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 The paper concerns the dependence of thermomechanical properties of three-

dimensional solid nanoclusters on the cluster size as well as on its shape. Investiga-

tions are restricted to the class of so-called homogeneous thermodynamic processes 

with kinematics based on affine group and referred to the one whole body, not an 

infinite system of subbodies. It is shown that then the thermodynamics of nano-

clusters is consistent with dynamics of affinely-rigid bodies (constrained or not and 

elastic as well as admitting viscosity effects). The main topics discussed are: (i) a 

group-theoretical description of structurally stable solid nanoclusters; (ii) a phe-

nomenological model of mechanical properties of nanoclusters revealing the coexis-

tence of solid and liquid states in a finite interval of absolute temperature.  

 

 

 

1. Introduction 

 

 Between the dimensions of an atomic scale and the dimensions which character-

ize bulk materials is to be found a size range where condensed matter exhibits some 

remarkable specific properties [1]. One particular phenomenon – the dependence of a 

cluster physical properties upon its size and shape – occurs for clusters in the nano-

meter scale. For example, the strength of nanoclusters (i.e. compact three-

dimensional aggregates of atoms and/or molecules with the mean size not greater 

than 100 nm) increases when the cluster size decreases [2]. The elastic moduli of 
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such clusters reveal also the size effect [3]. These are examples of mechanical size 

effects. 

 It is also observed that metallic nanoclusters manifest the size-dependent struc-

tural transitions of their material structure. Namely, not only the crystal structure of 

small metallic particles can be dependent on their size (e.g. No, Mo, W and Ta parti-

cles of diameters 5-10 nm have face-centered cubic or hexagonal structure in place of 

the usual volume-centered cubic lattice), but even some such particles can lose their 

crystal structure and become amorphous [4].  

 The shape of a nanostructure can depend on its size. Namely, it is observed that 

sodium clusters with a small number of atoms (<150-200) crystallize in the form of 

icosahedra. The structure becomes unstable for a large number of atoms and trans-

forms to cubo-octahedra (i.e. a cube with truncated corners), which is just a path of 

the face-centered cubic lattice [5, 6]. More generally, when a large number of metal-

lic atoms aggregate in a slow manner at low temperature, then they take the shape o a 

regular polyhedron with the close-packed structure [5]. Moreover, it is known that 

the structurally most stable are such symmetric crystalline nanoclusters that are in-

variant under the action of the point symmetry group of their crystal structure [7]. It 

is a shape effect. 

 There exist also the thermodynamic size effects. For example, the reduction of the 

melting point of small gold aggregates as a function of decreasing particle size is 

observed [1, 4]. Note that although it is only possible to formulate a valid theoretical 

description of the melting point in the thermodynamic limit (i.e. for those systems 

whose dimensions are infinite), nevertheless, it is possible to make an experimental 

determination of the melting temperature of a small system. Three different criteria 

could be used for this determination [1]: (i) the disappearance of the state of order in 

the solid; (ii) the sharp variation of some physical properties: evaporation rate, mag-

netic susceptibility, etc.; (iii) the sudden change in the particle shape (e.g. it is attrib-

uted to the transition from polyhedral to spherical shapes, undergone by some crys-

tals to an effect associated with melting of the solid [1]). 

 More generally, we are dealing with the problem of a comprehensive understand-

ing of the thermodynamics of finite (and macroscopically small) material systems 

that can contain e.g. even less than 200 atoms [6, 8]. Consequently, such systems can 

not be satisfactorily described, in a manner consistent with the phenomenological 
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classical thermodynamics, by means of the classical statistical physics. However, for 

example, a finite system of mutually interacting identical particles, the dynamical 

behavior of which is random, can admit the thermodynamical interpretation of the 

Markovian-type evolution of the system ([9, Part II] and [10]). Namely, there can be 

shown the existence of such thermodynamically permitted Markov-type processes in 

small systems that are consistent with the assumption of thermal character of the in-

teraction of the system with the environment, with the first and second laws of ther-

modynamics, with the postulate of the existence of a stationary (in general nonequi-

librium), uniquely defined Gibbs-type state, and with the relaxation postulate stating 

that the process relax, independently of the choice of the initial condition, towards to 

this Gibbs-type state. Moreover, if the environment of the system is a thermostat, 

then we can generalize, identifying the uniform temperature attributed to the system 

with the (uniform) temperature of the thermostat, the equilibrium definition of the 

free energy to the nonequilibrium situation [10]. This example shows that the classi-

cal thermodynamics can be consistent with the randomness of microstate dynamics 

of macroscopically small systems containing a small number of atoms or molecules. 

 If nanoclusters are treated as macroscopically small continuous bodies, then their 

deformation and temperature can be treated as those approximated to uniform state 

variables of the cluster. Particularly, it means that nanoclusters can be considered as 

macroscopically small “affinely-rigid” bodies (i.e. homogeneously deformed bodies 

with translational degree of freedom of their mass center), with dynamics being a 

generalization of the rigid body dynamics and originally formulated as a theory 

which is not associated with an observation scale [11]. The uniform temperature of a 

thermostat can be attributed, according to the previous remarks, to the nanocluster 

and interpreted as a measure of its thermal state. Note that this definition of the tem-

perature of a small system is consistent with the above-mentioned method of a ex-

perimental determination of its melting temperature. Thus, owing to these approxi-

mations, we are dealing with the so-called homogeneous thermodynamic processes 

[12, 13] with kinematics based on the affine group and considered as being depend-

ent on the body size and shape. The thermomechanical properties of nanoclusters can 

be described then in the framework of such classical thermodynamics which refers to 

one whole system, not an infinite family of subsystems ([9, 16] and Sections 2-5). It 

is a phenomenological version of the so-called nanothermodynamics (e.g. [14] and 
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[15]), extended by a non-local model of dynamics of isolated nanoclusters ([9, 16] 

and Sections 2, 6 and 7). 

 If the mean size of clusters is not greater than 100 nm, then the dependence of 

thermomechanical properties of these clusters on their size as well as their shape, 

becomes physically significant effects (it is especially visible in the case of polycrys-

talline nanoclusters with the size grains less than 10 nm) [2, 17]. That is why we re-

strict ourselves to the case of such nanoclusters only. Note also that the proposed 

approach to the description of nanoclusters can be applied, for example, to the inves-

tigations of “classical” behavior of the molecules of the fullerene . This particular 

case is interesting from the point of view of the question if and how the quantum 

theory applies to macroscopic objects.  is of course not a macroscopic object, but 

these molecules have a mass at least one order of magnitude greater than that of any 

other object whose wave properties have been previously observed [18]. It extends 

the applicability of wave-particle duality by about one order of magnitude in the 

macroscopic direction. However, it should be stressed that there are about 15 orders 

of magnitude to go before we reach the mass of anything we would normally think of 

as macroscopic [18]. 

60C

60C

 

 

  2. Thermoelastic nanoclusters 

 

 We will deal with homogeneous, compact and connected nanoclusters (called 

also size-effect bodies [14, Part I]) of immovable center of mass, homogeneously 

deformed end endowed with an uniform temperature (see Section 1). Spatial configu-

rations of such a body can be identified with subsets B of the three-dimensional 

Euclidean point space 3E  with a distinguished point 3o E∈  (say e.g. – the center of 

mass of the nanocluster). The point space 3E  can be identified then with the Euclid-

ean vector space  of translations in 3E 3E , the spatial configurations of the body can 

be considered as subsets 3EB ⊂  of the form ( )( )0B l B= F , where  is a dis-

tinguished spatial configuration of the body called its reference configuration and 

identified with the body itself, 

3E⊂0B

( )l F  denotes the following linear mapping in :  3E
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(2.1) 
( )( ) ( )

( ) ( ){ } ( )

3
0

3 3 3 3

, , E ,

E E : det , E E

l B GL

GL L L

+

+

= = ∈ ∈

= ∈ = ⊗

x F X FX X F

F F > 0 3E ,

)

 

and the tensor space  is the 9-dimensional Euclidean vector space with respect 

to the standard scalar product defined by 

( 3EL

( )Ttr⋅ =A B AB  for ( )3, EL∈A B , and  

denotes the transposition of B. The mass m of the body 

TB

0B  is the same for all its spa-

tial configurations B, and the volumetric mass density ρ  of these configurations is 

defined by: 

(2.2) 
( ) ( )

( ) ( ) ( ) ( )
0 0

0

ρ V ρV ,

V V ,

m B B

B J B J

= =

= =F F det ,F
 

where ( )V B  denotes the volume of B. Note that if particles constituting a cluster 0B  

are close-packed and have the same mass density , then the mass density  of 

this body is approximated by . It is e.g. the case of fullerene  clusters [19] but 

it is not the case of single  molecules with all carbon atoms located in vertices of 

a truncated icosahedron.  

ρ p 0ρ

ρ p 60C

60C

 The domain of the deformation gradient F may be restricted, for physical reasons 

(cf. the size effect discussed Section 1), to an open subset ( ) ( )3 3E EM GL L+⊂ ⊂ . 

More generally, we may consider mechanically constrained nanoclusters defined by 

the condition that the set M of admissible deformation gradients of a nanocluster is a 

connected differential manifold such that [20] 

(M1)   , ( )3EM GL+⊂

(M2)   M∈1 , 

(M3)   , ( )3E ,SO M M∈ ∈ ⇒Q F QF∈

where 1 denotes the unity element of the Lie group ( )3EGL+  and ( )3ESO  denotes 

the proper orthogonal group on . The condition (M2) states that a reference con-

figuration 

3E

0B  of the body is consistent with constraints and the condition (M3) 

means that all rigid motions of the body are admitted by constraints. We will say that 

0B  is an unconstrained body if ( )( )3dim 9 dim EM GL+= =  and that 0B  has con-
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straints if . Particularly, we will say that the body has scalar constraints if 

[13, 20] 

dim 9M <

(2.3) ( ) ( ){ }3E : 0 ,M GL h+= ∈ =F F  

where ( )kh C U∈ , , 2k ≥ M U⊂  and U is an open and connected subset of the Lie 

group . The condition (M3) enables to define h as the so-called objective 

scalar; that is, for each 

( 3EGL+ )
M∈F , the following condition should be fulfilled [13]: 

(2.4) ( ) ( ) ( )3E ,SO h h∀ ∈ =Q QF .F  

 Let I +⊂  be an interval of absolute temperatures. In the classical thermody-

namics, the mechanical influence on a body 0B  can be introduced into the theory by 

what is called Gibbs form on M I×  defined by the formula 

(2.5) θ ,dE dS dΩ = − + ⋅N F  

where θ I∈  is an absolute temperature of the body 0B  (see remarks in Section 1), 

 is an infinitesimal deformation gradient increment along an arbitrary direction in 

 and the tensor field N with values in 

dF

( 3EL ) ( )3EL  is called the generalized thermo-

dynamic force. The scalars E and S of class , , are defined for all thermody-

namic configurations 

kC k 2≥

( ), θ M I= ∈λ F ×  and denote the total internal energy and the 

entropy of the body 0B , respectively. These scalars are related to the total Helmholtz 

free energy Ψ  of the body by the so-called Legendre transformation: 

(2.6)  ( ) ( ) ( )0 0 0; ; θ ; .B E B S BΨ = −λ λ λ  

We will assume that the scalars E, Ψ and S are extensible to scalars of class , 

, defined on an open and connected set U such that . The 

dependence of these scalars on the (compact and connected) geometrical figure 

kC

2k ≥ ( 3EM U GL+⊂ ⊂ )
0B  

represents the dependence of thermomechanical properties of the nanocluster upon 

its size and shape (Section 1). Moreover, these scalars would be objective according 

to the rule (2.4) (with 0B  and  treated as parameters). The influence of mechanical 

action (i.e. the generalized thermodynamic force N) on the change of internal energy 

and entropy is described by the following dissipation inequality:  

θ

(2.7) ( ); 00Ω Β ,≤λ  
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where ( ), θ .M I= ∈ ×Fλ  The nanocluster is called then thermoelastic. 

 An unconstrained thermoelastic nanocluster does not reveal dissipation because 

then, for each thermodynamic configuration ( ) ( )3, θ EGL I+= ∈Fλ × , we have [13]: 

(2.8) ( ); 00Ω Β .=λ  

Eq.(2.8) is equivalent to the following formulae defining the thermomechanical re-

sponse of 0B : 

(2.9) , ,
θ

SΨ Ψ∂ ∂
= − = −

∂ ∂
N

F
 

and stating that the free energy function is the so-called thermodynamic potential. A 

stationary state of this nanocluster 0B  is defined as the thermodynamic configuration 

( ) ( )3
0 0 0, θ EGL I+∈ ×Fλ =  such that 

(2.10) ( )0; 0d 0Ψ Β ,=λ  

what is equivalent to the following conditions: 

(2.11) ( ) ( )0 0 0 0; , ;B S B 0.= =N 0λ λ  

The stationary state of the form ( )0 , θ= 1λ 0  will be called natural at the temperature 

0θ I∈ . 

 Let 0B  be a (mechanically) constrained nanocluster endowed with the scalars E, 

Ψ and S of Eqs.(2.5)-(2.7), extensible to scalars of class , , defined on an 

open and connected set U such that 

kC 2k ≥

( )3EM U GL+⊂ ⊂ . Note that then, even in the 

“purely mechanical” case of isothermal ( θ 0d = ) and isentropic ( ) states for 

which the dissipation inequality reduces to the following condition: 

0dS =

(2.12) 0,d dΩ Ψ= + ⋅ ≤N F  

Eq.(2.8) with M I∈ ×λ  is, in general, incorrect [20]. Consequently, the free energy 

function is not here a thermodynamic potential. In this paper we postulate that the 

mechanical constraints are ideal in this sense that Eq.(2.8) and the condition  

(2.13) ( ) ( )0 θ 0; ;S B Ψ Β= −∂ ,λ λ  

are fulfilled for each thermodynamic configuration M I∈ ×λ . In this case, the gen-

eralized thermodynamic force N can be written in the form 

(2.14) ( ) ( ) ( )0 0 c; ;B BΨ Β= −∂ +FN N 0; ,λ λ λ  
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where  is an undefined tensor field on cN M I×  such that 

(2.15) ( ) ( )c 0, θ ; T ,M I B ⊥∈ × ⇒ ∈ FF Nλ = λ M

)E

)

 

and  is the orthogonal complement in the Euclidean tensor space 

 of the vector space 

( 3T M L⊥ ⊂F

( 3EL ( )3T M L⊂F E , tangent to M  at the point M∈F ; that is, 

independently of the choice of the temperature θ I∈ , we have: 

(2.16) ( )c 0T , ; , θ 0.M B∀ ∈ ⋅ =FF N F F  

Particularly, for scalar constraints we have (cf. [13]): 

(2.17) ( ) ( ) ( )c 0 0; , θ ; , θ ,B Bα= ∂FN F F Fh  

where α  is an undefined scalar.  

 The objectivity condition of a generalized thermodynamic force N takes, for each 

thermodynamic configuration ( ), θ M I= ∈ ×λ F , the following form [13]: 

(2.18) ( ) ( ) ( )3
0 0E , ; , θ ; , θ .SO B B∀ ∈ =Q N QF QN F  

It follows from the objectivity of the Helmholtz free energy function Ψ  and from 

Eq.(2.14) that Eq.(2.18) reduces, for mechanically constrained bodies, to the objec-

tivity condition of the undefined generalized constraint force . Particularly, for 

scalar constraints this reduces itself, according to Eq.(2.4), to the objectivity condi-

tion of the undefined scalar 

cN

α . 

 The above-discussed compact and connected nanoclusters, unconstrained or ide-

ally constrained and revealing the objective thermomechanical response, can be iden-

tified as thermoelastic. Note that, contrary to the thermoelastic simple materials (see 

e.g. [13]) for which the dissipation coming from the heat conduction appears, the 

such defined thermoelastic nanoclusters are perfectly thermoelastic in this sense that 

they are elastic within a certain range of temperature. 

 

 

  3. Solid nanoclusters 

 

 Let us observe that if the size and shape effects of a perfectly thermoelastic body 

0B  (constrained or unconstrained – Section 2) can be neglected, then the tensor field 

( )3ˆ : M I L× →T E  of the form 
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(3.1)  ( ) 1
0

ˆ V ,B −= −T N

where the tensor field N is defined by Eq.(2.14) and ( )0V B  denotes the volume of 

the body 0B  (identified with its reference configuration – Section 2), reduces to the 

so-called Piola stress tensor for (homogeneously deformed) simple thermoelastic 

bodies (see e.g. [13]). Thereby, we can consider  as a generalized Piola stress ten-

sor assigned to the one whole nanocluster 

T̂

0B . Consequently, the one-parameter field 

of surface forces θ
ˆ , θ I∈t , of the form: 

(3.2) ( ) ( ) ( )θ 0 0
ˆˆ ; , ; , θ ,B B= −t F X T F n X0  

where ( ), θ M I= ∈λ F ×  and ( )0n X , 0B∈∂X , denotes the outward normal unit 

vector at the point X of the boundary cluster 0B∂ , can be interpreted as a field of 

non-local internal forces acting on the surface 0B∂ . It ought to be stressed that al-

though the tensor  of Eq.(3.1) is a global counterpart of the Piola stress tensor, it is 

not a measure of stress as normally understood. Nevertheless,  can be interpreted 

as a dipole moment  of internal surface forces defined by  according to 

Eq.(3.2) and acting on the nanocluster boundary. Namely, since [9, 21]: 

T̂
TN

intM̂ T̂

(3.3) ( ) ( ) ( )
0

int 0 θ 0
ˆ ˆ; , θ ; , ,

B

B B
∂

= ⊗∫M F X t F X dF X

nt

 

and thus 

(3.4)  ( ) 1 T
0 i

ˆ ˆV ,B −= −T M

we can take the dipole moment as a global measure of these internal surface forces. 

We obtain then the following interpretation rule of the generalized thermodynamic 

force: 

(3.5)  T
int

ˆ .=N M

 We will consider also the generalized Cauchy stress tensor defined as [9, 16]:  

(3.6)  ( ) ( ) ( ) ( ) ( )1 1T T
0 0 0

ˆ; , θ ; , θ V ; , θ ,B J B B B− −= = −T F F T F F N F F

where ( )( )0B l B= F  denotes the deformed spatial configuration of 0B , and 

Eqs.(2.1), (2.2) and (3.1) were taken into account. Particularly, it follows from the 

objectivity of the free energy function and from Eqs.(2.9), (2.18), (3.1) and (3.6) that 

the generalized Cauchy stress tensor is, in the case of unconstrained perfectly ther-
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moelastic nanoclusters (Section 2), a symmetric and objective tensor function with 

respect to the variable F (see e.g. [13]) of the form [9, 16]: 

(3.7)  
( ) ( ) ( )

( ) ( ) ( )

TT
0 0 0

1
0 0

; , θ ; , θ ; , θ ,

; , θ V ; , θ ,

B B B

B B Ψ Β−

= =

= ∂U

T F Rh U R T F

h U U U

where the so-called polar decomposition of F (e.g. [13]) was taken into account:  

(3.8) ( ) ( )3 T, E ,SO GL+= ∈ = ∈F RU R U U 3E . 

Introducing the one-parameter field of internal forces , θt θ I∈ , acting on the bound-

ary B∂  of the deformed spatial configuration B  of 0B : 

(3.9) 
( ) ( ) ( )θ 0 0

0

; , ; , θ ,
, ,

B B
B B

= −

= ∈∂ ∈∂

t F x T F n x
x FX X

 

where n is the field of outward unit vectors normal to B∂ , we obtain that the dipole 

moment  of these forces defined as intM

(3.10) ( ) ( ) ( )int 0 θ 0; , θ ; , ,
B

B B
∂

= ⊗∫M F x t F x dF x  

has the following representation: 

(3.11) ( ) ( ) ( ) ( )int 0 int 0 0
ˆ; , θ ; , θ V ; , θ ,B B B B−M F = FM F = T F   

and thus, according to Eqs.(2.18) and (3.6), it is also a symmetric and objective ten-

sor function with respect to the variable M∈F . 

 Now, we can define the insensibility group ( )θ 0G B  at the temperature θ I∈  of 

the unconstrained and perfectly thermoelastic nanocluster 0B  as [9, 16]: 

(3.12) 
( ) ( ) ( ) ( ) ({ )}

( ) ( ){ }

3 3
θ 0 0

3 3

E : E , ; , θ ; , θ ,

E E : det 1 .

G B SL GL B B

SL GL

+

+

= ∈ ∀ ∈

= ∈ =

H F T FH = T F

F F

0
 

We will say, imitating the concept of simple solid materials (see [13]), that the con-

sidered unconstrained and perfectly thermoelastic nanocluster 0B  is, within the range 

I of temperature, an undistorted solid nanocluster, if [16] 

(3.13) ( ) ( )3
θ 0θ , EI G B SO∀ ∈ ⊂ .  

It can be shown that then (see [13] and [16]): 

(3.14) ( ) ( ) ( ) ( ) ({ )}3 3
θ 0 0E : E , ; , θ ; , θ .G B SO GL B 0Ψ Ψ Β+= ∈ ∀ ∈ =Q F FQ F  
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Note that in particular applications concerning solid bodies, the existence of an un-

stressed spatial configuration of the body is usually assumed [13]. We will denote by 

 a thermoelastic undistorted solid nanocluster such that 
00 θB B=

(3.15) ( )0 0 0 0θ , ; , θ .I B∃ ∈ =T 1 0  

For example, it is the case of nanocluster 0B  being in a natural stationary state at the 

temperature 0θ I∈  (Section 2). 

 We will also say, taking into account remarks concerning the structural stability 

of nanoclusters (Section 1), that the (perfectly thermoelastic) undistorted solid nano-

cluster is, within the range I of temperature, a structurally stable solid nanocluster, if 

[16]: 

(3.16) ( ) ( )θ 0 0θ , ,I G B g B∀ ∈ ⊂  

where  is the group of rotational symmetries of the geometrical figure ( 0g B ) 0B : 

(3.17) ( ) ( ) ( )( ){ }3
0 0E :g B SO l B B= ∈ =Q Q 0 .  

 

 

  4. Liquid-like response of nanoclusters 

 

 The science of nanoscale concerns the properties and behavior of mesoscale ag-

gregates of atoms and/or molecules, at a scale not yet large enough to be considered 

macroscopic but far beyond what can be called microscopic (Section 1). As we 

shrink the mesoscale to the nanoscale, physics becomes increasingly dominated by 

the surfaces. Particularly, most of the unique features of crystalline nanoclusters arise 

from a very high ratio of the number of surface atoms to the total number of atoms in 

the cluster. The well-known phenomenon of the dependence of shape of fullerenes 

on the number of their surface atoms is an example of such a property of nano-

clusters [19]. Therefore, in the case of nanoclusters, the surface energy substantially 

affects the properties of the bulk material [6]. Note also that, on the nanoscale obser-

vation level, the notion of the state of matter takes a new meaning. Namely, it fol-

lows from theoretical predictions, confirmed by computer modeling and experimen-

tal observations, that at least for some particular sizes of the crystalline nanoclusters 

they would exhibit a coexistence of solid and liquid states within a finite range of 
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temperature near the melting point. It is supposed that in the coexistence region, a 

nanocluster fluctuates back and forth between its solid state (with the lowest-free 

energy) and its liquid state (with the higher-free energy). Thus, it is the case when we 

can only state that, within a finite range temperature and pressure, the nanocluster 

occurs in the condensed state [4, 19]. This makes small clusters different from the 

bulk systems whose solid and liquid phases coexist only at a single temperature 

point, the melting point. Consequently, taking into account these properties of nano-

clusters and their properties discussed in Section 1, one may even attempt to identify 

nanostructures as constituting a new phase of matter – the nanomatter [6]. 

 The above remarks suggest to consider a class of such perfectly thermoelastic 

nanoclusters (Section 2) that reveal some properties of solids as well as fluids. First 

of all, let us observe that a fluid is commonly regarded as a material having “no pre-

ferred configurations” [13]. We will say, in agreement with this statement, that a 

perfectly thermoelastic nanocluster 0B  (Section 2) reveals the liquid-like response if 

its total free energy function Ψ  fulfils the following condition [9]: 

(4.1) 
( ) ( ) ( )( )( )

( ) ( ) ( )( ){ }
0 θ 0

θ 0 0 0

ˆ, θ , ; , θ Φ ,

Φ̂ : , ,M M

M I l B

W B W B B l B M

Ψ Β∀ ∈ × =

→ = =

F F F

F FR .∈

)

 

The objectivity condition of the free energy function and the definition of mechani-

cally constrained nanoclusters (Section 2) mean that the set  of all spatial 

configurations of 

( 0MW B

0B  is closed under the action of proper orthogonal group ( )3ESO  

and that the functionals , θΦ̂ θ I∈ , are objective; that is, for each ( )0MB W B∈ , the 

condition 

(4.2) ( ) ( )( )( ) ( )3
θ θ

ˆ ˆE , Φ Φ ,SO l B B∀ ∈ =Q Q  

is fulfilled. If , then ( 3EM GL+= ) 0B  is an unconstrained nanocluster and the set of 

all its spatial configurations is denoted ( )0W B .  

 Let us consider the case when the nanocluster 0B  as well as its certain deformed 

configuration ( )( ) ( )0 0B l B W B= ∈P P , ( )3EGL+∈P , are unconstrained and per-

fectly thermoelastic undistorted solid nanoclusters (Section 3) with the liquid-like 

response defined, according to Eq.(4.1) with ( ) ( ) (0 0MW B W B W B= = P ) , by the 
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one-parameter family of functionals ( )θ 0Φ̂ : W B →R , θ I∈ . It follows from 

Eqs.(3.13), (3.14), (3.17), (4.1) and (4.2) that it should be [16]: 

(4.3) ( ) ( ) ( ) ( )1 3
θ θ 0θ , EI g B G B G B SO−∀ ∈ ⊂ = ⊂P P P P .  

Thus, applying the polar decomposition formula of Eq.(3.8): 

(4.4) ( ) ( ) ,=P R P U P  

we obtain that [13, 16] 

(4.5) ( ) ( ) ( ) ( ) 1
θ 0G B G B −=P R P R P  

and 

(4.6) ( ) ( ) ( )T
θ 0 , .G B∀ ∈ =Q QU P Q U P  

For example, if ( )( )θ θ 0B l B= P  and 
00 θB B= , 0θ, θ I∈ , are unstressed spatial con-

figurations of the nanocluster 0B , that is (Section 3): 

(4.7) ( ) ( )θ 0 0; , θ ; , θ ,B BT 1 = T 1 = 0  

where T denotes the generalized Cauchy stress tensor (Section 3), then Eqs.(4.3)-

(4.6) with θ=P P , θ I∈ , describe, within a certain range of temperature I, the influ-

ence of temperatures on the insensibility groups of (unconstrained and perfectly 

thermoelastic) undistorted solid nanoclusters with the liquid-like response [16]. 

 If the undistorted solid nanocluster 0B  with the liquid-like response is addition-

ally structurally stable (Section 3), then, according to Eq.(3.16), Eq.(4.3) with the 

condition 

(4.8) ( ) ( )θ 0 0θ ,I G B g B∀ ∈ =  

should be taken into account. Note that, according to the well-known theorem 

(e.g.[22], [23]), there exists a correspondence between finite subgroups of the proper 

rotation group ( )3ESO  and the symmetries of regular polyhedrons. Namely, sym-

metries of a tetrahedron define the tetrahedron group T, symmetries of an octahe-

dron define the octahedron group O and symmetries of an icosahedron define the 

icosahedron group I. A cube has the same symmetry group as an octahedron and a 

dodecahedron has the same symmetry group as an icosahedron [23]. Particularly, it 

follows from Eq.(4.6) that if  

(4.9) ( )0 ,g B O=  
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then 

(4.10)  ( ) ,α α= > 0.U P 1  

Moreover, according to Eqs.(3.17), (4.5), (4.6) and (4.8), Eq.(4.10) is also valid for 

(4.11) ( ) ( )3
0 E ,g B SO=  

and 0B  and BP  being balls of a radius 0R  and 0R Rα= , respectively. In this case 

(4.12) ( ) ( ) ( )3
θθ , EI G B g B SO∀ ∈ = =P P .  

If 

(4.13) ( )0 ,g B T O= ⊂  

then 

(4.14) 
( ) ,

0, 0, 1,
α β

α α β
= + ⊗

> + > ⋅ =

U P 1 k k
k k

 

and Eq.(4.14) is also valid if 

(4.15) ( ) ( )0 ,g B G= k  

is the group of all rotations about an axis parallel to the unit vector k. In this case 

(4.16) ( ) ( ) ( )( ) ( ) ( ) ( ) 1
θθ , ,I G B g B G G −∀ ∈ = = =P P R P k R P k R P  

and the boundaries 0B∂  (of 0B ) and B∂ P  (of BP ) would be e.g. surfaces of revolu-

tions with the axes of revolution parallel to k and ( )R P k , respectively. 

 The groups ( )3ESO , ( )G k  and the icosahedron group I are not crystallographic 

point groups [13, 22, 23]. However, the groups O and T are point groups correspond-

ing to the cubic and to the tetragonal (and hexagonal) crystallographic systems, re-

spectively [13, 22, 23]. Therefore, structurally stable are e.g. the undistorted perfectly 

thermoelastic nanoclusters 0B  and ( )( )0B l B=P P , where  is defined by 

Eqs.(4.4) and (4.6), such that: (i) 

( 3EGL+∈P )
0B  is an isotropic ball or a ball with a cubic crystal 

lattice; (ii) 0B  has the boundary 0B∂  being a surface of revolution and this nanoclus-

ter is transversally isotropic or with a tetragonal or hexagonal crystal lattice. Let us 

observe that in both above examples, the corresponding tensors ( )U P  (of Eq.(4.10) 

in the case (i) or of Eq.(4.14) in the case (ii)) define shape-preserving deformations 

0B B→ P . For example, if tensors θ=P P , θ I∈ , are defined by Eq.(4.7) and addi-
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tionally , θ( )θ =R P 1 I∈ , then these shape-preserving deformations of the nanoclus-

ter 0B  can be identified with free thermal distortions of this nanocluster and thus the 

family { }θ , θIB B= ∈ I  can be recognized as the one consisting of thermally equiva-

lent nanoclusters.  

 Note that, as it was mentioned in Section 1, metallic nanoclusters with very small 

number of atoms can crystallize (in contrast to their bulk crystalline counterparts) in 

the form of icosahedra. It is in line with our concept of liquid-like response of (mac-

roscopically small) solid nanoclusters because an icosahedral short-range arrange-

ment has been found in liquids [24]. 

 

 

  5. Quasi-solid state 

 

 The notion of liquid-like response of nanoclusters introduced in Section 4 is con-

sistent with the group-theoretical description of mechanical properties of solids as 

well as fluids, formulated in the framework of the theory of simple materials (e.g. 

[13]). Let us consider, in order to illustrate this consistency, the one-parameter family 

of functionals , θΦ̂ : W → R θ I∈ , where W is the set of all compact and convex 

three-dimensional bodies in  endowed with the so-called Hausdorff (or Blashe) 

metric [25, 26], such that for each 

3E

0B W∈  the following condition holds (cf. (4.1)): 

(5.1) ( ) ( ) ( ) ( )( )( )3
0 θ 0

ˆ, θ E , ; , θ Φ .GL I l BΨ Β+∀ ∈ × =F F F  

It can be shown (basing on the Hadwiger integral theorem – [25-27]) that if these 

functionals are continuous, invariant with respect to the action of isometry group in 

 and additive (in this sense that 3E ( ) ( ) ( ) (θ 1 2 θ 1 θ 2 θ 1 2
ˆ ˆ ˆ ˆΦ Φ Φ Φ )B B B B B−∪ = + ∩B  

for every 1 2,B B W∈ )), then they can be represented in the following general form: 

(5.2) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )θΦ̂ a θ V b θ F c θ M d θ ,B B B B= + + +  

where , , , ( )a θ ( )b θ ( )c θ ( )d θ  are arbitrary constants assumed here to be functions 

of class  of the temperature parameter 2C θ I∈ . ( )V B , ( )F B  and ( )M B  denote the 

volume of the domain B , the surface field of its boundary B∂  and the total mean 
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curvature of B∂ , respectively. The quantity ( )M / 2B π , known in rock analysis and 

in stereographic metallography, is interpreted as the mean grain width [25, 27]. 

Eqs.(5.1) and (5.2) admit the case of convex bodies with a piecewise smooth bounda-

ries, i.e. containing some edges and corners [26, 27]. For example, if 0B  is a cube 

with edges of length  directed along -directions of an orthonormal base 0l ke

{ }k ; k 1, 2, 3=e  in the Euclidean vector space , 3E ( )( )0B l B= F , where the tensor 

( )3EGL+∈F  is defined by Eq.(3.8) and the following condition: 

(5.3) k k k

k l kl k

, k 1, 2, 3
δ , 0

,
,

λ
λ

= =
⋅ = >

Ue e
e e

 

then B is a rectangular parallelepiped whose concurrent edges have directions 

, lengths l lk =a Rek k k 0λ= k 1, 2, 3, = , and the following formulae hold [16, 30]: 

(5.4) 

( )
( ) ( )
( ) ( )

3
1 2 3 0

2
1 2 2 3 3 1 0

1 2 3 0

V III,

F 2 2

M I

B l l l l

II,

,

B l l l l l l l

B l l l lπ π

= =

= + + =

= + + =

 

where I, II and III are the well-known principal invariants of the deformation tensor 

F, which are used in the theory of isotropic elastic materials [13]: 

(5.5) ( )
1 2 3

2 2
1 2 2 3 3 1

1 2 3

I tr ,
1II tr tr ,
2

III det .

λ λ λ

λ λ λ λ λ λ

λ λ λ

= + +

⎡ ⎤= − = + +⎣ ⎦
= =

U =

U U

U

 

Conversely, for any deformation tensor ( )3EGL+∈F  we can define, according to 

Eqs.(3.8) and (5.3), such a cube 0B  that principal invariants of F can be represented 

by the geometric parameters of Eq. (5.4). This example suggests that the functionals 

 of Eq.(5.2) can be proposed as global counterparts of principal 

invariants of the deformation tensors considered in the local theory of elastic materi-

als.  

V, F, M : W +→ R

 Note that although elastic fluids are such isotropic elastic materials for which 

stresses are dependent on the principal invariant III of Eq.(5.5) only [13], the formula  

(5.6) 
( ) ( ) ( ) ( ) ( )

( ) ( )
θΦ̂ ε θ V γ θ F ,

ε θ 0, γ θ 0,

B B B= +

≥ >
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is considered in the classical capillarity theory. The constant  depends on bulk 

interatomic interactions only and thus it vanishes in the case of incompressible fluids 

(or solids). The constant 

( )ε θ

( )γ θ  is the so-called surface tension and it is a quantity 

attributed to the boundary thin film (infinitely thin, i.e. reduced to the boundary sur-

face, in the phenomenological approximation used here). Since the surface tension 

can be identified with the free energy density needed to change the boundary surface 

field unit, even the boundary solid surface can be endowed with this quantity [28]. In 

this case,  can be considered as a quantity conditioned by the interactions of 

atoms located on the boundary solid surface [28, 29] and it is a positive quantity at 

the temperature lower than the melting temperature [28]. In the case of solids bodies 

for which their size is much greater than an effective size of the boundary layer, the 

influence of the mean curvature on the total free energy Ψ of Eqs.(5.1) and (5.2) can 

be neglected and thus the formula (5.6) can be then accepted [29]. However, it is not 

the case of nanoclusters for which the formula (5.2) with 

( )γ θ

(5.7) ( ) ( ) ( ) ( ) ( ) ( )ε θ a θ 0, γ θ b θ 0, ω θ c θ 0,= ≥ = > = ≥  

ought to be taken into account. The quantity ( )2 ω θπ  can be interpreted then as the 

free energy density needed to change the nanocluster mean width ( )M / 2B π  unit. 

On the other hand, the mean curvature is a relative geometric quantity depending on 

the Euclidean geometry of the ambient physical space in which the boundary surface 

is embedded. Consequently, the quantity ( )ω θ  should be considered as the one con-

ditioned by interactions between the boundary surface atoms and bulk atoms located 

in a boundary layer [9]. 

 Finally, it seems physically reasonable to consider a non-local nanoscale coun-

terpart of simple thermoelastic isotropic materials (solids as well as liquids – [13]) 

defined as perfectly thermoelastic, compact and convex nanoclasters with the liquid-

like response of the form given by Eq.(5.1) and by the following condition [16]: 

(5.8) ( ) ( ) ( ) ( )( )θ θ
ˆ, Φ Φ V , F , M ,B W B B B B∀ ∈ =  

where , 3
θΦ : + →R R ( ){ }3 1 2 3 3 k, , : 0, k 1, 2, 3x x x x x+ = = ∈ ≥ =R R , θ I∈ , are 

mappings of class . The generalized Cauchy stress tensor is given then by [16]: 2C
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(5.9) 

( ) ( ) ( )

( )

( ) ( )

T
0 θ 0

θ θ
0

θ
θ

; , θ V, F, M ; , θ ,

Φ Φ1; , θ F M
V F M

ΦV, F, M V, F, M ,
V

B p B

B

p

= +

∂ ∂⎛ ⎞= ∂ + ∂⎜ ⎟∂ ∂⎝ ⎠
∂

=
∂

U U

T F 1 Rt U R

t U U,  

where Eqs.(3.7), (3.8), (5.1) and (5.8) were taken into account. Thus, according to 

Eqs.(3.12) and (3.17), we have 

(5.10) ( ) ( ) ( )3
0 θ 0θ , EI g B G B SL∀ ∈ ⊂ ⊂ .  

Note that, according to Eqs.(3.12) and (5.8)-(5.10), the condition  

(5.11) ( ) ( )3
θ 0θ , EI G B SL∀ ∈ = ,  

is equivalent to the following formula: 

(5.12) ( ) ( ) ( )( )θ θ
ˆ, θ , Φ Φ V B .B W I B∀ ∈ × =  

It follows from Eq.(5.9) that the condition (5.11) describes an ideal fluid or gas. So, 

if Eq.(5.8) does not reduce to Eq.(5.12), then the condition (3.13) can be assumed. 

The nanocluster 0B W∈  is then an undistorted and perfectly thermoelastic solid 

nanocluster such that 

(5.13) ( ) ( ) ( )3
0 θ 0θ , EI g B G B SO∀ ∈ ⊂ ⊂ ,  

and thus, according to Eq.(3.16), this nanocluster is structurally stable iff the condi-

ton (4.8) is fulfilled.  

 We see that the definition of the liquid-like response of a convex nanocluster 0B  

given by Eqs.(5.1), (5.8) and (5.9) admits the case of its solid state as well as gaseous 

or liquids states. Moreover, it follows from Eq.(5.9) that while the scalar p depends 

on the actual spatial configuration of the nanocluster only, the tensor t depends on 

the choice of its reference configuration. We will say, taking into account these 

statements and remarks at the beginning of the Section 4, that the free energy func-

tion of Eqs.(5.1) and (5.8) defines the quasi-solid state of a perfectly thermoelastic 

convex nanocluster 0B . The case of Eq.(5.13) concerns an undistorted solid nano-

cluster being in the quasi-solid state [16]. 

 It has been observed that the most stable small metallic clusters have an almost 

spherical shape. The oblate or prolate shape of such a cluster means that its structure 
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is less stable [5]. Let us define, in order to introduce a measure of degree of spheric-

ity of nanoclusters being in quasi-solid state, the following effective radii: 

(5.14) 
1/3 1/ 2

V F M
3V F M, ,
4 4

r r r ,
4π π π

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=  

where V, F and M denote the volume of a nanocluster B W∈  (being in an unde-

formed or deformed state), the surface field and the total mean curvature of its 

boundary, respectively. The quantity  

(5.15) M2 ,d r=  

can be interpreted as the mean width of the nanocluster (see remarks following 

Eq.(5.2)). It is known that the following inequalities hold: 

(5.16) V F M.r r r≤ ≤  

In each of these three relations equality is attained in the case of a ball, and in this 

case only [31]. Moreover, introducing the new variables ξ  and η  by: 

(5.17) VF

M M

, ,rr
r r

ξ η= =  

we obtain that 

(5.18)  4/3
V F0 1, 0 / /r rη ξ κ η ξ< ≤ ≤ < = = ≤1,

and 1ξ =  or 1η =  or  iff the nanocluster is a ball [31]. Therefore, the variables 1κ =

ξ , η  and  define equivalent shape coefficients measuring the degree of sphericity 

of nanoclusters under consideration. In the literature is also considered the following 

shape coefficient Κ  [32] equivalent to 

κ

κ : 

(5.19) 
( )

5V

F
2 3

V V F

V ,
F

4 , 4 / 3

F
V

F r V

κ

F .rπ π

Κ = =

= =
 

For example (cf. Section 4), an icosahedron is the regular polyhedron of the highest 

shape coefficient (  - [32]). It is the case of metallic nanoclusters with a 

very small number of atoms (Section 1). Consequently, we can expect that the nano-

clusters of the shape of regular polyhedra, observed for a large number of atoms 

(Section 1), correspond to less stable shapes of nanoclusters than the icosahedral 

nanocluster is. Namely, we have [32]: 

0.835Κ =

0.791Κ =  for a dodecahedron,  for 

octahedron,  for a cube, and 

0.657Κ =

0.583Κ = 0.370Κ =  for a tetrahedron. 
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 It seems also physically reasonable to restrict ourselves to the functions  of 

Eq.(5.8) symmetric with respect to their arguments V, F, M. So, let us assume that 

θΦ

(5.20) 
( ) ( )

( )
θ θ 1 2 3

V F M

Φ V, F, M , , ,

, , , 1, 2, 3n n

s s s

s s r r r n

ϕ=

= = ,
 

where ,  and  are three functionally independent, fully symmetric functions of 

the effective radii. For example, each symmetric polynomial with respect to the vari-

ables ,  and  can be expressed as a polynomial with respect the following 

elementary symmetric functions [33]: 

1s 2s 3s

Vr Fr Mr

(5.21) ( )n
V F M 1 , 1,

2

n
n n n n

n
ds r r r nξ η⎛ ⎞= + + = + + =⎜ ⎟

⎝ ⎠
2, 3,  

where d is the mean nanocluster width defined by Eq.(5.15). For physical reasons 

(see Section 1), the following condition should be taken into account: 

(5.22) 
0

, ,d
l

α β∈  

where as  can be taken a characteristic length of the nanocluster (e.g.  - the 

mean nanocluster width for which it exhibits a coexistence of solid and liquid states). 

Note that if  is the critical length associated with a certain physical property of 

clusters, then the case 

0l 0l d= 0

0l

1β <  can describe the phenomenon that this property changes 

for the nanocluster mean with d fulfilling the condition (5.22) (see e.g. [2] and [34]). 

 

 

  6. Thermodynamic processes 

 

 Let us consider a homogeneous process [13] defined as a curve of thermody-

namic configurations (Section 2): 

(6.1) ( ), θ : ,T M I T= → ×λ F R,⊂  

where T is a time interval. Then  

(6.2) 
( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
3

, θ T ,

T E , dim T dim

t

t t

dt t t t M
dt

,M L M

= = ∈ ×

⊂ =

F

F F

λ λ F R
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where ( )T t MF  is the vector space tangent to M at the point ( )t M∈F  and it was de-

noted /f df dt=  for a tensor (or scalar) function f defined on T. We define, taking 

into account Eq.(2.5), the dissipation function δ  by 

(6.3) 
( ) ( )

( ) ( ) ( ) ( ) ( ) (
0 0

0 0 0

; ,

; ; ; θ ; ,

t B dt

)0B t E B t B t t t S B t

Ω Β δ

δ

= −

= − − ⋅ +N F
 

where ( 0; )E B t  is the internal energy, ( )0;S B t  is the entropy, ( 0; )B tN  is the gen-

eralized thermodynamic force at the instant t T∈ . Moreover, it is assumed that al-

though 

(6.4) ( ) ( )( ) ( ) ( )( )0 0 0 0; ; , ; ; ,E B t E B t S B t E B t= =λ λ  

where ( )0;E E B= λ  and ( )0;S S B= λ , M I∈ ×λ , are objective scalars (Section 2), 

nevertheless the viscosity effect of the form 

(6.5)  ( ) ( ) ( )( )0 0, ; ; ,t T B t B t t∀ ∈ N = N λ λ  

is, in general, admitted for any thermodynamic process of Eqs.(6.1) and (6.2). Intro-

ducing the so-called net working at the time t T∈  as 

(6.6) 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )( )

T
0 0 0

0 0 0 0

; ; V ; ,
ˆ; V ; V ; ,

t

t t

W B t B t t B B t t

0

,

,B t B B t B B t B l t B

= − ⋅ = ⋅ =

= − = − =

N F T D T T

N T T F
 

where  and T are the generalized Piola and Cauchy stress tensors, respectively 

(Section 2), and we have denoted: 

T̂

(6.7) ( ) ( )T1 T1, ,
2

∗ − −= = + =F F D L L L FF 1,  

we can rewrite the dissipation function in the following form: 

(6.8)  θ ,W Sδ Ψ −= −

where the relation (2.6) was taken into account. 

 We generalize the the dissipation inequality of Eq.(2.7) assuming that the dissi-

pation function of Eq.(6.3) should fulfill the following condition: 

(6.9) ( )0, ;t T B tδ 0,∀ ∈ ≥  

equivalent, according to Eq.(6.8), to the so-called reduced dissipation inequality 

[12]: 

(6.10) θ 0.W SΨ − + ≤  
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Further on we will consider homogeneous thermodynamic processes defined by 

Eqs.(6.1)-(6.9). A homogeneous thermodynamic process is called reversible if the 

dissipation function vanishes: 

(6.11)  ( )0, ;t T B tδ 0.∀ ∈ =  

All other homogeneous thermodynamic processes are called irreversible. For exam-

ple, homogeneous thermodynamic processes are reversible in the case of perfectly 

thermoelastic nanoclusters (Section 2).  

 It can be shown (imitating the case of simple thermoelastic materials with the 

viscosity effect – see e.g. [13]) that if the reduced dissipation inequality is fulfilled, 

the thermoelastic nanocluster 0B  revealing the viscosity effect is mechanically un-

constrained and the generalized Cauchy stress T of Eqs.(6.5) and (6.6) is an objec-

tive function with respect to variables ( ) ( ) ( )3, EGL L+∈ ×F L 3E

0

, then the stress is 

independent of the variable θ  and can be represented in the following form: 

(6.12)   ( ) ( ) ( ) ( )1 T
0 0 D; , θ, V ; , θ ; , θ, ,B B BΨ Β−= ∂ +⎡ ⎤⎣ ⎦FT F L F F T F L

where  

(6.13) ( ) T
D 0 D D; , θ, ,B = =T F 0 0 T T ,  

and the objectivity condition means that it should be 

(6.14) ( ) ( ) ( )3 T
0 0E , ; , θ, ; , θ, .SO B B∀ ∈ =Q T QF QLQ QT F L TQ  

The dissipation inequality reduces then to the following condition: 

(6.15) ( )Dtr 0.≥T D  

Moreover, in this case the formula (2.13) holds [13]. It ought to be stressed that the 

viscosity properties of small nanomaterial clusters are not satisfactorily recognized. 

Because of this we will limit ourselves to the case of unconstrained nanoclusters with 

viscosity effect. 

 The equivalence of heat and work is represented in the framework of thermody-

namic as a relation between the rate of increase of internal energy E due to a me-

chanical action represented by the net working W of Eq.(6.6) as well as due to a sec-

ond kind of working, ( )0;Q Q B t= , t T∈ , called the heating, which is not identified 

with anything from mechanics [12]. This relation has the form 

(6.16) ,E W Q= +  



 23  

and is called the first law of thermodynamics. It follows from Eqs.(6.3), (6.6) and 

(6.10) that the following condition should be fulfilled: 

(6.17) ( ) ( ) ( )0 0, ; θ ; ,t T Q B t t S B t∀ ∈ ≤  

what is called the second law of thermodynamics (in the Clasius-Planck form, [12]). 

A (homogeneous) thermodynamic process is considered as a process consistent with 

the first and second law of thermodynamics. A thermodynamic process is called 

adiabatic if , isentropic if 0Q = 0S = , isothermal if θ 0=  [12]. The case of per-

fectly thermoelastic nanoclusters (Section 2) is characterized by the formula 

(6.18)  θ ,Q S=

and then Eq.(6.16) can be written in the form of the following evolution equation [9]: 

(6.19) θθ ,K W Q= −∂ +F   

where ( )0; θK K B=F F  is the heat capacity at the constant deformation gradient F 

defined as 

(6.20) ( )2 2
θ θθ θ θ ,K E S Ψ/= ∂ = ∂ = − ∂ ∂F F

 

and Eqs.(2.13), (2.14)-(2.16), (3.6), (6.6), and (6.18) would be taken into account. 

Note that if the (uniform) temperature θ  attributed to the nanocluster 0B  is identified 

with the temperature of its environment considered as a thermostat (see Section 1), 

then it seems physically reasonable to restrict ourselves to the case of isothermal 

processes only. It follows from Eq.(6.19) that if 0θ θ const.= = , then  

(6.21) 
0

θ θ=θ
.Q W= ∂  

It follows from Eqs.(6.18) and (6.21) that in this case, the net working is independent 

of the temperature if and only if this isothermal process is additionally isentropic. 

Note that since an isothermal and isentropic process is also adiabatic, we are dealing 

then with the “purely mechanical” case discussed in Section 2. 

 

 

  7. Dynamics 

 

 Let  be a nanocluster with the immovable center of mass (identified with 

its reference configuration) and let , 

3
0 EB ⊂

: T M→F ( )3EM GL+⊂  be an isothermal 



 24  

(constrained or unconstrained - Section 2) homogeneous deformation process at the 

temperature θ I∈  (see remarks at the very end of Section 6). Let us assume that on 

the nanocluster act, at each instant t T∈ , external force fields: the body force field 

( ), tb X , 0IntB∈X , and the surface force field ( ), ts X , 0B∈∂X , where 0IntB  and 

0B∂  denote the interior of the nanocluster and its boundary, respectively. The volu-

metric kinetic energy  of the nanocluster (cf. the approximate representa-

tion of the mass size-effect by Eq.(2.2)) and the power 

( 0;K B t )

( )0;P B t  of external forces 

acting on it are given by: 

(7.1) 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

0 0

2
0

0

1; , ,
2

; , , , ,

B

B B

K B t t dm

P B t t t dV t t dF
∂

=

= ⋅ + ⋅

∫

∫ ∫

v X X

b X v X X s X v X X ,
 

where it was denoted (see Eq.(2.1), (6.1)) and (6.2)): 

(7.2) 
( ) ( )( )( ) ( )

( ) ( ) ( )

2

0 0 0

, ,

ρ , ρ / V .

dt l t t
dt

dm dV m B

= =

= =

v X F X F X v v v

X X

,= ⋅
 

 Since the volumetric net working ( )0;W B t  of Eq.(6.6) has in an inertial frame 

reference the following representation [13]: 

(7.3) ( ) ( ) ( )0 0 0; ;W B t P B t K B t= − ; ,

M

0,

 

we obtain, taking into account Eqs.(6.6) and (7.1)-(7.3), that at each instant t  and 

for arbitrary , the following relation holds: 

T∈

( ) ( )T tt ∈ FF

(7.4) ( ) ( ) ( ) ( ) ( )T
ext 0 0 0

ˆ ; ;B t t B B t t⎡ ⎤− + ⋅⎣ ⎦M F J N F =

)

 

where (ext 0
ˆ ;B tM  denotes the dipole moment of external forces referred to the ref-

erence configuration 0B  (identified with the nanocluster itself): 

(7.5) ( ) ( ) ( ) ( ) (
0 0

ext 0
ˆ ; , ,

B B

B t t dV t dF
∂

= ⊗ + ⊗∫ ∫M X b X X X s X )X  

and, according to the condition of immobility of the mass center, the total external 

force acting on the nanocluster 0B  should vanish at each instant t : T∈

(7.6) ( ) ( ) ( ) ( )
0 0

, ,
B B

t dV t dF
∂

.+ =∫ ∫b X X s X X 0  
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The generalized thermodynamic force ( )0;B tN  is defined by Eqs.(6.5), (6.6) and 

additionally by Eqs.(6.12)-(6.15) for unconstrained thermoelastic nanoclusters with 

viscosity effects, or additionally by Eqs.(2.14)-(2.16) in the case of perfectly ther-

moelastic nanoclusters with constraints. ( )0BJ  is the tensor of inertia of the nano-

cluster 0B  determined with respect to its mass center =X 0 : 

(7.7) ( ) ( )
0

0 .
B

B dm= ⊗∫J X X X  

Note that the tensor of inertia is defined in the traditional nomenclature (e.g. in the 

rigid body mechanics) as ( ) ( ) ( )0 0tr 0B B= −I J 1 J B  and the tensor ( )0BJ  is also 

called the Euler tensor (of inertia) with respect to the point =X 0  [13].  

 The following differential equation is a sufficient condition for the validity of 

Eq.(7.4): 

(7.8) ( ) ( ) ( ) ( )T T
0 0 ext

ˆ; ;0 ,B t B t B= +J F N M t

,

 

or equivalently: 

(7.9)  ( ) ( ) ( ) ( ) ( ) ( )T
0 int 0 ext 0

ˆ; ;t B t B t t B t=F J F M + F M

where Eqs.(3.9)-(3.11) with ( )0;B t=T T  of Eq.(6.6) in place of ( )0; , θB=T T F  

were taken into account. ( )int 0 ;B tM  is the dipole moment of internal surface forces 

referred to the instantaneous (actual) spatial configuration ( )( )( )0tB l t B= F , t T∈ , 

of the nanocluster. In the case of perfectly thermoelastic nanoclusters, the above 

equation is equivalent to the condition (7.4) and ( ) (( )int 0 int 0; ; )B t BM = M λ t  is 

given by Eqs.(3.7), (3.11), (6.1) and (6.2). The “purely mechanical” case [20], dis-

cussed in Sections 2 and 6, is closed to the original formulation of the dynamics of 

affinely-rigid bodies [11]. 

 

 

  8. Final remarks 

 

 The experimental discovery of graphene (being a flat monolayer of carbon atoms 

tightly packed into a two-dimensional honeycomb lattice) and other free-standing 

two-dimensional atomic crystals (for example, single-layer boron nitride) [35], 
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makes physically sensible to consider affinely-rigid flat bodies. If  is a distin-

guished unit vector, then the plane  normal to n and such that 

3E∈n
3Eπ ⊂n π∈ n0  can be 

identified with a degenerate material space of flat nanoclusters with immovable cen-

ter of mass (cf. Section 2). Then the space M n  of mechanical configurations of such 

nanoclusters can be defined in the following way. Let us denote by ( )3EM GL+⊂  

the manifold of mechanical configurations describing inextensibility of a three-

dimensional nanocluster in the n-direction (cf. Section 2 and [13]): 

(8.1) 
( ) ( ){ }

( )

3

2 T 2

E : 0 ,

1 1,

M GL h

h

+= ∈ =

= − = − =

n

n

F F

F Fn nCn C F F = U ,
 

where Eq.(3.8) was taken into account. Next, let us consider the Lie group U  of 

pure extensions in the plane 

n

πn  (i.e. deformations without rotations located in πn ): 

(8.2) ( ){ }T 3E : .U GL+= ∈n U = U Un = n  

The space M n  can be now defined, taking into account Eqs.(3.8) and (8.1), as: 

(8.3) ( ) ( ){ }3 3E : E , .M GL SO U M+= ∈ ∈ ∈ ⊂n nF = RU R U  

It easy to see that the manifold M n  fulfils the conditions (M1)-(M3) (Section 2). 

 A single atomic plane is a flat crystal, whereas 100 layers should be considered 

as a thin film of a three-dimensional material. But how many layers are needed be-

fore a structure is regarded as a three-dimensional one ? For example, single-, dou-

ble- and few- (3 - <10) layer graphene can be considered as as three different types 

of two-dimensional crystals (“graphenes”). Thicker structures should be considered, 

to all intents and purposes, as thin films of graphite [35]. From the experimental 

point of view, such a definition is also sensible. The screening length in graphite is 

 (that is, less than two layers in thickness) and, hence, one must differentiate 

between the surface and the bulk even for films as thin as five layers [35]. We see 

that the space 

o
5A≈

M n  of mechanical configurations defined by Eq.(8.3) can be consid-

ered as the general space of mechanical configurations of a two-dimensional nano-

cluster located in the plane πn  as well as this space can be considered as a space de-

scribing inextensibility of a very thin (even in the nanometer observation level scale), 

three-dimensional nanocluster 0B  with its crystal structure consisting of a few 
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atomic planes normal to the n-direction. In the latter case the width of a nanocluster 

0B  in the n-direction is treated as a (constant) physical parameter (for example, it can 

be the case of Eqs.(5.20)-(5.22) with const.d =  and 1β )  

 Note also that while, in condensed matter physics, the Schrödinger equation is 

usually sufficient to describe electronic properties of materials, it is not the case of 

graphene. Graphene is an exception – its charge carriers mimic relativistic particles 

and more easily and naturally described starting with a (2+1)-dimensional Dirac-type 

equation (with the Fermi velocity as an effective speed of light) rather than the 

Schrödinger equation [35]. So, from the thermomechanical (cf. remarks in [1]) as 

well as the quantum-mechanical point of views, graphenes represent conceptually a 

new class of nanostructures and offer inroads into the low-dimensional physics. 
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