσ σ σ∞= −wilm ilm ilm        (50) 
 
where cw  and c∞  are, respectively, the expansion coefficients of the particle 

velocity wi (r) = Ui + Ωi × (r−Ri) at a point r on the surface of sphere i, and 
of the ambient flow velocity v∞ (r),  
 

1 1

1
1 0

( ) ( 1 ) ( ),i i i ic σ
σ

σ +

=− =

+ × − = −∑ ∑U r rΩ R u Rw m
m

i m           (51) 

 
2

1 1 0

( ) ( ) ( ).
l

i
l

c σ
σ

σ
∞

+
∞ ∞

= =− =

= −∑ ∑ ∑v r rlm
m

ilm u R       (52) 

 

 Note that the only non-vanishing ( )c σw ilm  are those with l = 1, σ = 0, 1. 
Each of them is proportional to a component of the translational or the 
angular velocity of the sphere. Similarly, the force multipoles with (l , σ) = (1, 0) 
and (l, σ) = (1, 1) are proportional to components of the force and the torque 
exerted by the sphere on the fluid, with the coefficients given in Appendix B. 
 The multipole matrix elements ( , )M σ σ′ ′ ′ilm jl m  in Eq. (48) are 
determined by the corresponding elements of 0,iZ T  and T�  (see Appendix A 
for the details), 
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1

0

( , ) ( , )

(1 )[ ( , ) ( , )].
ij i

ij

M Z

T T

σ σ δ σ σ

δ σ σ σ σ

−′ ′ ′ ′ ′ ′= +

′ ′ ′ ′ ′ ′− + �
ilm jl m ilm il m

ilm jl m ilm jl m
     (53) 

 
 After truncating of the expansion at order L, i.e. neglecting the terms 
with l, l′ > L, equation (48) reduces to a finite set of linear algebraic 
equations. These equations are solved for the force multipoles by inverting the 
large matrix M formed by the coefficients ( , )M σ σ′ ′ ′ilm jl m  with l, l′ ≤  L,  
 

2

1 1 0

( ) ( , ) ( ),
N L l

L
j l m l

f Z c
σ

σ σ σ σ
′

′ ′ ′ ′= = =− =

′ ′ ′ ′ ′ ′= ∑∑ ∑ ∑ilm ilm jl m jl m     (54) 

 

where ZL = M−1 is called the spherical generalized friction (or grand 
resistance) matrix. The coefficients ( , )LZ σ σ′ ′ilm jlm  depend on the multipole 
order L of the truncation. In Appendix A, their properties are discussed              
and the references are given to their explicit form for specific types of               
the particles. In Appendix B, the Cartesian generalized friction tensors               
ζpq, introduced in Sec. 2.3, are expressed in terms of the coefficients                

( , )LZ σ σ′ ′ilm jlm  of the spherical generalized friction matrix. In this way the 
generalized friction problem is solved. 
 In particular, in the absence of an ambient flow, for given translational and 
angular velocities of the sphere, the force and the torque are determined by Eq. 
(54) for the L-dependent force multipoles with l = 1, m = 0, ±1 and σ = 0, 1 only, 
 

1 1

,
1 0

( 1 ) ( 1 , 1 ) ( 1 ).L Lf Z c
σ

σ σ σ σ
′ ′=− =

′ ′ ′ ′= ∑ ∑w w
m

i m i m j m j m      (55) 

 

 The multipole elements ( 1 , 1 )LZ σ σ′ ′i m j m , which enter Eq. (55), form 
the spherical friction matrix, which solves the friction problem.  
 On the other hand, for a given ambient flow ,∞v  it is of interest to evaluate 
the force and the torque exerted by a system of motionless spheres on the 
fluid. In the multipole expansion, it means that we search the force multipoles 
with l = 1, m = 0, ±1 and σ = 0, 1. We denote them as , ( 1 ),Lf σ∞ i m  with the 
subscript ∞ specifying the problem (the sphere is fixed and the force 
multipoles are determined by the coefficients c∞ (il′m′σ′) only). Note that all 
the force multipoles depend on L, as indicated by the second subscript L. 
They are evaluated from Eq. (54), which now takes the form,  
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2

,
1 1 0

( 1 ) ( 1 , ) ( ).
N L l

L L
j l m l

f Z c
σ

σ σ σ σ
′

∞ ∞
′ ′ ′ ′= = =− =

′ ′ ′ ′ ′ ′= −∑∑ ∑ ∑i m i m jl m jl m              (56) 

 
 In Appendix C, it is described how to project an ambient flow onto the 
multipole functions, and evaluate the velocity multipoles c∞ (ilmσ). In many 
practical applications, the ambient flow is a combination of a small number 
of the multipole functions only, e.g. for the shear or Poiseuille flows. In such 
cases, it is possible to truncate the expansion at such a multipole order L, that 
all the coefficients c∞      (jl′m′σ′) ≠ 0 are included in Eq. (56). 
 Assume now that the spherical particles are moving in an ambient flow, 
under given external forces and torques, which determine f (ilmσ) for i = 1, ..., N,  

l =1, m= 0, ±1 and σ =0, 1. The goal is to evaluate the particle translational 
and rotational velocities. As explained in Appendix B, these velocities are 
expressed by the velocity multipoles cw 

,L with l = 1, m = 0,±1 and σ = 0, 1, 
where the index L reminds the dependence on the truncation order. By virtue 
of Eqs. (50) and (54), one obtains  
 

1 1

, ,
1 1 0

( 1 ) ( 1 , 1 ) [ ( 1 ) ( 1 )],
N

L L L
j m

c f f
σ

σ µ σ σ σ σ∞
′ ′= =− =

′ ′ ′ ′ ′ ′= −∑ ∑ ∑w i m i m j m j m j m

 
(57)

 
 

with f∞, L already calculated in (56). Here µL(ilmσ, jl′m′σ′) denote coefficients 
of the spherical mobility matrix, which is the inverse of the corresponding 
spherical friction matrix. The spherical-multipole mobility matrix can be 
easily transformed into the corresponding Cartesian mobility tensor. The 
explicit transformation from the spherical to the Cartesian representation is 
given in Appendix B. 
 The algorithm described above has been implemented in a numerical 
FORTRAN code called HYDROMULTIPOLE, and calculations have been 
carried out with both double and quadruple precision. The accuracy is 
controlled by changing the multipole order L of the truncation, and even 
extrapolating to L → ∞. For systems of solid particles with no relative motion 
of close surfaces, the method presented above is sufficient for precise 
calculations already for very low multipole order L [39]. However, if close 
solid surfaces move with respect to each other, the appropriate treatment of 
the lubrication effects is needed for accurate and efficient computations. Such 
a modification of the algorithm will be discussed in the next section.  
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4. Multipole expansion corrected for lubrication 
4.1. Lubrication between two close solid surfaces 
 If a solid sphere (labeled i) moves with respect to another solid sphere 
(labeled j), almost touching it, the fluid strongly resists the movement; the 
friction force and torque diverge when the size of the gap between the 
surfaces tends to zero, and the motion of the particles is fixed [6, 40]. 
 For very small distances between the sphere surfaces, 
 
ξ = Rij /a − 2 ≪ 1,         (58) 
 
with Rij = |Ri − Rj | and a = (ai + aj)/2, the two-particle friction tensors 
ζ(ij) have the following asymptotic form, 
 

( )( ) ( ) ln ( ) ( ) ln ( ),ijij ij ij ijξ ξ ξ ξ
ξ

= + + + +
A B C D Oζ lub

           
(59)

 
 
 The constant matrices A, B, C, D are specified explicitly e.g. in Refs.              
[6, 40]. The only non-zero elements of the matrix A correspond to the forces 
caused by the relative motion of the spheres along their line of centers. 
 The expression Eq. (59) for the lubrication singularities is general. It 
applies to the generalized friction tensor for two particles of an arbitrary 
shape [41]. 
 Hydrodynamic interactions described by Eq. (59) are called lubrication 
interactions [6]. They require a special attention in numerical calculations 
[42]. In particular, for very close spheres with ξ ≪ 1 in relative motion, they 
cause a very slow convergence of the multipole expansion with the increasing 
multipole order L. Therefore the asymptotic expressions (59) have been used 
to construct the so-called lubrication correction [41, 43, 44] for many-
particle hydrodynamic interactions. This procedure will be outlined in the 
next sections. 
 
4.2. Accurate friction tensor for two spherical particles 
 For two spheres, labeled i and j, the friction tensor ζ(ij) was first 
evaluated in Ref. [40], and then recalculated with an improved precision and 
generalized for various ambient flows with the use of several different 
techniques, including bispherical coordinates (extensively discussed in this 
book) and the multipole expansion [28]. Within the multipole method, any 
friction coefficient can be represented as a sum of multiple scattering 
sequences, each proportional to a given power k of the inverse interparticle 
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distance x = 2a/Rij. Next, the multiple scattering sequences with the same k 
may be collected, to obtain the friction coefficient as a power series, so that 
ζ(ij) = ∑k Ck(ij) xk. For very close sphere surfaces, however, it is essential to 
speed up the convergence rate of the series, in a similar way as it was 
proposed by Jeffrey and Onishi [40]. This is achieved by subtracting from the 
friction tensor the corresponding asymptotic expressions (59), non-analytic 
and divergent when ξ → 0, 
 

( ) ( ) ( ),ij ij ij= −G ζ ζ lub         (60) 
 

Then, the difference G  is represented as a power series of x, 
 

0

( ) ( ) .
n

k
n k

k

ij ij
=

= ∑DG x         
(61)

 

 
 The matrix Dk differs from Ck by the series expansion of ζlub. As the 
result, the series (61) is fast convergent and its truncation leads to a high 
accuracy of the friction coefficients [40]. Typically, in the spherical-
multipole numerical codes, n = 300 has been used [10], with the pre-
calculated tables of all the coefficients of Dk. This procedure is sufficient to 
reach the 2 · 10−5 absolute precision of the two-particle friction coefficients 
even at the contact. 
 
4.3. Lubrication correction for many-particle hydrodynamic 
interactions 
4.3.1. Standard approach 
 Consider first such a system of N spherical particles, where a particle 1 
moves with respect to another very close particle labeled 2, and the other 
spheres are well-separated from each other and from spheres 1 and 2. The 
total hydrodynamic force exerted by the fluid flow on sphere 1 is practically 
caused by the motion of the fluid in the lubrication gap between the particles 
1 and 2. Indeed, in this case the lubrication expression ζlub(12), given by         
Eq. (59), is large and dominates all the other contributions to the N-particle 
friction tensor ζ(12...N). This lubrication contribution is independent of the 
other particles. If the sphere 1 is surrounded by several spheres, which almost 
touch it, one may expect that the total friction forces and torques exerted on 
sphere 1 by the fluid flow are approximated by the superposition of the two-
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particle contributions (59) corresponding to lubrication gaps between the 
surfaces of spheres 1 and j. 
 This property has been used to construct a modified multipole expansion, 
fast-convergent even for ξ ≪ 1, and valid for a general configuration of N 
spheres [43, 44]. In this procedure, a superposition of the two-particle friction 
tensors is formed in the following way, 
 

(1... ) ( ),
N

ii ii
j i

N ij
≠

= ∑ζ ζsup         
(62) 

 

(1... ) ( ) for ,ii ijN ij i j= ≠ζ ζsup       (63) 

 
where the lower indices ij label the 6×6 tensor components of the 6N×6N 
tensors. The two-particle friction tensor ζ(ij) is evaluated by the procedure 
described in Sec. 4.2, with a high precision even for extremely small 
distances between the sphere surfaces. In the following, the arguments (1...N) 
will be omitted wherever this does not interfere with clarity of the 
presentation. 
 The idea introduced in Refs [43, 44] is to “correct” the slow convergence 
rate of ζL, replacing it by another fast-convergent expression, 
 

,L L L= + ∆ζ ζ          (64) 
 
where the lubrication correction, 
 

L L= −sup sup∆ ζ ζ          (65) 
 
is defined as the difference between the accurate pairwise-additive 
expressions (62)-(63) and their multipole approximations of the order L, 
 

,, (1... ) ( ),
N

L iiL ii
j i

N ij
≠

= ∑supζ ζ         
(66)

 

 

,, (1... ) ( ), for ,L ijL ij N ij i j= ≠ζ ζsup        (67) 
 
with ( )L ijζ  denoting the multipole approximation with the order L of the 
two-particle friction tensor ζ(ij).  
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 Both Lζ  and Lζ  approach the same limit ∞ ∞=ζ ζ  when L → ∞, and 
keep the same long-distance asymptotics, because for well-separated particles 
the lubrication correction is negligible. The key point of Eqs. (64)-(65) is that   

( )L L L= + −ζ ζ ζ ζsup sup is fast-convergent even if some of the particles are 

close and move with respect to each other. Indeed, the first term, ,ζ sup  is 

independent of the multipole order, and the second one, ,L L−ζ ζ sup  does not 
contain any lubrication singularities and therefore is fast-convergent with the 
increasing L. It is essential that Lζ  is an accurate approximation of ∞ζ  
already for a low multipole order. 
 Lubrication correction of the other generalized friction coefficients is 
constructed by the same reasoning. Then, the corrected generalized mobility 
tensor follows from Eq. (26). In particular, correcting the L-order mobility 
tensor 1

L L
−=µ ζ  results in 

 
1 1[1 ] ... .L L L L L L L L L
− −= = ⋅ + ⋅ = − ⋅ ⋅ +µ ζ µ µ µ µ µ∆ ∆      (68) 

 
 The standard lubrication correction allows for accurate evaluation of the 
particle dynamics. However, a refined treatment is needed if the cluster 
expansion is performed and three-particle hydrodynamic interactions are 
calculated separately [10, 47, 48]. In particular, the three-particle contribution 
to the translational self-diffusion coefficient is infinite if evaluated with the 
standard lubrication correction [10]. The spurious divergence is caused by the 
incorrect asymptotics of the three-particle mobility µtt for such a 
configuration in which a single sphere (e.g. labeled 3) is far away from the 
other two (with labels 1 and 2), with R13 ≫R12 and R23 ≫R12. In this case, 

the dominant three-body contribution to 33
ttµ (123) scales as 4

121/ R . However, 

the standard lubrication correction adds to 33
ttµ (123) a small artificial term, 

which scales as 2
121/ R  and therefore is non-integrable. This paradox will be 

solved in the next section. 
 
4.3.2. Improved lubrication correction 
 In general, the standard lubrication correction changes the total 
hydrodynamic force and torque exerted on the fluid by a pair of spheres in 
relative motion if a third particle is present. The lubrication correction adds a 
very small spurious singlet contribution, a source of a 1/r flow, which 
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dominates at large distances r if the real flow is proportional to 1/r2. 
Therefore in Ref. [10] an improved lubrication correction was constructed, 
which does neither modify the total force nor the torque exerted on the fluid 
by a pair of spheres in relative motion. The procedure described in the 
previous section was repeated, but with the friction tensor ζ replaced by a 
tensor s, which contains the same singular terms and satisfies the same 
symmetries (translational, rotational and Lorentz invariance). Moreover, s 
applied to an arbitrary rigid motion of the pair of spheres has to give 
vanishing forces and torques.  
 
 These conditions are satisfied if 
 

( ) ( ) ,Tij ij≡ ⋅ ⋅s q qζ          (69) 
 
and the 6 × 6 matrix q projects onto relative motion of the spheres, with          
q = q2. In practice, the operator q is constructed from the requirement that           
c = 1−q, applied to (U1, U2, Ω1, Ω 2), results in a rigid motion of both spheres, 
and c = c2. The rigid motion of the spheres is not uniquely defined, although 
of course it should be “close” to the motion of both spheres. For example, a 
choice of the rigid motion is the translation of the center of mass system, 
superposed with the rotation around the center of mass with the angular 
velocity (Ω1 + Ω2)/2. In particular, for identical spheres, the center of mass is 
located at (R1 + R2)/2 and translates with velocity (U1 + U2)/2. The 
projection c on this rigid motion corresponds to the following operator                
I − c = q, which projects on relative motion [10], 
 

1= ,
2

− − −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

q
0 0
0 0

I I A A
I I A A

I I
I I

 
    

 (70) 

 
where I is the 3×3 unit matrix, and A depends on relative position of the 
sphere centers, R = R2 − R1,  
 

2,Aαβ αβγ γ= −ε R /          (71) 
 

with the Cartesian components labeled by α, β, γ, and the summation over γ. 
 In general, the flow inside the small gap between the sphere surfaces 
moves with respect to the center-of-mass system, and if the slip is large, a 
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rigid motion can be taken which is closer to the fluid motion in the gap. For 
example, the operator c can project on a rigid motion which is the average of 
the individual rigid motions w1(r) and w2(r) of spheres 1 and 2, respectively, 
see Eq. (4). This choice results in the operator q independent of the sphere 
radii, 
 

0 2
2 01= .

2

− −⎛ ⎞
⎜ ⎟−⎜ ⎟
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

q
0 0
0 0

I I A
I I A

I I
I I

       (72) 

 
 This operator q projects on such a relative motion that corresponds          
to the opposite velocity field inside both spheres, (w1(r) − w2(r))/2 and 
−(w1(r) − w2(r))/2, respectively. Moreover, inside the gap and in the limit of 
a small gap size, the relative velocities of the sphere surfaces are almost 
opposite, and the rigid-motion velocity is almost equal to the averaged 
velocity of the closest points of both surfaces. 
 When the projection q on the relative motions is specified, the expression 
s in Eq. (69) is known. The improved lubrication correction is now 
constructed by the procedure described in the previous section, but with ζ 
replaced by s. We obtain the modified pairwise-additive expressions,  
 

(1... ) ( ),
N

N
≠

= ∑s ssup
ii ii

j i

ij         (73) 

 

(1... ) ( ) for ,N = ≠s ssup
ij ij ij i j        (74) 

 
and their approximations of the order L, 
 

,, (1... ) ( ),
N

N
≠

= ∑s ssup
L iiL ii

j i

ij          (75) 

 

,, (1... ) ( ) for ,LL N = ≠s ssup
ijij ij i j        (76) 

 
with 
 

( ) ( ) .T
L L≡ ⋅ ⋅s q qij ijζ          (77) 
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Now, the corrected N-particle friction tensor has the form, 
 

L L L+ζ = ζ δ             (78) 
 
with the improved lubrication correction, 
 

.L L= −s sδ sup sup          (79) 
 
Let us comment now that if the improved lubrication correction is used, then 
the self-diffusion coefficient is finite. Indeed, with ∆ in Eq. (68) replaced by 
δ, the dominant three-body contribution to 33

ttµ (123) scales as 4
121/ R  with no 

spurious extra terms. [10]  
 Finally, we briefly discuss accuracy of the multipole expansion. With this 
procedure, the convergence of the multipole expansion is fast, and truncation 
at a relatively small L results in a high accuracy [9, 17, 45, 46]. In Ref. [9], 
friction and mobility coefficients were evaluated for a number of particle 
configurations and the accuracy of the results was estimated. For groups of 
rigidly moving particles, truncation at L = 4 typically leads to extremely high 
0.1% relative precision of the drag coefficients, because the collective motion 
does not involve lubrication interactions. The relative motion of particles 
results in a lower precision, which has not been extensively discussed in Ref. 
[9]. Below we study an example of a simple particle configuration, and we 
estimate the accuracy of the friction and mobility tensors, evaluated by the 
spherical-multipole method with the standard and the improved lubrication 
corrections.  
 We consider two test configurations of three identical close spheres, 
with their centers located at vertexes of an isosceles right triangle. In the 
first case, the smallest gap size is equal to 0.01 diameter, and in the second 
case to 0.0001 diameter. The friction and mobility tensors have been 
evaluated with the standard and both improved lubrication corrections, for 
the multipole order L = 4 and for L = 25. Relative precision of the results 
with L = 4 has been estimated by evaluating the differences of the tensor 
elements corresponding to L = 4 and L = 25, and calculating the square root 
of the sum of the squared differences, normalized by the square root           
of the sum of all the squared elements. The resulting accuracy is equal to              
7 · 10−5 − 3 · 10−3. The relative difference between the results for L = 4, 
evaluated with different lubrication corrections, is smaller than the above 
precision. The accuracy rapidly improves if the distance between the sphere 
surfaces is increased. 
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5. Conglomerates of particles 
5.1. Friction and mobility 
 In this section we consider hydrodynamic interactions between rigid 
arrays of particles. We solve the friction and mobility problems, formulated in                
Sec. 2.3, but now for the conglomerates rather than for the individual particles.  
 We consider K conglomerates of particles. Each conglomerate, labeled with 
 
k = 1, . . . ,K,          (80) 
 
consists of N(k) spherical particles (in general with different radii) labeled 
with ik, 
 

1
( ) ( )

1 1

1, ... , .s s

s s

N N
−

= =

= +∑ ∑
k k

ki
 

       (81) 

 
The total number of particles is equal to N, 
 

( )

1

.
K

N N
=

=∑ k

k

          (82) 

 

 The position in space of a conglomerate k is defined by the position of an 

arbitrary reference point ( )
0
kR  of this conglomerate (often it is the 

geometrical center of this conglomerate) and the Euler angles. In general, 
there are three such angles; for the conglomerates with axial symmetry (e.g. 
linear polymers) two angles are sufficient. The reference point ( )

0
kR  and the 

corresponding Euler angles determine the positions Rik of all the sphere 

centers in the conglomerate k. 
 Conglomerates move collectively like rigid bodies. Therefore the motion 
of a conglomerate k is characterized by the translational collective velocity U(k) 

of the reference point ( )
0
kR  and the rotational collective velocity Ω(k) of this 

conglomerate. The translational and rotational velocities Uik
 and Ωik

 of all the 

N(k) particles of this conglomerate follow as linear functions of U(k) and Ω (k),  
 

( )( ) ( )
0( ),i i= × −U U

k k

kk k+Ω R R        (83) 
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( ) ,i =Ω Ω
k

k           (84) 
 
with the range of k and ik given by Eqs. (80) and (81). Relations (83) and (84) 
can be written in short, 
 

C

C
,

⎛ ⎞⎛ ⎞
= ⋅ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

U U
C

Ω Ω
         (85) 

 
with the abbreviated notation for the particle velocities U and Ω defined in 
Section 2.3. In analogy, we have arranged the conglomerate velocities into 
3K-dimensional vectors  UC= (U(1), . . . , U(K)) and ΩC= (Ω(1), . . . , Ω(K)).          The  
6N × 6K rectangular matrix C can be read out explicitly from Eqs. (83-84). 
The matrix C is a function of the positions ikR  of all the N sphere centers. 

 The total force and F (k) and total torque T (k) exerted by the conglomerate 
k on the fluid are given as superpositions of the individual forces and torques, 
respectively, 
 

( ) ,i
i

= ∑ k

k

kF F          (86) 

 
( )( )
0[ ( ) ],i i i

i

= + − ×∑T T F
k k k

k

kk R R        (87) 

 
with the range of k given by Eq. (80) and the range of the summation given 
by Eq. (81). Following Sec. 2.3, we use the abbreviated notation F and T  for 
the individual forces and torques. We also represent the total forces and 
torques exerted by the conglomerates on the fluid as 3K-dimensional vectors 
F C= (F (1), . . . , F (K)) and T C = (T (1), . . . , T (K)). Now the relations (86) 
and (87) can be rewritten in short,  
 

C
T

C
.

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

C
F F

TT
       (88) 

 
From Eqs. (86-87) it follows that the 6K×6N rectangular matrix of the linear 
transformation is just the transposed matrix C. In general, the external forces 
F C and torques T C imposed on the conglomerates are controlled. This is not 
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the case for individual particles, which undergo reaction forces in addition to 
the imposed ones. Therefore for conglomerates the friction relation reads, 
 

C C

C C
,

⎛ ⎞ ⎛ ⎞
= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

C UF

T
ζ

Ω
        (89) 

 
where the 6K × 6K many-conglomerate friction tensor, 
 

T ,= ⋅ ⋅C C Cζ ζ           (90) 
 
has been obtained from the many-particle friction tensor, defined in Eq. (25), 
with the use of Eqs. (85) and (88). 
 As explained in Sec. 4.3, the multipole algorithm used for evaluating the 
N-particle friction tensor ζ is in general corrected for lubrication. While 
evaluating ζC form Eq. (90), the lubrication correction is included in ζ only 
for the pairs of spheres belonging to different conglomerates. The pairs of 
spheres belonging to the same conglomerate move collectively and therefore 
the multipole expansion without a lubrication correction is fast convergent, as 
explained in Sec. 4.3. With the lubrication correction switched off, spheres in 
a single conglomerate may touch each other.  
 Finally, we define the conglomerate mobility tensor by the relation, 
 

C C 1( ) .−=µ ζ           (91) 
 
 The mobility tensor allows to evaluate the collective velocities and then 
integrate the trajectories of all the K conglomerates, which are subject to 
external forces and torques, e.g. sedimenting under gravity. 
 
5.2. Motion in ambient flow 
 In this section we evaluate the translational and rotational velocities of 
conglomerates which are subject to external forces and torques and to an 
external flow. 
 This task is similar to the motion of particles under external forces, 
torques and an ambient flow, solved in Sec. 2.3. We first apply CT to the 
l.h.s. of Eq. (29), then use Eqs. (85), (88) and (90), 
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C T

C C
+ ,∞

∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
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       (92) 
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and finally use Eq. (91) to evaluate the collective velocities of the 
conglomerates, 
 

CC C
C

CC C
,∞

∞

⎛ ⎞⎛ ⎞ −
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U
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µ

FF
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        (93) 

 
where 
 

C
T

C
.∞ ∞

∞∞

⎛ ⎞ ⎛ ⎞
⎜ ⎟ = ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

C
F F
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         (94) 

 
 Here F∞ and T∞ are the forces and torques exerted by the motionless 
particles on the flow, evaluated from Eq. (30), where, in the absence of 
relative motion of the particles, the friction tensors are determined without 
lubrication corrections. On the other hand, µC is calculated with the use of 
lubrication correction between particles belonging to different conglomerates. 
 
6. Conclusions 
 An efficient procedure [9, 10, 21] with a controlled high accuracy, the 
spherical-multipole method, was presented, adequate for evaluating Stokesian 
dynamics of non-deformable spherical particles suspended in a fluid, or 
hydrodynamic resistance of moving or motionless systems of such particles 
under low-Reynolds-number flows. Below we present a few examples of 
specific applications of this method. Different versions of the multipole 
expansion were used in the literature by many authors in numerous physical 
contexts [14, 15, 17, 43, 45], and listing all the results would require a 
separate review. Therefore we concentrate mainly on the results obtained by 
the accurate spherical-multipole method. In this procedure, the relative 
motion of particles is corrected for lubrication, to achieve fast convergence 
with the multipole order of the truncation. The main advantage of this 
algorithm, even in comparison with the Cartesian-multipole formulation [49], 
is that it is possible to perform computations with a very high multipole order 
of the truncation, controlling the accuracy. Moreover, the method is 
applicable to systems of various types of the particles in a fluid bounded by 
one or two parallel flat interfaces. 
 Friction and mobility problems for groups of particles in an unbounded 
fluid were solved. Drag coefficients of conglomerates of particles have been 
calculated and shown to agree with the experimental data [50]. Dynamics         
of symmetric configurations of three spherical solid particles was analyzed           
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and an attracting equilibrium configuration was found, non-existent in the 
point-particle approximation [51]. A model of mechanical-contact and 
hydrodynamic interactions between rough spherical particles was constructed 
and shown to account well for the experimentally measured relative 
translation and rotation [52, 53]. In Ref. [27], the Stokes equations were 
solved for a single surfactant-covered drop in an arbitrary incident flow, and 
then the pair hydrodynamic interactions of surfactant covered bubbles were 
computed from the one-particle solution using a multiple-scattering expansion. 
 Statistical properties of particulate systems were also determined. Virial 
expansion of suspension effective transport coefficients was performed. Two-
particle and three-particle contributions to the short-time self-diffusion, 
sedimentation velocity and high-frequency viscosity were evaluated [10, 47, 
48, 54-58]. The short time self-diffusion coefficient of a sphere in a 
suspension of rigid rods was calculated in the first order in the rod volume 
fraction [59]. Two-particle correlation function for non-Brownian suspension 
in a stationary state was determined and used to evaluate the virial expansion 
of the sedimentation coefficient. In the stationary state, the term proportional 
to the volume fraction was shown to be larger than in the equilibrium, owing 
to the excess of close particle pairs in comparison to the equilibrium [60]. 
 Dynamics of particles close to interfaces was also analyzed. The effect of 
a planar hard wall on the motion of particle clusters under external forces, 
shear or Poiseuille flow was determined [21, 61, 62]. Hydrodynamic 
interactions between solid particles touching a free surface and moving along 
it (a quasi-two-dimensional system) were evaluated, and the range of validity 
of the long-distance pairwise asymptotics and the point-particle 
approximation was given [24, 63]. 
 The spherical-multipole method was also used for theoretical and 
numerical studies of hydrodynamic interactions of spherical particles 
confined between two parallel planar solid walls. A new efficient algorithm 
for evaluating many-particle friction and mobility matrices for such a system 
was developed [20, 22]. Numerical implementation of this algorithm was 
used to evaluate the hydrodynamic friction and mobility for a single particle, 
a pair of particles, and a system of many particles confined between two 
planar walls. The results show that the standard single-wall-superposition 
approximation is insufficient for problems when the particles are laterally 
separated by many inter-wall distances [64]. In Ref. [65], the effect of 
confining walls on the dynamics of a dilute suspension of noninteracting, 
elongated axisymmetric particles undergoing a steady shear flow in a 
parallel-wall rheometer was presented. It was found that the particle motion 
in the two-wall system qualitatively resembles the Jeffrey’s orbits in the 
unbounded space [66], but, unlike in the unbounded space, the period of the 
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motion and the evolution depend on the initial position of the particle. In Ref. 
[64], the effect of the walls on the hydrodynamic interactions in ambient 
Poiseuille flow in a narrow channel were studied. In Ref. [67], the crossover 
behavior between near-field flow and far-field asymptotic Hele-Shaw flow 
[68], was analyzed. It was shown that for a few inter-wall distances from the 
particle, the flow assumes the asymptotic form. This facilitates significantly 
the numerical evaluation of the Green tensor for the two-wall system. In Ref. 
[69], the new class of binary trajectories that result in cross-streamline 
particle migration in a wall bounded shear flow was identified. 
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Appendix A. Multipole functions and multipole matrix elements 
 In Section 3 the boundary integral equation (47) has been projected onto 
multipole functions, resulting in Eq. (48). In this Appendix, we explain in 
details how this procedure has been carried out and we provide the explicit 
expressions for the velocity multipoles c(ilmσ), the force multipoles f(ilmσ) 
and the matrix elements M(ilmσ, jl′m′σ′).  
 The complete set of elementary flows σ

+ulm  has been constructed [28] in 
terms of the regular solid harmonics, [37], [70]. The regular solid harmonics 
are the following solutions of the Laplace equation,  
 

ˆ( ) ( ),YΦ =r rl
lm lmr          (95) 

 
where the normalized complex spherical harmonics are given in terms of the 
associated Legendre polynomials, [71] 
 

1ˆ( ) ( 1) (cos ) ,Y P eθ= −r m im
lm lm

lmn
ϕ         (96) 

 

with |m| ≤ l and the normalization coefficients, 
 

1 2
4 ( )! .

(2 1)( )!
π⎡ ⎤+

= ⎢ ⎥+ −⎣ ⎦
lm

l mn
l l m

        (97) 

 
In the numerical calculations, the real spherical harmonics are used, 
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and the corresponding real solid harmonics, 
 

( ) ( ) ˆ( ) ( ).YΦ =r rR Rl
lm lmr        (101) 

 

The complete set of the elementary flows σ
+ulm  is given in terms of gradients 

of the real solid harmonics, and the pressure fields p σ
+
lm  in terms of the real 

solid harmonics [28], 
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2
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   (104) 

 
The following scalar product of vector fields A(r) and B(r) is defined 
 

( ) ( ) ,d= ⋅∫A B A r B r r        (105) 
 

with A or B containing the factor δ(|r| − ai), because the integral is restricted 

to the boundary surface of a particle with radius ai. The elementary flows 

σ
+ulm  are not orthogonal to each other with the scalar product (105), therefore 

the adjoint basic set of functions σ
+
lmω  is introduced according to the relation  
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,b σ σ σσδ δ δ δ+ +
′ ′ ′ ′ ′ ′=ulm l m ll mmω       (106) 

 

for all values of the parameter b > 0, where 
 

1( ) ( ).b b bδ δ−= −r r        (107) 
 

The adjoint functions σ
+
lmω  are [28], 

 

2 1
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1 0
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( 1)
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l l
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2 1
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The force and velocity multipoles, introduced in section 3, are projections 
onto the corresponding multipole functions σ

+ulm  and ,σ
+
lmω  respectively. 

The force multipoles were given in Eq. (49), 
 

( ) ( ) .f σσ += ulm iilm i f        (111) 
 
The velocity multipoles, defined in Eqs. (51), (52), are now expressed in 
terms of ,σ

+
lmω  

 

( ) ( ) ( ) ,σσ δ +=w ai lm ic ilm i i wω      (112) 
 

( ) ( ) ( ) .σσ δ +
∞ ∞= ai lmc ilm i i vω      (113) 

 

In the above equations, the standard bra-ket notation is used. Moreover, |A〉 
denotes the vector field A(r) and |A(i)〉 represents the vector field A(r − Ri). 
 The multipole expansion of the particle and ambient flow velocity fields 
in terms of σ

+ulm  was given in Eqs. (51) and (52). In analogy, the multipole 

expansion of the induced force distribution fi is given by  
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( ) ( ) ( ) ( ).i if σ
σ

σ δ += − −∑r r rf R R
ii a lm

lm

ilm ω     (114) 

 

 Substituting the multipole expansion (114) of fi into the boundary-

integral equation (47), applying the bra vector ( ) ( )σδ +
ia lmi iω  and using 

Eq.(112) and (113), one obtains the set of algebraic equations (48) for 
f(ilmσ), with multipole matrix elements, 
 

1

0

( , ) ( , )

(1 )[ ( , ) ( , )],

M Z

T T

σ σ δ σ σ

δ σ σ σ σ
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where 
 

1 1( , ) ( ) ( ) ( ) ( ) ,Z σ σσ σ δ δ− + − +
′ ′ ′′ ′ ′ = Z

i ii a lm i a l milm il m i i i iω ω    (116) 
 

0 0( , ) ( ) ( ) ( ) ( ) ,T σ σσ σ δ δ+ +
′ ′ ′′ ′ ′ = T

i ja lm a l milm jl m i i j jω ω    (117) 
 

( , ) ( ) ( ) ( ) ( ) .T σ σσ σ δ δ+ +
′ ′ ′′ ′ ′ = T� �

i ja lm a l milm jl m i i j jω ω    (118) 
 

From now on we will use a shorthand notation + +Aω ω  for the matrices 

with the elements A(ilmσ, jl′m′σ′) given in the above equations with 
1

0,−=A Z Ti  or .T�  Expressions for the above matrices can be found in the 
literature, see e.g. [21]. The technical difficulty is that, historically, in many 
papers, complex rather than real elementary flows σ

+vlm  and their adjoints 

,σ
+wlm  have been used [21, 28]. As a consequence, the explicit expressions 

have been derived for the matrices + +w A w  rather than for .+ +Aω ω  

The transformation between the real and the complex basic sets of the 
multipole functions ω+ and w+ is the same as between u+ and v+, [21] 
 

0
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σ

σ σ

+
+ =

v
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l j
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where 
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( )
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σ

σ
σ
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 Alternatively, using the transformation matrix X in the many-particle 
space, [21] 
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where the dagger denotes the Hermitian adjoint, and C±1,±1(m) are the 
elements of the 2 × 2 unitary matrix 
 

, , 1, 1
11{ ( )} .

( 1) ( 1)2

i
C

iµ µ µ µ′ ′ = + −

−⎛ ⎞
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In short, Eqs. (123) and (124) can be written as 
 

† ,+ += ⋅u v X         (126) 
 

†.+ += ⋅w Xω         (127) 



Multipole method for calculating hydrodynamic interactions 159 

The matrix elements transform according to 
 

† ,+ + + += ⋅ ⋅u A u X v A v X       (128) 
 

†.+ + + += ⋅ ⋅A X w A w Xω ω       (129) 
 

 With the use of the above equation the expressions ,+ +Aω ω  

appearing in (116)-(118), are evaluated in terms of the corresponding 
+ +w A w  matrices, which in turn can be found in the literature. A brief 

outline of the available results will now be given. 
 We start from the matrix elements of the operator 1.−Zi  Note that 

11 .
−+ − + + +=w Z w v Z vi i  Therefore, the elements 1Z −

i (ilmσ, il′m′σ′) 

are obtained by inversion of the matrix 
1
.

−+ +v Z vi  These procedure can 

be carried out rigorously because, due to the spherical symmetry, 
1−+ +v Z vi  is diagonal in the index l. 

 The task is to evaluate the matrix elements of the friction operator Zi  of 
a single spherical particle. This is achieved by solving the Stokes equations 

for an isolated particle subject to an external flow. The matrix 
1−+ +v Z vi  

is diagonal in the particle labels i and j. Due to the spherical symmetry, it is 

also diagonal in the azimuthal number m. Moreover it does not mix the even 
and odd σ indices, which correspond to vector and pseudovector components 
respectively. Owing to these properties, .+ + + +=u Z u v Z vi i  The 

matrix elements of the operator Zi   have the form [47], 
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l l
l

i i ij ll mm l

l l

z z
ilm jl m a z

z z
 (130) 

 

where the coefficients ,σσ ′lz  are specific for given boundary conditions 
imposed on the spherical particles. They can be found e.g. in Refs. [27, 28, 29]. 
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 Now we are going to outline how to obtain the elements T0(ilmσ, jl′m′σ′) 

and ( , )T σ σ′ ′ ′� ilm jl m  of the real matrices 0
+ +Tω ω  and ,+ +T�ω ω  

respectively. To this goal, the transformation rule (129) is applied to the 
complex matrices 0

+ +w T w  and ;+ +w T w�  their elements are denoted 

as G0 (ilmσ,   jl′m′σ′) and �G (ilmσ,    jl′m′σ′), respectively. In particular, 
 

0 ( , ) (1 ) ( ; , ),
l m

n
G Sσ σ δ σ σ

η
+−

′ ′
′ ′ ′ ′ ′ ′= − −lm

ij i jilm jl m lm l m
n

R R      (131) 

 

where  S +−   is  given  explicitly  in  Ref.  [72]. It scales   with the interparticle 
distance Rij = |Ri−Rj| as, 
 

1
1( ; , ) .S σ σσ σ+−
′ ′+ + + −

′ ′ ′− ∼R Ri j l l
ij

lm l m
R

     (132) 

 

 The multipole matrix elements of the operator T�  depend on the 
boundaries of the system. In particular, when the fluid occupies the halfspace 
z > 0 with z = 0 corresponding to an interface between two fluids of different 

viscosity, the operator T�  can be constructed with the method of images,          
[25, 27, 73]. The resulting multipole matrix elements read, 
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with the operator P = 1−2nn, which reflects a vector in the z = 0 plane. The 
unit vector n is normal to the wall pointing into the fluid and hi = Ri ·n. Due 
to the axial symmetry with respect to n, the matrix RA is diagonal in the 
azimuthal number m. 
 The formula (133) includes the limiting cases of free surface, [21, 23] 
and a hard wall, [19, 74, 75]. For a free surface, the matrix RA = RF is given 
by, see [19] 
 

( ; , ) ( 1) .σ
σσσ σ δ δ δ+ +

′ ′ ′′ ′ ′ = −FR
l m

j mm llh lm l m     (134) 
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 For a hard wall the corresponding operator RA = RH is not diagonal in l 
and σ and its matrix elements are given in Ref. [21]. 
 For a fluid-fluid interface, when the particle is placed in a fluid with 
viscosity η, which occupies the halfspace z > 0, and the fluid on the other side 
of the interface, at z < 0, has the viscosity η′, the corresponding operator RA 
reads [5, 26], 
 

1 ,
1 1

= +
+ +A H FR R R

λ
λ λ

      (135) 
 

where λ = η/η′. 
 Recently, an efficient algorithm for accurate evaluation of the operator T�  
for the hydrodynamic interactions of the particles confined between two 
parallel planar hard walls has been proposed [20, 22]. This approach involves 
expanding the fluid velocity field into spherical and Cartesian fundamental sets 
of Stokes flows. The interaction of the fluid with the particles is described 
using the spherical basis fields, the flow scattered by the walls is expressed in 
terms of the Cartesian fundamental solutions. At the core of the method are 
transformation relations between the spherical and the Cartesian basis sets. 
 
Appendix B. How do Cartesian tensors relate the multipole 
matrix elements 
 Physical quantities, such as translational and angular velocities, force and 
torque or stresslet, are Cartesian tensors. In this Appendix it will be explained 
how they are related to the corresponding velocity and force spherical-
multipoles. Also, the Cartesian N-particle friction tensor ζ(1...N), with the 
components ζ pq

ij  (1...N), will be related to the spherical-multipole matrix 

,+ +v Z v  with the elements Z(ilmσ,    jl′m′σ′).  

 In general, transformation from the multipole to the Cartesian 
representation employs a set of irreducible [76, 77], i.e. completely 
symmetric and traceless constant tensors given by the formula [79], 
 

( ) ( ) ( )1 1 1 1( ) ... ( ), ,..., ,
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l= Φ = Φ = −y r r�	
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lm lm lm
l l l times

m l l
l lγ γ
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where 
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 The tensors ( )y R
lm  are constant, i.e. independent of r, because the real solid 

harmonics ( )Φ R
lm  are the l − th order polynomials in the Cartesian components 

x, y, z of the position r, i.e. ( )y R
lm  are combinations of terms 1 2 3l l lx y z  with                

l1 + l2 + l3 = l. For a given l, the tensors ( )y R
lm  constitute the (2l + 1)-element 

basis in the space of irreducible l − th rank tensors, labeled by l Cartesian 
indices. 
 For a given l and m = −l, . . . , l, the tensors ( )y R

lm  are orthonormal,  
 

( ) ( ) , , ,..., ,δ ′′ ′= = −y y:
l

R R
mmlm lm m m l l      (138) 

 

where :
l
 denotes l-fold contraction between the l last Cartesian indices of 

the tensor A and the first l indices of the tensor B [77, 78], 
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α α= =

= ∑ ∑:
l

l

l
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In the following, rl denotes l-rank tensor product of a vector r, 
 

N... .=r rr rl

l times
        (140) 

 

With the use of this notation, the solid harmonics ( ) ( )Φ rR
lm  may be written as  

 

( ) ( )( ) ,Φ =r y r:
l

R R l
llm lmγ        (141) 

 
and their gradients are given by 
 

1
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 The set of tensors ( )y R
lm  allows to rewrite the formulas for the elementary 

flows .σ
+ulm  To this goal we substitute the formula (142) for gradient ( )Φ∇ R

lm  

into the definition (102) of the elementary flow 0 ,+ulm  
 

1
( ) 1

0 ( ) .
−

+ −= Γu r y r:
l

R l
lm l lm        (144) 

 

The other flows with σ = 1, 2 follow from Eqs. (103-104). In particular, 
 

( )
1 0 1 1( ) ,+ = Γu r y R
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( )
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and 
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1 2
3 15, .

4 2
Γ = Γ =

π π
      (152) 

 
 

 To obtain the force multipoles, the expressions (145)-(147) for the flows 

σ
+ulm  are now integrated with the force density, according to Eq. (49). The 

tensors ( )y R
lm  separate out from the integrals, which result in forces, torques 

and stresslets, respectively, in agreement with Eqs. (22), 
 

( )
1 1( 1 0) , 0, 1,if = Γ ⋅ = ±y R

mi m mF                (153) 
 

( )
1 1( 1 1) , 0, 1,if = Γ ⋅ = ±y R

mi m mT      (154) 
 

2
( )

2 2( 2 0) , 0, 1, 2.f = Γ = ± ±y :R
imi m mS     (155) 

 

Using the above equations and the orthonormality property, Eq. (138), we 
express the force, torque and stresslet in terms of the force multipoles as 
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1

( )
1

1 1

1 ( 1 1) ,i f
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m
m

i m       (157) 

 
2

( )
2

2 2

1 ( 2 0) .i f
=−

=
Γ ∑ y R

m
m

i mS       (158) 

 
With the use of Eq. (148) and (152), the forces and torques are now written 
down explicitly, 
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Note that each Cartesian component of the force and torque is proportional to 
a single force multipole only. 
 The translational and rotational velocities of the spheres will also be 
expressed in terms of the velocity multipoles. To this goal, the expressions 
(145) and (146) for 1 0 ( )+u r -m iR  and 1 1( ),+u r -m iR  respectively, are now 

substituted to Eq. (51) defining the rigid velocity wi(r). We obtain, 
 

1
( )

1 1
1

( 1 0) ,c
=−

= Γ ∑U y R
i w m

m

i m       (160) 

 
1

( )
1 1

1

( 1 1) ,c
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= Γ ∑ y R
i w m

m

i mΩ       (161) 

 

or explicitly, 
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     (162) 

 

 The ambient flow and its derivatives at the center of the sphere also can 
be expressed by the corresponding velocity multipoles. To this end the 
expansion (52) of the ambient flow v∞ is used. In analogy to Eq. (162), 
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     (163) 

 
Evaluating the gradients of Eqs. (52) and (144) we obtain the rate of strain, 
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2
( )
2

2

15 ( 2 0) .
2

c∞ ∞
=−

= ∑g y R
i m

m

i m
π

      (164) 

 

 The velocity multipoles are now explicitly evaluated, using the 
orthonormality property (138), 
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2
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2

2
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 Finally, the Cartesian generalized friction tensors ζ pq
ij  with p, q = t, r, d 

will be related to the correspondingmultipole elements Z(ilmσ, jl′m′σ′). To 
this end, Eqs. (156-158), (165)-(169) and (54) are combined. In particular, 
 

tt
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and in general, 
 

p q

p q
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where 
 

p
1 for , ,
2 for ,
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= ⎨ =⎩

p t r
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p d
       (172) 
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and 
 

p
0 for , ,
1 for

σ
=⎧

= ⎨ =⎩

p t d
p r.

       (173) 

 
Appendix C. Ambient flows as combinations of the elementary 
flows 
 In this section, we outline the procedure to evaluate the expansion 
coefficients ( )c σ∞ ilm  of an ambient flow ,∞v  appearing in Eq. (52), 
 

2

1 1 0

( ) ( ) ( ).
l

l

c σ
σ

σ
∞

+
∞ ∞

= =− =

= −∑ ∑ ∑v r rlm i
m

ilm u R     (174) 

 

 It is not convenient to compute them by integration of the product of 
external flow ( )∞v r  and the basis fields ( )σ

+ −rlm iRω  over the surface of 

sphere i, as in Eq. (113). Here we propose an alternative method for 
evaluating the coefficients ( )c σ∞ ilm  for arbitrary external flow .∞v  This 
method requires some algebraic manipulations and evaluation of the ambient 
flow derivatives only and no integration is involved. The basic idea is to 
decompose ∞v  into three families of solutions to the Stokes equations 
constructed by Lamb [37]. 
 An arbitrary regular ambient flow ( )∞v r  satisfying the Stokes equations 

can be expanded as the Taylor series about the center of particle i, 
 

( 1)

0

( ) ( ) ,
l

l l

l

∞
+

∞
=

= −∑v r r c:Ri       (175) 

 

where the (l + 1)-th rank tensors ( 1)l+c  are given by 
 

( 1) 1 ( ), 0, ..., .
!

l l l
l

+
∞= = ∞c v∇ Ri      (176) 

 

 The coefficients ( 1)l+c  depend on the choice of the particle i. Each 

component ( 1)( )
l

l l+−r c:Ri  appearing in Eq. (175) satisfies the Stokes 
equations, with the appropriately chosen pressure. Our goal is to represent it 
as a linear combination of the elementary flows u+(r − Ri). To this end, three 
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families, labeled by σ = 0, 1, 2, of the irreducible tensors cl,σ have been 
constructed [50, 80, 81] in terms of the tensors defined in Eq. (176),  
 

( 1)
1,0 ,l
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+ =c c         (177) 
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or equivalently 
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where 
1 µεγ λ  is the completely antisymmetric Levi-Civita tensor and δλµ is the 

Kronecker symbol and a  indicates the irreducible (completely symmetric 
and traceless) part of a tensor a, evaluated by the procedure described in 

Refs. [76, 77]. The first index of the tensor cl,σ denotes its rank and the second 
is the label of the family, σ = 0, 1, 2. 
 Now we define the linear operators , ,Pσ σVl l  σ = 0, 1, 2, which map 

irreducible l − th rank tensors dl into regular solutions of the Stokes 
equations,  
 

( [ ], [ ]), 0,1, 2,Pσ σ σ→ =d V d dl l l l l      (183) 
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1 0
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In terms of these operators the elementary flows σ
+ulm  and the pressure fields 

p σ
+
lm  (102)-(104) are given by 

 
( )[ ],lσ σ

+ = Γu V y R
lm l lm        (187) 

 
( )[ ].lp Pσ σ

+ = Γ y R
lm l lm        (188) 

 

Each partial flow ( 1)( )
l

l l+−r c:Ri  appearing in Eq. (175) can be in turn 
decomposed into three flows from the three families, see Refs. [80], [81], 
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In the above expression, we represent each tensor cl,σ  as a linear combination 

of the tensors ( ) ,y R
lm  
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σ σ
=−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑c c y y: R R

l l lm lm
m

      (190) 

 

 Then we use Eq. (187) to write each partial flow ( 1)( )
l

l l+−r c:Ri  as a 

combination of .σ
+ulm  

 Finally, summing up the partial flows, c.f. Eq. (175), we obtain an 
arbitrary regular flow ( )∞v r  as a combination of the elementary flows  
 

2
( )

, ,
1 1 0

1( ) ( ).
l l

ll
σ σ

σ

∞
+

∞
= =− =

⎛ ⎞
= −⎜ ⎟Γ ⎝ ⎠
∑ ∑ ∑v r c y u r: R

l lm il m
m

R    (191) 



 M. L. Ekiel-Jeżewska & E.Wajnryb 170

Therefore, 
 

( )
, ,

1( ) .
l

l
σσ∞

⎛ ⎞
= ⎜ ⎟Γ ⎝ ⎠

c c y: R
l l milm       (192) 

 
 Note that the tensors cl,σ  depend on i, c.f. Eq. (176), but ( )

,y R
l m  do not. 

Explicit expressions for the coefficients c∞ (ilmσ) for shear and Poiseuille 
flows were also given in Refs. [61] and [62], respectively. 
 Nonpolynomial regular flows can by expanded approximately by retaining 
in Eq. (191) terms with l ≤  lmax only for an arbitrary lmax. Polynomial flows can 
be expanded rigorously. Indeed, in this case, cl,σ  = 0 for l > lmax, where lmax − 1 
is the order of the polynomial, see (180), (181) and (182). 
 The algorithm described in this Appendix has been implemented in 
MATHEMATICA, used in Ref. [39] to decompose shear, modulated shear, 
quadratic and Poiseuille flows, and applied to analyze particle dynamics in 
Refs. [64, 65, 69]. 
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