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Discussed are some classical and quantization problems of rigid bodies of infinitesimal size

moving in Riemannian spaces. The rigorous meaning of “infinitesimal size” consists in replacing

an extended body by the structured material point with internal degrees of freedom (co-moving

orthonormal frame). The special case of constant curvature two-dimensional spaces is discussed.

The Sommerfeld polynomial method is used to perform the quantization of such problems.
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1. Introduction

The general formulation of mechanics of systems with internal degrees of freedom
in non-Euclidean spaces was presented in [26, 28]. Here we consider in some details
two kinds of two-dimensional problems, namely motion of structured material points
on the sphere and pseudosphere (Lobachevsky space). Many interesting dynamical
models, including some quite realistic ones, may be effectively investigated in
analytical terms. It is not very surprising in the spherical and pseudospherical
geometries because of exceptional properties of constant-curvature spaces. Perhaps
this may have something to do with that all these manifolds are algebraic ones (of the
second degree in the spherical and pseudospherical cases). What concerns a dynamical
model, the special stress is laid on something that may be called a “nonharmonic
harmonic oscillator”. In a neighbourhood of the equilibrium situation the potential
energy behaves in a harmonic way, but anharmonic corrections become relevant
for large deflections. Moreover, they are unavoidable because of some topological
reasons. Certain alternative models of this kind were suggested in [16, 22–24].
It is important that our oscillator models are rigorously solvable in terms of special
functions.

Strictly speaking, we discuss the Schrödinger quantization procedure for a test rigid
body. We follow the standard procedure of quantization in Riemannian manifolds,
i.e. we use the L2-Hilbert space of wave functions in the sense of the usual
Riemannian measure (volume element). The classical kinetic energy is replaced by

[381]



382 A. MARTENS

the corresponding quantum expression based on the Laplace–Beltrami operator. The
separation of variables is performed and then the corresponding one-dimensional
Schrödinger equations are solved using the Sommerfeld polynomial method [13, 14].
This quantization of two-dimensional problems may have something to do with
the dynamics of graphens, fullerens and nanotubes [8–10, 29]. Our problem is
also closely related to the so-called restricted problems of rigid body dynamics
[4, 6, 7, 12].

2. Classical description

In generic Riemannian manifold (M, g) there is obviously no concept of isometry,
except for the trivial isometry (the identity transformation). So, there is no concept
of extended rigid body. Similarly, in general, there are no finite affine transformations
(with an exception of the trivial one), and therefore, there exists no concept of
extended affine bodies (homogeneously deformable gyroscopes). But we can consider
some models of infinitesimal affinely-rigid body and metrically-rigid body.

The treatment consists in replacing extended bodies by structured material points,
i.e. by material points with attached linear frames (affine body) or orthonormal frames
(gyroscope). These bases describe internal degrees of freedom. This means that degrees
of freedom are analytically described by the spatial coordinates xi (i = 1, . . . , n)
and the components ei

A of the attached co-moving bases eA (A = 1, . . . , n). In the
gyroscopic case, the quantities ei

A are constrained by the orthogonality condition

gij e
i
Aej

B = δAB. (1)

Obviously, the metric tensor gij is always taken at the point x ∈ M , where the body
is instantaneously placed, and the basis (. . . , eA, . . . ) is attached, so eA ∈ TxM .
Therefore, the quantities ei

A are then functionally constrained by (1), and they are
not generalized coordinates. So, they are not very suitable for analytical calculations.

The configuration space Q of infinitesimal rigid body in (M, g) may be identified
with F(M, g), i.e. the manifold of all g-orthonormal frames in all tangent spaces of
M . Obviously, F(M, g) is an n(n+1)/2-dimensional manifold; there is n translational
degrees of freedom and n(n− 1)/2 rotational ones

dim Q = n+ n(n− 1)

2
= n(n+ 1)

2
.

To obtain an effective analytical description, one fixes some, usually nonholonomic
field of frames EA, A = 1, . . . , n, usually somehow distinguished by the geometry
of (M, g). Then we take the expansion

eA(t) = EB(x(t))RB
A(t), (2)

where R(t) is a time-dependent orthogonal matrix, i.e.

δCDRC
ARD

B = δAB. (3)
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The angular velocity ω in the co-moving representation is defined by

DeB

Dt
:= eAωA

B. (4)

One can show that

ωA
B = ρA

B + dA
B, ρA

B = (R−1)AC

d

dt
RC

B,

dA
B = (R−1)AF �F

DCRD
BRC

GvG,

we omit the simple proof. Here ρ is the “relative” angular velocity of the co-moving
frame e with respect to the fixed reference frame E, the object d (“drive”) describes
angular velocity with which E itself rotates along the trajectory of motion. The
symbols

vG = eG
i

dxi

dt

denote the co-moving components of the translational velocity,

�A
BC = EA

i�
i
jkE

j
BEk

C − EA
i,jE

i
BEj

C

are anholonomic components of the Levi-Civita affine connection with respect to
EA.

In analogy to [28] we have the following expression for the total kinetic energy,

T = Ttr + Tint = m

2
gij v

ivj + 1

2
δABωA

CωB
DJCD. (5)

In this formula the descriptors “tr” and “int” refer obviously to the translational
and internal parts, m denotes the mass, and JCD = JDC are co-moving components
of the tensor of internal inertia.

Here we are interested mainly in the two-dimensional gyroscope, however this
procedure is also convenient when dealing with infinitesimal affinely-rigid body [26].
The reason for this is that also in the case of affine motion there is a distinc-
tion between the compact n(n − 1)/2-dimensional subgroup of rotations and the
n(n + 1)/2-dimensional quotient manifold. Therefore, even in this case it may be
convenient to distinguish between analytical formulae for rotations and deformations.

The formulae above, first of all (5), are very convenient, almost indispensible in
the technical procedures of solving equations of motion. However, their disadvantage
is that some geometric aspects are rather hidden. Let us repeat some of them. In
a more general case of affine motion, i.e. one without constraints (1), the expression
for the kinetic energy has the form

T = Ttr + Tint = m

2
gij

dxi

dt

dxj

dt
+ 1

2
gij

Dei
A

Dt

Dej
B

Dt
JAB. (6)

Obviously, it remains also true when (1) is imposed. For Lagrangians of the potential
form

L = T − V (x, e)
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the resulting equations of motion read

m
Dva

Dt
= 1

2
Sk

lR
l
k
a
j v

j + Fa, ea
K

D2eb
L

Dt2
JKL = Nab. (7)

The meaning of symbols is as follows:

va = dxa

dt
, Skl = Sk

mgml = Kkl −Klk, Kab = ea
A

Deb
B

Dt
JAB,

F a = gabFb = −gab

(
∂V

∂xb
− �i

jbe
j
B

∂V

∂ei
B

)
,

Nab = Na
cg

cb = −gbcea
K

∂V

∂ec
K

,

(8)

and Ri
jkl is the curvature tensor of (M, g).

Therefore, va are components of the translational velocity, Skl are components
of spin (intrinsic angular momentum), Fa are coordinates of the translational force,
and Nab are components of the affine torque. It is important that the covariant
components of F in general differ from −∂V/∂xb; moreover, the latter ones are not
covector components in M . It is only the total F , the covariant exterior differential
of V that is a good M-covector. When the metrical constraints are imposed, i.e.
when we deal with the metrically-rigid body, (7) becomes

m
Dva

Dt
= 1

2
Sk

lR
l
k
a
j v

j + Fa,

DSab

Dt
= ea

K

D2eb
L

Dt2
JKL − eb

K

D2ea
L

Dt2
JKL = N ab = Nab −Nba,

(9)

obviously, with algebraically substituted (1). This is a nice balance of linear
momentum and spin, geometrically suggestive, but computationally not so effective
as equations derived from (5). Nevertheless, (9) presents a nice description of the
mutual interaction between the translational and the attitude motion [5].

3. Special two-dimensional cases
Now we shall consider some special two-dimensional cases. Therefore, for the

infinitesimal rigid body (infinitesimal gyroscope) we are dealing with three degrees
of freedom: two translational and one internal, rotational. The resulting models are
interesting in themselves from the point of view of pure analytical mechanics, in
particular, some integrability and hyperintegrability (degeneracy) problems may be
effectively studied [17, 28]. Obviously, the explicit analytical results exist only in
Riemann manifolds (M, g) with some peculiar structure, first of all (but not only) in
constant-curvature spaces. Some practical applications of classical two-dimensional
models also seem to be possible, e.g. in geophysical problems, in mechanics of
structured micropolar and micromorphic shells, etc. What concerns geophysics, we
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mean, e.g. motions of continental plates. The motion of pollutions like oil spots on
the oceanic surface is another suggestive example.

Let us now quote some instructive special examples, namely a two-dimensional
rigid body moving in constant-curvature spaces like the spherical space S2(0, R)
and pseudo-spherical Lobachevsky space H2,2,+(0, R) [11]. Certain aspects of these
models were discussed in [28, 30], thus we present here only general ideas. The
corresponding metric elements are given respectively by

ds2 = dr2 + R2 sin2 r

R
dϕ2, ds2 = dr2 + R2 sinh2 r

R
dϕ2, (10)

with the proviso that in the spherical case all situations with r = πR and arbitrary
values of ϕ correspond to the same point (the “southern” pole, or if r = 0—the
“northern” pole). The range of r is respectively [0, πR], and [0,∞].

The most convenient choice of the reference frame is

Er = ∂

∂r
; Eϕ = 1

R sin r
R

∂

∂ϕ
, Eϕ = 1

R sinh r
R

∂

∂ϕ
,

respectively, in the spherical and pseudospherical case.

In two dimensions the angular velocity matrix has only one essential component,
namely

ω1
2 = −ω2

1 = ω, ρ1
2 = −ρ2

1 = ρ, d1
2 = −d2

1 = d,

the diagonal entries obviously vanish.

After some calculations the above formulae give:

(i) sphere:

ρ = dψ

dt
, d = cos

r

R

dϕ

dt
, ω = dψ

dt
+ cos

r

R

dϕ

dt
, (11)

(ii) pseudosphere:

ρ = dψ

dt
, d = cosh

r

R

dϕ

dt
, ω = dψ

dt
+ cosh

r

R

dϕ

dt
. (12)

Therefore, using formula (5), we obtain for the kinetic energy T = Ttr+ Tint the
expression below. Depending on the considered manifold, it has the following form:

(i) sphere:

T = m

2

((
dr

dt

)2

+ R2 sin2 r

R

(
dϕ

dt

)2)
+ I

2

(
dψ

dt
+ cos

r

R

dϕ

dt

)2

, (13)

where I is the moment of inertia. In the absence of deformations, the internal inertia
is controlled only by this single scalar. This is the peculiarity of the “two-dimensional
world”.

Even for the purely translational motion some interesting questions arise, e.g.
what are spherically symmetric potentials V (r) for which all orbits are closed?
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Obviously we mean the problems based on Lagrangians of the type

Ltr = Ttr − V (r).

This is a counterpart of the famous Bertrand problem in R
2. And it may be shown

that the answer is similar [23, 25], i.e. the possible potentials are as follows:
(a) oscillatory potentials

V (r) = γ

2
R2tan2 r

R
, (14)

(b) Kepler–Coulomb potentials

V (r) = − α

R
cot

r

R
. (15)

Obviously, with the spherical topology also the geodetic problem belongs here:
(c) V (r) = 0, i.e. (in a sense) the special case of (a) or (b) when γ = 0, α = 0.

There is an obvious correspondence with the flat-space Bertrand problem; it is
suggested by the very asymptotics for r ≈ 0, i.e.

V (r) ≈ γ

2
r2, V (r) ≈ −α

r
.

Obviously, this is a rough argument, but it may be shown [23, 25] that there exists
a rigorous isomorphism based on the projective geometry.

The mentioned Bertrand models lead to completely integrable and maximally
degenerate (hyperintegrable) problems. But even for the simplest, i.e. geodetic, models
with the internal degrees of freedom the situation changes drastically. There exist
interesting and practically applicable integrable models, but as a rule interaction
with internal degrees of freedom reduces or completely removes degeneracy.

For certain reasons it will be convenient to rewrite the formula (13) in terms of
the new variable ϑ = r/R, the modified “geographic latitude”, i.e.

T = mR2

2

((
dϑ

dt

)2

+ sin2 ϑ

(
dϕ

dt

)2)
+ I

2

(
dψ

dt
+ cos ϑ

dϕ

dt

)2

. (16)

It is seen that if formally (ϕ, ϑ,ψ) are interpreted as Euler angles (respectively the
precession, nutation and rotation), the above expression is formally identical with the
kinetic energy of the three-dimensional symmetric rigid body (without translations)
with the main moments of inertia given by

I1 = I2 = mR2, I3 = I.

If I = mR2 one obtains the expression for the spherical top in three dimensions.
There is nothing surprising in the mentioned isomorphism because the quotient

manifold SO(3,R)/SO(2,R) may be in a natural way identified with S2(0, 1) (or
with any S2(0, R)). Projecting the motion of the three-dimensional symmetric top
onto the quotient sphere-manifold we obtain a two-dimensional translational motion;
the one-dimensional subgroup of rotations about the z-axis refers to the internal
motion of the two-dimensional rotator.
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The projection procedure is exactly compatible with the mentioned correspondence
between Euler angles in SO(3,R) and our generalized coordinates (ϕ, ϑ = r/R, ψ)
of the infinitesimal rotator in S2(0, R).

Let U(ϕ, ϑ,ψ) ∈ SO(3,R) be just the element labelled by the Euler angles
(ϕ, ϑ,ψ), thus

U(ϕ, ϑ,ψ) = Uz(ϕ)Ux(ϑ)Uz(ψ), (17)

where Uz, Ux are rotations respectively around the z- and x-axes; the angles of
rotations are indicated as the arguments and

U(ϕ, ϑ,ψ) =
⎡⎣cos ϕ − sin ϕ 0

sin ϕ cos ϕ 0
0 0 1

⎤⎦ ⎡⎣1 0 0
0 cos ϑ − sin ϑ
0 sin ϑ cos ϑ

⎤⎦ ⎡⎣cos ψ − sin ψ 0
sin ψ cos ψ 0

0 0 1

⎤⎦ .

(18)
Calculating the “co-moving angular velocity”


̂ = U−1 dU

dt
(19)

of this fictitious three-dimensional top one obtains that


̂ = 
̂1

⎡⎣0 0 0
0 0 −1
0 1 0

⎤⎦+ 
̂2

⎡⎣ 0 0 1
0 0 0
−1 0 0

⎤⎦+ 
̂3

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ , (20)

where


̂1= sin ϑ sin ψ
dϕ

dt
+ cos ψ

dϑ

dt
, (21)


̂2= sin ϑ cos ψ
dϕ

dt
− sin ψ

dϑ

dt
, (22)


̂3= cos ϑ
dϕ

dt
+ dψ

dt
. (23)

In (23) we easily recognize ω in (11), i.e. the expression for the one-component
angular velocity of the two-dimensional rotator. Calculating formally the kinetic
energy of the three-dimensional symmetric SO(3,R)-top, i.e.

T = K

2
(
̂1)

2 + K

2
(
̂2)

2 + I

2
(
̂3)

2 , (24)

and substituting K = mR2, ϑ = r/R, we obtain exactly (13), i.e. (16).

As usual in analytical mechanics, the kinetic energy (13), (16) may be identified
with some Riemannian structure on the configuration space. Let us write down our
kinetic energy in the following form with the explicitly separated mass factor,

T = m

2
Gij (q)

dqi

dt

dqj

dt
. (25)
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Just as above, our generalized coordinates qi , i = 1, 2, 3, are the variables (r, ϕ, ψ)
written just in this direction. After some calculations we obtain that

[Gij ] =

⎡⎢⎢⎢⎢⎣
1 0 0

0 R2 sin2 r

R
+ I

m
cos2

r

R

I

m
cos

r

R

0
I

m
cos

r

R

I

m

⎤⎥⎥⎥⎥⎦ . (26)

In the special case I = mR2 one obtains that G simplifies to Ğ, where

[
Ğij

]
=

⎡⎢⎢⎢⎣
1 0 0

0 R2 R2 cos
r

R

0 R2 cos
r

R
R2

⎤⎥⎥⎥⎦ . (27)

In analogy to (13), (16) we obtain that

(ii) pseudosphere:

T = m

2

((
dr

dt

)2

+ R2 sinh2 r

R

(
dϕ

dt

)2
)
+ I

2

(
dψ

dt
+ cosh

r

R

dϕ

dt

)2

, (28)

i.e.

T = mR2

2

((
dϑ

dt

)2

+ sinh2 ϑ

(
dϕ

dt

)2
)
+ I

2

(
dψ

dt
+ cosh ϑ

dϕ

dt

)2

. (29)

The kinetic energy is based on the metric tensor Gij with the components

[Gij ] =

⎡⎢⎢⎢⎣
1 0 0

0 R2 sinh2 r

R
+ I

m
cosh2 r

R

I

m
cosh

r

R

0
I

m
cosh

r

R

I

m

⎤⎥⎥⎥⎦ . (30)

It is seen that the spherically very special case I = mR2 here, in the pseudo-
spherical case also leads to some simplification of

[
Gij

]
, but not in so striking way

as previously. This fact has deep geometric reasons which will be explained in the
sequel.

In the spherical space the essential point is the natural identification between the
quotient manifold SO(3,R)/SO(2,R) and the spheres S2(0, R), S2(0, 1). And this has
to do with the formal identification between two-dimensional rigid body moving over
the spherical surface and the three-dimensional symmetrical top without translational
degrees of freedom. The special case I = mR2 corresponds to the spherical top.
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In general, the kinetic energy is then invariant under SO(3,R) × SO(2,R). In
the three-dimensional top analogy, SO(3,R) is acting as left regular translations
and SO(2,R) as right regular translations corresponding to the group of rotations
around the body-fixed z-axis. If I = mR2 we have the full invariance under
SO(3,R)× SO(3,R).

In the hyperbolic pseudospherical geometry the problem is isomorphic with
the three-dimensional Lorentzian (Minkowskian) top on R

3. The rotation group
SO(3,R) is replaced by the three-dimensional Lorentz group SO(1, 2). And still
an important role is played by SO(2,R) interpreted again as the group of usual
rotations in Euclidean space of (x, y)-variables (thus, not affecting the z-direction).
The above kinetic energy (28), (29) is invariant under SO(1, 2)× SO(2,R). But it
is never invariant under SO(1, 2) × SO(1, 2), i.e. under the left and right Lorentz
regular translations in the SO(1, 2)-sense. The spherical special case I = mR2

does not help here. Indeed, the underlying metric G (and the kinetic energy
itself) is positively definite. But the doubly-invariant (SO(1, 2)× SO(1, 2)-invariant)
metric on SO(1, 2), i.e. its Killing metric is not positively definite. Instead it
has the normal-hyperbolic signature (+ + −). The reason is that it is semi-
simple (even simple) noncompact group. This brings about the question about
nonpositive kinetic energies (metric tensors) on our configuration space. As the
negative contribution to the Killing metric tensor on SO(1, 2) comes from its
compact subgroup SO(2,R) of (x, y)-rotations, i.e. from the gyroscopic degree of
freedom in the language of H2,2,+(0, R), there is a natural suggestion to invert
the sign of the gyroscopic contribution to (13), (16), i.e. to make it negative.
One is naturally reluctant to indefinite kinetic energies but there are examples
when they are just convenient and very useful as tools for describing some
kinds of physical interactions [27], just encoding them even without any use of
potentials.

So, we can try to use, or at least mathematically analyze, the “Lorentz-type
kinetic energies” TL of the form

TL= m

2

((
dr

dt

)2

+ R2 sinh2 r

R

(
dϕ

dt

)2
)
− I

2

(
dψ

dt
+ cosh

r

R

dϕ

dt

)2

= mR2

2

((
dϑ

dt

)2

+ sinh2 ϑ

(
dϕ

dt

)2
)
− I

2

(
dψ

dt
+ cosh ϑ

dϕ

dt

)2

. (31)

Thus, it is so as if the extra rotation diminished effectively the kinetic energy of
translational motion. If we write as usual that

TL = m

2
LGij (q)

dqi

dt

dqj

dt
,

then, with the same convention concerning the ordering of coordinates (r, ϕ, ψ), we
have that



390 A. MARTENS

[
LGij

] =
⎡⎢⎢⎢⎣

1 0 0

0 R2 sinh2 r

R
− I

m
cosh2 r

R
− I

m
cosh

r

R

0 − I

m
cosh

r

R
− I

m

⎤⎥⎥⎥⎦ (32)

(compare this with (30)).
And now, obviously, the remarkable simplification occurs in the very special

case I = mR2 just as in the spherical symmetry. This has to do “as usual” with
extending of the symmetry group from SO(1, 2)× SO(2,R) to SO(1, 2)× SO(1, 2)

(two additional parameters of symmetry). Namely, LG becomes then LĞ, i.e.

[
LĞij

]
=

⎡⎢⎢⎢⎣
1 0 0

0 −R2 −R2 cosh
r

R

0 −R2 cosh
r

R
−R2

⎤⎥⎥⎥⎦ (33)

(compare this with (27) and notice the characteristic sign differences).
Obviously, if we use the above isomorphism between the two-dimensional top

sliding over the Lobachevsky plane with the three-dimensional Lorentz top without
translational motion in R

3, then it is clear that LG is, up to normalization, identical
with the Killing metric tensor of SO(1, 2). Let us quote some formulae and concepts
analogous to three-dimensional angular velocities, i.e. to (19), (20). Then the kinetic
energy will be expressed like in (24).

First of all we parameterize SO(1, 2) with the help of what we call the
“pseudo-Euler angles”. So, let us write that

SO(1, 2) � L(ϕ, ϑ,ψ) = Uz(ϕ)Lx(ϑ)Uz(ψ),

where the meaning of Uz is like in (17) and Lx denotes some Lorentz transformation
in R

3, namely the “boost” along the x-axis, i.e.

Lx(ϑ) =
⎡⎣1 0 0

0 cosh ϑ sinh ϑ

0 sinh ϑ cosh ϑ

⎤⎦ .

During the motion all these quantities are functions of time and we can calculate
the corresponding Lie-algebraic element

λ̂ = L−1 dL

dt
,

i.e. the co-moving pseudo-angular velocity. After some calculations we obtain formulae
analogous to (20)–(23), namely,

λ̂ = λ̂1

⎡⎣0 0 0

0 0 1

0 1 0

⎤⎦+ λ̂2

⎡⎣0 0 1
0 0 0
1 0 0

⎤⎦+ λ̂3

⎡⎣0 −1 0
1 0 0
0 0 0

⎤⎦ ,
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where

λ̂1= sinh ϑ sin ψ
dϕ

dt
+ cos ψ

dϑ

dt
,

λ̂2=− sinh ϑ cos ψ
dϕ

dt
+ sin ψ

dϑ

dt
,

λ̂3= cosh ϑ
dϕ

dt
+ dψ

dt
.

The similarities and differences in comparison with the corresponding spherical
formulae are easily seen.

And now we can write two formulae analogous to (24), i.e.

T = K

2
(̂λ1)

2 + K

2
(̂λ2)

2 + I

2
(̂λ3)

2, (34)

T = K

2
(̂λ1)

2 + K

2
(̂λ2)

2 − I

2
(̂λ3)

2, (35)

where K > 0 and I > 0. This is the symmetric SO(1, 2)-top in R
3. The indefinite

expression (35) is structurally suited to the normal-hyperbolic signature of SO(1, 2).
When K = I , then it becomes the spherical Lorentz top in R

3 in the indefinite
version based on the Killing metric.

It is easy to see that both expressions (34) and (35) are invariant under SO(1, 2)×
SO(2,R), where SO(1, 2) and SO(2,R) act on SO(1, 2) through respectively the
left and right regular translations. The form (35) with K = I is invariant under
all regular translations (both left and right), i.e. under SO(1, 2) × SO(1, 2). And
specifying K = mR2 in (34) and (35), we obtain respectively (28) and (31).

Again there are two Bertrand-type potentials, [23, 25], i.e.
(a) the “harmonic oscillator”-type potential:

V (r) = γ

2
R2tan2 r

R
, γ > 0, (36)

(b) the “attractive Kepler-Coulomb”-type one,

V (r) = − α

R
cot

r

R
, α > 0. (37)

With these and only these potentials all bounded orbits are closed. And now the term
“bounded” is essential because the “physical space” is now not compact. Indeed, there
exist unbounded motions corresponding to energy values exceeding some thresholds.
It is interesting that unlike in the spherical world, in the Lobachevsky space the
isotropic degenerate oscillator has an open subset of unbounded trajectories because
the potential (36) has a finite upper bound, i.e.

Sup V = γ

2
R2.

For energy values above this threshold all trajectories are unbounded, the motion is
infinite. Below this threshold all trajectories are not only bounded but also periodic.
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The existence of threshold in (37) is not surprising, it is like in the usual Kepler
problem in R

2. But the threshold for the isotropic degenerate oscillator is a very
interesting feature of the Lobachevsky “world”.

4. The quantized problems
We formulate now the quantized version of our models. Before doing this, let

us remind briefly the general ideas of quantization in Riemannian configuration
spaces [15]. Considered is a classical geodetic system in a Riemannian manifold
(Q, G), where Q denotes the configuration space, and G is the “metric” tensor
field on Q underlying the kinetic energy form. In terms of generalized coordinates
we have

T = 1

2
Gij

dqi

dt

dqj

dt
.

As usual, the metric tensor G gives rise to the natural measure μ on Q,

dμ(q) =
√∣∣det[Gij ]

∣∣dq1 · · · dqf ,

where f denotes the number of degrees of freedom, i.e. f = dim Q. For simplicity
the square-root expression will be denoted by

√|G|. The mathematical framework
of Schrödinger quantization is based on L2(Q, μ), i.e. the Hilbert space of complex-
valued wave functions on Q, which are square-integrable in the μ-sense. Their
scalar product is given by the usual formula

〈�1|�2〉 =
∫

�1(q)�2(q)dμ(q).

The classical kinetic energy expression is replaced by the operator

T̂ = − h̄2

2
�,

where h̄ denotes the (“crossed”) Planck constant, and � is the Laplace–Beltrami
operator corresponding to G,

� = 1√|G|
∑
i,j

∂i

√|G|Gij∂j = Gij∇i∇j ,

where ∇ denotes the Levi-Civita covariant differentiation in the G-sense.
If the problem is not geodetic and some potential V (q) is admitted, the

corresponding Hamilton (energy) operator is given by

Ĥ = T̂ + V̂ ,

where the operator V̂ acts on wave functions simply multiplying them by V ,

(V̂ �)(q) = V (q)�(q).

This is the reason why very often one does not distinguish graphically between V̂
and V .
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REMARK. There is a delicate problem concerning quantization which cannot be
discussed here, and, fortunately, does not interfere directly with the main subjects of
our analysis. Strictly speaking, wave functions are not scalars but complex densities
of the weight 1/2 so that the bilinear expression �� is a real scalar density of
weight one, thus, a proper object for describing probability distributions [15]. But in
all realistic models, and the our one is not an exception, the configuration space is
endowed with some Riemannian structure. And this enables one to factorize scalar
(and tensor) densities into products of scalars (tensors) and some standard densities
built of the metric tensor. Therefore, the wave function may be finally identified
with the complex scalar field (multicomponent one when there are internal degrees
of freedom).

From now on we concentrate ourselves on the special case of a test rigid body
moving on the two-dimensional sphere and pseudosphere. The previous notation is
used to denote the variables. The Hamiltonian operator is given by the expression

Ĥ = T̂ + V (r) = − h̄2

2m
�+ V (r). (38)

The variables ϕ, ψ have the cyclic character in T [25]. This focuses our attention on
dynamical models where the potential energy is also independent of the angles ϕ, ψ .

After some calculations we obtain for the Laplace–Beltrami operator the expression
below. Depending on the considered manifold, it has the following form:

(i) sphere:

�= ∂2

∂r2
+ 1

R
cot

r

R

∂

∂r
− 2 cos(r/R)

R2 sin2(r/R)

∂2

∂ϕ∂ψ

+ mR2 sin2(r/R)+ I cos2(r/R)

IR2 sin2(r/R)

∂2

∂ψ2
+ 1

R2 sin2(r/R)

∂2

∂ϕ2
. (39)

In the special case, when I = mR2, we obtain

�̆= ∂2

∂r2
+ 1

R
cot

r

R

∂

∂r
− 2 cos(r/R)

R2 sin2(r/R)

∂2

∂ϕ∂ψ

+ 1

R2 sin2(r/R)

∂2

∂ψ2
+ 1

R2 sin2(r/R)

∂2

∂ϕ2
, (40)

as was mentioned above, the problem is isomorphic with the three-dimensional
spherical top (without translations). Similarly

(ii) pseudosphere:

�= ∂2

∂r2
+ 1

R
coth

r

R

∂

∂r
− 2 cosh(r/R)

R2 sinh2(r/R)

∂2

∂ϕ∂ψ

+ mR2 sinh2(r/R)+ I cosh2(r/R)

IR2 sinh2(r/R)

∂2

∂ψ2
+ 1

R2 sinh2(r/R)

∂2

∂ϕ2
. (41)
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If we assume the rotational kinetic energy to contribute with the negative sign, then
the expression (41) becomes

L�= ∂2

∂r2
+ 1

R
coth

r

R

∂

∂r
− 2 cosh(r/R)

R2 sinh2(r/R)

∂2

∂ϕ∂ψ

+ −mR2 sinh2(r/R)+ I cosh2(r/R)

IR2 sinh2(r/R)

∂2

∂ψ2
+ 1

R2 sinh2(r/R)

∂2

∂ϕ2
. (42)

In particular, in the very special case I = mR2, these operators have the following
form

�̆= ∂2

∂r2
+ 1

R
coth

r

R

∂

∂r
− 2 cosh(r/R)

R2 sinh2(r/R)

∂2

∂ϕ∂ψ

+ 1

R2 sinh2(r/R)

∂2

∂ψ2
+ 1

R2 sinh2(r/R)

∂2

∂ϕ2
. (43)

L�̆= ∂2

∂r2
+ 1

R
coth

r

R

∂

∂r
− 2 cosh(r/R)

R2 sinh2(r/R)

∂2

∂ϕ∂ψ

+ 1

R2 sinh2(r/R)

∂2

∂ψ2
+ 1

R2 sinh2(r/R)

∂2

∂ϕ2
. (44)

Let us observe that �, and therefore also the kinetic energy operator T̂ for
(39) are left-invariant under the action of the group SO(3,R), while (42) and the

corresponding T̂ are left-invariant under SO(1, 2). On the right they are invariant
only under SO(2,R), the subgroup of rotations about the “material” z-axis. In
the special case I = mR2, they are invariant also under the total right actions
of SO(3,R), SO(1, 2). Obviously, even in the case I = mR2, (41) fails to be
right-Lorentz-invariant, but of course (44) is right-invariant. But in applications,
when some potential V is admitted, the invariance is lost. In any case, it is seen
that the quantum operators of the kinetic energy have invariance properties quite
analogous to the corresponding classical ones. Obviously, the symmetry operations
are meant in the sense of the argument-wise action of unitary operators representing
transformations of wave functions. Infinitesimal generators of the corresponding
one-parameter subgroups simply do commute with the kinetic energy operator.

A basis of solutions of the stationary Schrödinger equation Ĥ� = E� has the
form

�(r, ϕ,ψ) = fr(r)fϕ(ϕ)fψ(ψ). (45)

It is convenient to use the variable ϑ = r/R for our calculations, then we put

�(ϑ, ϕ,ψ) = fϑ(ϑ)einϕeilψ , (46)

where n, l are integers.
The true quantum dynamics is contained in the factor fϑ . The separation of

variables and the procedure of Sommerfeld polynomials guarantee that our wave
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functions are proper global solutions. However, some comments are necessary here.
Namely, in a sense one can admit some additional “solutions”. The point is that
the configuration space, in the case e.g. of the motion on sphere, being isomorphic
with the rotation group SO(3,R) is doubly connected. Its universal covering is
SU(2), obviously the homomorphism ratio is 2 : 1. Therefore, according to certain
ideas of Pauli, in the form developed in [1–3], one can try to use the covering
manifold as a modified configuration space. The same holds in principle in the
hyperbolic case. This “covering space-philosophy” seems to suggest us to admit
the numbers n, l in our product formula for � to be simultaneously integers or
simultaneously half-integers. Let us mention that there are systematically returning
ideas of spin as the “internal angular momentum” of a quantized rigid (or deformable)
body [1–3].

We followed this line in [19, 24]. Nevertheless, we were dealing there with the
three-dimensional rigid body without translational motion. One can quite reasonably
expect the corresponding “half-integer” solutions to be then realistic. It is not clear
if this is the case also for the body moving on the sphere S2(0, R) with one
internal/rotational degree of freedom, although the configuration space is then the
same, i.e. SO(3,R).

Hence, the stationary Schrödinger equation with an arbitrary potential V (ϑ) leads
after the standard separation procedure to the following one-dimensional “radial”
eigenequations:

(i) sphere:

d2fϑ(ϑ)

dϑ2
+ cot ϑ

dfϑ(ϑ)

dϑ

−
(

((m/I)R2 sin2 ϑ + cos2 ϑ)n2 + l2 − 2nl cos ϑ

sin2 ϑ
− 2mR2

h̄2
(E−V (ϑ))

)
fϑ(ϑ) = 0,

(47)

(ii) pseudosphere:

d2fϑ(ϑ)

dϑ2
+ coth ϑ

dfϑ(ϑ)

dϑ

−
(

(±(m/I)R2 sinh2 ϑ + cosh2 ϑ)n2 + l2 − 2nl cosh ϑ

sinh2 ϑ
−2mR2

h̄2
(E−V (ϑ))

)
fϑ(ϑ) = 0

(48)

with the mentioned above meaning of the ± signs.
It is natural to expect that for Bertrand potentials discussed in [25] the resulting

Schrödinger equations should be rigorously solvable in terms of some standard special
functions. The most convenient way of solving them is to use the Sommerfeld
polynomial method [16, 18, 20, 21]. In this method the solutions are expressed by the
usual or confluent Riemann P -functions. They are deeply related to the hypergeometric



396 A. MARTENS

functions (usual F or confluent F1 respectively). If the usual convergence demands
are imposed, then the hypergeometric functions become polynomials and our solutions
are expressed by elementary functions. At the same time the energy levels and
separation constants are expressed by the eigenvalues of the corresponding operators.
There exists some special class of potentials to which the Sommerfeld polynomial
method is applicable. The restriction to solutions expressible in terms of Riemann
P -functions is reasonable, because this class of functions is well known and many
special functions used in physics may be expressed by them.

5. Examples

Eqs. (47) and (48) may be solved only when the explicit form of potential is
specified. We consider a special case, when the translational part of the potential
energy V (ϑ) (V (r)) has the Bertrand structure, i.e. with the “frozen” rotations all
orbits would be closed [25].

(i) sphere:

V (r) = γ

2
R2 tan2 r

R
.

Here we consider the model of the oscillatory potential (14). Let us mention, it
is a kind of the anharmonic potential which in the neighbourhood of equilibrium
resembles some properties of the harmonic oscillator like in [16, 22–24]. This is
the reason why we are interested in it.

Applying the Sommerfeld polynomial method we obtain the energy levels E as

E = 1

2
h̄�

((
2k + 1+ |n− l| +

√
(n+ l)2 + γmR4

h̄2

)2

+ 4n2
(m

I
R2 − 1

)
− 4γmR4

h̄2
− 1

)
, (49)

where � = h̄ω/4mR2, ω = √γ /m and k = 0, 1, ... . After some calculations we
obtain the function fr(r) in the form

fr(r) =
(

cos
r

R

)κ (
sin

r

R

)ν

F
(
−k, k + 1+ κ + ν; 1+ κ; cos2 r

R

)
, (50)

where

κ =
√

(n+ l)2 + γmR4

h̄2
, ν = |n− l|.

(ii) pseudosphere:

V (r) = γ

2
R2 tanh2 r

R
, γ > 0.

We take the “harmonic oscillator”-type potential (36).
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We find the energy levels E in the form

E = 1

2
h̄�

((
2k + 1+ |n− l| +

√
(n+ l)2 + γmR4

h̄2

)2

− 4n2
(
±m

I
R2 − 1

)
− 4γmR4

h̄2
− 1

)
. (51)

The function fr(r) has the form

fr(r) =
(

cosh
r

R

)κ (
sinh

r

R

)ν

F
(
−k, k + 1+ κ + ν; 1+ κ; cosh2 r

R

)
. (52)

Let us notice that

lim
r→∞

γ

2
R2 tanh2 r

R
= γ

2
R2.

This is the upper bound of the potential V (36). Therefore, the formula (51) is
correct only for such quantum numbers that

E < Sup V = γ

2
R2.

Above this threshold we are dealing with the continuous spectrum and the classically
nonrestricted motion.

The considered systems are completely nondegenerate. On the quantum level this
fact is reflected by the existence of three quantum numbers labelling the energy levels.
They cannot be combined into a single quantum number, i.e. there is no total quantum
degeneracy, i.e. hyperintegrability, with respect to them. The interaction between
translational and rotational degrees of freedom completely removes degeneracy. As
yet it is not clear for us if some weaker degeneracy does occur for some relationships
between constants m, I , R, γ . This is to be discussed later on. We are also going
to investigate the Kepler–Coulomb potential models (15), (37).

Nevertheless, in the spherical, resonance I = mR2 model,

d2fϑ(ϑ)

dϑ2
+ cot ϑ

dfϑ(ϑ)

dϑ
−

(
n2 + l2 − 2nl cos ϑ

sin2 ϑ
− 2I

h̄2
(E−V (ϑ))

)
fϑ(ϑ) = 0, (53)

some special case of the total degeneracy is seen, namely γ = 0. This is the geodetic
motion V = 0. The point is that this problem is isomorphic, as we mentioned
above, with the quantum mechanics of the spherical rigid body without translational
motion in three dimensions, i.e. with evidently completely degenerate model.

In the pseudospherical case, when I = mR2

d2fϑ(ϑ)

dϑ2
+ coth ϑ

dfϑ(ϑ)

dϑ
−

(
n2 + l2 − 2nl cosh ϑ

sinh2 ϑ
− 2I

h̄2
(E−V (ϑ))

)
fϑ(ϑ) = 0, (54)

the situation is not clear, because in the geodetic problem γ = 0 one deals with
the continuous spectrum, where the Sommerfeld polynomial method is not literally
applicable.
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