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Abstract 

This paper presents a theoretical derivation and reports on a numerical 

verification of a model-free method for identification of added masses in truss 

structures. No parametric numerical model of the monitored structure is 

required, so that there is no need for initial model updating and fine tuning. 

This is a continuation and an improvement of a previous research that resulted 

in a time-domain identification method, which was tested to be accurate but 

very time-consuming. A general methodology is briefly introduced, including 

the inverse problem, and a numerical verification is reported. The aim of the 

numerical study is to test the accuracy of the proposed method and its 

sensitivity to various parameters (such as simulated measurement noise and 

decay rate of the exponential FFT window) in a numerically controlled 

environment. The verification uses a finite element model of the same real 

structure that was tested with the time-domain version of the approach. 

A natural further step is a lab verification based on experimental data. 
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Introduction 

This paper presents a derivation and reports on a numerical verification of 

a frequency-domain version of a nonparametric approach to identification of added 

masses in truss structures. The general approach has been recently developed in 

IPPT PAN [1–3], and it is based on the essentially nonparametric methodology of 

the virtual distortion method (VDM) [4]. The monitored structure is characterized in 

a purely experimental way, by means of its impulse response functions. As a result, 

no parametric numerical modelling is required, which obviates the need for model 

updating and fine-tuning that is typical for other model-based methods.  

Most of the low-frequency identification methods used in global structural 

health monitoring (SHM) can be classified into two general groups: (1) Model-based 

methods that rely on a parametric numerical model of the monitored structure [5,6]. 

Their appealing feature is the physicality of the model and its identified 

modifications. However, an accurate parametric model is not easy to obtain and 

update. (2) Pattern recognition methods, which rely on a database of numerical 

fingerprints that are extracted from the experimentally measured responses [7]. No 

parametric modeling is required. The identification rarely goes beyond detection or 

approximate localization of the modification.  

The developed approach exploits the advantages of both groups: it makes use of 

a nonparametric model of the monitored structure based on experimentally measured 

data, but it allows parametrically expressed modifications to be identified. In [1], 

a time-domain version of the approach has been proposed and experimentally 

verified. It proved to be accurate, and thanks to the iterative CGLS solution scheme, 

provided a good control over numerical regularization of the computed time-domain 

response [8]. However, the fundamental equation is a system of linear integral 

equations of the Volterra type, whose solution is significantly time-consuming. This 

paper develops and verifies a frequency-domain approach, which uses the fast 

Fourier transform (FFT) to solve the equations. A significant reduction in 

computation time is attained (up to four orders of magnitude). However, this is at the 

cost of losing the control of the process of numerical regularization: regularization in 

frequency domain seems to be relatively weakly researched and understood. The 

aim of this study is to test the accuracy of the proposed method, as well as its 

sensitivity to various parameters, such as the decay rate of the exponential FFT 

window (which seems to play the role of the regularization parameter) and the 

simulated measurement noise. The verification uses a finite element model of the 

same real structure that was tested with the time-domain version of the approach. 
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Nonparametric modeling and identification 

The direct problem 

Mass modifications are modeled with the equivalent pseudo-loads that act in the 

involved degrees of freedom (DOFs) of the original unmodified structure. The 

influence of the pseudo-loads on the response is computed using a convolution with 

the experimentally obtained local impulse-responses. The original, time-domain 

solution presented in [1] is transferred here to frequency domain, which converts the 

original Volterra integral equation into a series of simple decoupled linear equations. 

The problem is formulated in terms of the finite element method. The 

unmodified structure is assumed to be linear and to satisfy the equation of motion: 

                              (1) 

where M, C and K denote respectively the structural matrices of mass, damping and 

stiffness, f(t) is the external testing excitation and x
L
(t) denotes the corresponding 

response of the unmodified structure (reference response). In frequency domain, 

(1) takes the following quasi-static form: 

                 (2) 

where   is the angular frequency,       and      denote respectively the complex 

amplitudes of the reference response and the excitation, and D( ) is the complex 

dynamic stiffness matrix, 

                 , (3) 

whose inverse             is called the dynamic compliance matrix and 

allows (2) to be represented in the direct form: 

                          . (4) 

The added masses,               , are represented in terms of the 

modification   (m) to the original mass matrix  . The mass matrix    of the 

modified structure is thus given by 

           , (5) 

while its dynamic stiffness matrix can be expressed as 

                       (6) 

As a result, the response      of the modified structure (the original structure with 

added masses) satisfies the following counterpart of (2): 

                     , (7) 

where the vector        denotes the pseudo-loads that act in the involved DOFs of 

the unmodified structure to model the inertial effects of the added masses, 

                   . (8) 

Equations (7), (4) and (8) yield: 

                      . (9) 
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Equation (9) can be substituted into (8) to yield the following linear equation: 

                                   , (10) 

where I is the identity matrix of the appropriate dimensions. Notice that       is 

a diagonal matrix with non-vanishing entries only in the DOFs that correspond to 

the added masses. As a result, the pseudo-loads        vanish in all other DOFs 

and (10) is reduced to a small system with dimensions 3N x 3N, where N is the 

number of the added masses. Similarly, only the corresponding small submatrix of 

the full dynamic compliance matrix     . Based on (9) and (10), the direct problem 

is easily solved: for each angular frequency   and vector m of the added masses, 

(10) is solved and the resulting pseudo-loads are substituted into (9) to compute the 

corresponding response of the modified structure. 

The inverse problem 

The inverse problem is formulated in the form of an optimization problem of 

minimization of a certain objective function with respect to the vector m. In general, 

any objective function that expresses a discrepancy between the modeled response 

     of the modified structure and its actually measured response       is 

plausible. Here, the following form is used: 

      
                   

              
, (10) 

where            is an indicator function of the considered frequency range, 

which should coincide with the frequency range of the testing excitation f(t). 

Numerical verification 

The verification uses a model of the setup tested experimentally in [1], see 

Fig. 1. Each element cross-sectional area is 66 mm
2
, the density is 7800 kg/m

3
 and 

the Young modulus is 210 GPa. The sampling frequency is 65.5 kHz, all the sensors 

are accelerometers and the time interval of 230 ms is sampled. Four different masses 

(1.36 kg, 2.86 kg, 3.86 kg, 5.36 kg) are added in turn to one of the nodes M1, M2 

or M3. The location of the modification is assumed to be known. The identification 

is performed separately for each of the 12 considered modification cases, and the 

identification range is 0 kg to 10 kg with the step of 0.01 kg. As the testing 

excitation an impact by a modal hammer is used. Its placement is selected so that it 

excites at least two bending vibration modes. The objective function is based on the 

frequency range up to 485 Hz, which has been determined by including the spectral 

fringes (of the impact) with the energy above 10% of the maximum fringe energy. 
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Figure 1. Truss structure used in the numerical example. 

 

Figure 2(a) shows the dependence of the root mean square relative identification 

error on the decay rate of the FFT exponential window (defined by the value of the 

window at the end of the time interval) and on the simulated measurement noise (per 

cent of the signal rms, applied to the accelerations and excitation). Figure 2(b) plots 

typical objective functions (decay rate 10
-5

, simulated measurement error 10% rms). 

 

 
 

(a) (b) 

Figure 2. (a) Root mean square relative identification errors in dependence on the decay 

rate of the FFT exponential window and the simulated measurement noise. (b) Typical 

objective functions (FFT window decay rate 10
-5

, measurement noise 10% rms). 

Conclusions 

The numerical study confirms that the developed frequency-domain version of 

the identification method is accurate and relatively insensitive to (simulated) 

measurement noise. The decay rate of the exponential window used with FFT seems 

to play the role of the regularization parameter. The method performs up to four 
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orders of magnitude faster than its previously developed time-domain counterpart. 

A lab verification based on experimental data is the natural further step. 
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