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Abstract We present new mathematical foundations
of classical Maxwell–Lorentz electrodynamic models
and related charged particles interaction-radiation
problems, and analyze the fundamental least action
principles via canonical Lagrangian and Hamiltonian
formalisms. The corresponding electrodynamic vacuum
field theory aspects of the classical Maxwell–Lorentz
theory are analyzed in detail. Electrodynamic models
of charged point particle dynamics based on a Maxwell
type vacuum field medium description are described,
and new field theory concepts related to the mass
particle paradigms are discussed. We also revisit and
reanalyze the mathematical structure of the classical
Lorentz force expression with respect to arbitrary iner-
tial reference frames and present new interpretations of
some classical special relativity theory relationships.
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1 Introduction

Our main goal in this investigation is a rather am-
bitious one: namely, to employ modern mathematical
innovations to rigorously reformulate some of the foun-
dations of classical electrodynamics in a way that pro-
vides solutions, partial solutions or at least new insights
into problems that have persisted for many decades.
More specifically, our investigation shall be focused on
four areas within the field of electrodynamics. First,
we apply, in the context of Lagrangian and Hamilto-

nian formalisms, a new variational approach to charged
particle interaction radiation problems. Next, we un-
dertake a rather novel detailed mathematical analysis of
Maxwell–Lorentz electrodynamics from a vacuum field
theory perspective. This approach is shown to clarify
and simplify several aspects of the theory. Then, we em-
ploy a Maxwell type vacuum field medium to obtain a
more complete picture of charged particle dynamics and
also to lead to certain novel concepts in the realm of
mass particle paradigms. Finally, we revisit the topic of
the Lorentz force - which has continued to have its per-
plexing aspects since its very introduction - with a fresh
mathematical approach. The analysis we use provides
a more complete understanding of how to express the
Lorentz force with respect to arbitrary inertial frames
and also leads to novel interpretations of certain rela-
tionships in special relativity theory.

2 Classical relativistic electrody-
namics via least action princi-
ples revisited: Lagrangian and
Hamiltonian analysis

2.1 Introductory setting

Classical Maxwell–Lorentz electrodynamics is nowa-
days considered [56, 68] as the most fundamental phys-
ical theory, largely owing to the depth of its theoretical
foundations and wealth of experimental verifications. In
this work we present the main mathematical structures
in the foundations of modern classical electrodynamics,
based on new least action principle approaches to the
classical Maxwell-Lorentz electromagnetic theory, tak-
ing into account a vacuum field medium model inter-
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acting with charged Material objects. We reanalyze in
detail some of the important modern electrodynamics
problems related to the description of charged point par-
ticle dynamics under an external electromagnetic field
with respect to arbitrary inertial reference frames. We
remark here that by a “a charged point particle” we as
usual understand an elementary material charged par-
ticle whose internal spatial structure is assumed to be
unimportant and is not taken into account, if the con-
trary is not specified.

The important physical principles, characterizing the
related electrodynamic vacuum field structures, are from
the mathematical point of view based on the least action
principle, which we discuss subject to different charged
point particle dynamics. In particular, the main classical
special relativity relationships, characterizing charged
point particle dynamics, we obtain by means of the
least action principle within the original Feynman ap-
proach to the Maxwell electromagnetic equations and
the Lorentz type force derivation. Moreover, for each
least action principle constructed, we describe the corre-
sponding Hamiltonian pictures and present the related
energy conservation laws. Making use of the modified
least action approach, a classical hadronic string model
is analyzed in detail.

As the classical Lorentz force expression with respect
to an arbitrary inertial reference frame is related to
many theoretical and experimental controversies, such
as the relativistic potential energy impact on the charged
point particle mass, the Aharonov-Bohm effect [2] and
the Abraham–Lorentz–Dirac radiation force [26, 50] ex-
pression, the analysis of its structure subject to the as-
sumed vacuum field medium structure is a very interest-
ing and important problem, which has been discussed by
many physicists including E. Fermi, G. Schott, R. Feyn-
man, F. Dyson [32, 33, 36, 37, 43, 83] and many others.
To describe the essence of the electrodynamic problems
related to the description of a charged point particle dy-
namics under external electromagnetic field, let us begin
by analyzing the classical Lorentz force expression

dp/dt = Fξ := ξE + ξu×B, (1)

where ξ ∈ R is a particle electric charge, u ∈ T (R3
) is its

velocity [1, 13] vector, expressed here in the light speed
c units,

E := −∂A/∂t−∇φ (2)

is the corresponding external electric field and

B := ∇×A (3)

is the corresponding external magnetic field, acting on
the charged particle, expressed in terms of suitable vec-
tor A : M4 → E3 and scalar φ : M4 → R potentials.
Here “∇”is the standard gradient operator with respect
to the spatial variable r ∈ E3, “×”is the usual vec-
tor product in three-dimensional Euclidean vector space
E3 := (R3, < ·, · >), which is naturally endowed with
the classical scalar product < ·, · > . These poten-
tials are defined on the Minkowski space M4 ≃ R× E3,
which models a chosen laboratory reference frame K.
Now, it is a well-known fact [37, 56, 68, 91] that the
force expression (1) does not take into account the dual
influence of the charged particle on the electromagnetic

field and should be considered valid only if the parti-
cle charge ξ → 0. This also means that expression (1)
cannot be used for studying the interaction between two
different moving charged point particles, as was peda-
gogically demonstrated in classical manuals [37, 56].
Other questionable inferences, which strongly moti-

vated the analysis here, are related both to an alterna-
tive interpretation of the well-known Lorentz condition,
imposed on the four-vector of electromagnetic potentials
(φ,A) : M4 → M4 and the classical Lagrangian formu-
lation [56] of charged particle dynamics under an exter-
nal electromagnetic field. The Lagrangian approach is
strongly dependent on an important Einsteinian notion
of the rest (proper) reference frame Kτ and the related
least action principle. Therefore, before explaining it in
more detail, we first analyze the classical Maxwell elec-
tromagnetic theory from a strictly dynamical point of
view.
Let us consider with respect to a laboratory reference

frame K the additional Lorentz condition

∂φ/∂t+ < ∇, A >= 0, (4)

a priori assuming the Lorentz invariant wave scalar field
equation

∂2φ/∂t2 −∇2φ = ρ (5)

and the charge continuity equation

∂ρ/∂t+ < ∇, J >= 0, (6)

where ρ : M4 → R and J : M4 → E3 are, respectively,
the charge and current densities of the ambient matter.
Then one can derive [75, 15] the Lorentz invariant wave
equation

∂2A/∂t2 −∇2A = J (7)

and the classical electromagnetic Maxwell field equa-
tions [50, 56, 37, 68, 91]

∇× E + ∂B/∂t = 0, < ∇, E >= ρ, (8)

∇×B − ∂E/∂t = J, < ∇, B >= 0,

hold for all (t, r) ∈ M4 with respect to the chosen labo-
ratory reference frame K.
Notice here that, inversely, Maxwell’s equations (8)

do not directly reduce, via definitions (2) and (3), to
the wave field equations (5) and (7) without the Lorentz
condition (4). This fact is very important and suggests
that when it comes to a choice of governing equations,
it may be reasonable to replace Maxwell’s equations (8)
with the Lorentz condition (4) and the charge continu-
ity equation (6). To make the equivalence statement,
claimed above, more transparent we formulate it as the
following proposition.

Proposition 2.1. The Lorentz invariant wave equa-
tion (5) together with the Lorentz condition (4) for the
observable potentials (φ,A) : M4 → T ∗(M4) and the
charge continuity relationship (6) are completely equiv-
alent to the Maxwell field equations (8).

Proof. Substituting (4), into (5), one easily obtains

∂2φ/∂t2 = − < ∇, ∂A/∂t >=< ∇,∇φ > +ρ, (9)
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which implies the gradient expression

< ∇,−∂A/∂t−∇φ >= ρ. (10)

Taking into account the electric field definition (2), ex-
pression (10) reduces to

< ∇, E >= ρ, (11)

which is the second of the first pair of Maxwell’s equa-
tions (8).
Now upon applying ∇× to definition (2), we find, ow-

ing to definition (3), that

∇× E + ∂B/∂t = 0, (12)

which is the first pair of the Maxwell equations (8). Dif-
ferentiating with respect to the temporal variable t ∈ R
the equation (5) and taking into account the charge con-
tinuity equation (6), one finds that

< ∇, ∂2A/∂t2 −∇2A− J >= 0. (13)

The latter is equivalent to the wave equation (7) if one
observes that the vector potential A : M4 → E3 is de-
fined by means of the Lorentz condition (4) up to a
vector function ∇×S : M4 → E3. Now applying opera-
tion∇× to the definition (3), owing to the wave equation
(7) one obtains

∇×B = ∇× (∇×A) = ∇ < ∇, A > −∇2A =

= −∇(∂φ/∂t)− ∂2A/∂t2 + (∂2A/∂t2 −∇2A)

=
∂

∂t
(−∇φ− ∂A/∂t) + J = ∂E/∂t+ J, (14)

which leads directly to

∇×B = ∂E/∂t+ J,

which is the first of the second pair of the Maxwell equa-
tions (8). The final “no magnetic charge”equation

< ∇, B >=< ∇,∇×A >= 0,

in (8) follows directly from the elementary identity <
∇,∇× >= 0, thereby completing the proof.

This proposition allows us to consider the potential
functions (φ,A) : M4 → T ∗(M4) as fundamental ingre-
dients of the ambient vacuum field medium, by means
of which we can try to describe the related physical be-
havior of charged point particles imbedded in space-time
M4. The following observation provides strong support
for this approach:
Observation. The Lorentz condition (4) actually

means that the scalar potential field φ : M4 → R con-
tinuity relationship, whose origin lies in some new field
conservation law, characterizes the deep intrinsic struc-
ture of the vacuum field medium.
To make this observation more transparent and pre-

cise, let us recall the definition [37, 56, 68, 91] of the
electric current J : M4 → E3 in the dynamical form

J := ρu, (15)

where the vector u ∈ T (R3) is the corresponding charge
velocity. Thus, the following continuity relationship

∂ρ/∂t+ < ∇, ρu >= 0 (16)

holds, which can easily be rewritten [61] as the integral
conservation law

d

dt

∫
Ωt

ρd3r = 0 (17)

for the charge inside any bounded domain Ωt ⊂ E3,
moving in the space-time M4 with respect to the natural
evolution equation

dr/dt := u. (18)

Following the above reasoning, we are led to the follow-
ing result.

Proposition 2.2. The Lorentz condition (4) is equiva-
lent to the integral conservation law

d

dt

∫
Ωt

φd3r = 0, (19)

where Ωt ⊂ E3 is any bounded domain, moving with
respect to the evolution equation

dr/dt := v, (20)

which represents the velocity vector of local potential field
changes propagating in the Minkowski space-time M4.

Proof. Consider first the corresponding solutions to po-
tential field equations (5), taking into account condition
(15). Owing to the results from [37, 56], one finds that

A = φv, (21)

which gives rise to the following form of the Lorentz
condition (4):

∂φ/∂t+ < ∇, φv >= 0. (22)

This obviously can be rewritten [61] as the integral con-
servation law (19), so the proof is complete.

The above proposition suggests a physically motivated
interpretation of electrodynamic phenomena in terms
of what should naturally be called the vacuum poten-
tial field, which determines the observable interactions
among charged point particles.
Remark. It is important to remark here that in

the devised vacuum field theory approach the well-
known [50, 56] gauge invariance of the potential func-
tions (φ,A) : M4 → T ∗(M4) breaks down owing to the
strongly fixed analytical form of the induced vector po-
tential A = uφ ∈ E3, attributed to the vacuum field
medium, and A = φu ∈ E3, attributed to the electro-
magnetic field generated by a moving point charged par-
ticle. The latter is in complete agreement both with the
Lienard–Wiechert potentials structure and with well-
known experimental evidence [2, 26, 38, 94] from su-
perconductivity theory.
In the work we are using the term “vacuum field

medium”instead of the classical term “ether”as the lat-
ter possesses many different contexts. For instance, A.
Einstein wrote [34] that “...according to the general the-
ory of relativity space is endowed with physical quanti-
ties; in this sense, therefore, there exists an ether. Ac-
cording to the general theory of relativity space without
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ether is unthinkable...”Simultaneously, H.A. Lorentz in
[60] wrote, that “Indeed, one of the most important of
our fundamental assumptions must be that the ether not
only occupies all space between molecules, atoms or elec-
trons, but that it pervades all these particles. We shall
add the hypothesis that, though the particles may move,
the ether always remains at rest. We can reconcile our-
selves with this, at first sight, somewhat startling idea,
by thinking of the particles of matter as of some local
modifications in the state of the ether. These modifi-
cations may of course very well travel onward while the
volume-elements of the medium in which they exist re-
main at rest.”

More precisely, we can a priori endow the ambient
vacuum medium with a scalar potential field function
W := ξφ : M4 → R, satisfying the governing vacuum
field equations

∂2W/∂t2 −∇2W = ρ, ∂W/∂t+ < ∇,Wv >= 0,

∂ρ/∂t+ < ∇, ρu >= 0, (23)

taking into account that there are no external sources
besides material charged particles, which possess only
a virtual capability for disturbing the vacuum field
medium. Moreover, this vacuum potential field func-
tion W : M4 → R allows the natural potential en-
ergy interpretation, whose origin should be assigned not
only to the charged interacting medium, but also to any
other medium possessing interaction capabilities, includ-
ing for instance, material particles, interacting through
the gravity.

This leads naturally to the next important step, con-
sisting in deriving the equation governing the corre-
sponding potential field W̄ : M4 → R, assigned to
a charged point particle moving in the vacuum field
medium with velocity u ∈ T (R3) and located at point
r(t) = R(t) ∈ E3 at time t ∈ R. As can be readily shown
[75, 77, 80], the corresponding evolution equation gov-
erning the related potential field function W̄ : M4 → R,
assigned to a freely moving in the Euclidean space E3

charged particle ξ, has the form

d

dt
(−W̄u) = −∇W̄ , (24)

where W̄ := W (r, t)|r→R(t), u(t) := dR(t)/dt at point
particle location (t, R(t)) ∈ M4.

Similarly, if there are two interacting charged point
particles, located at points r(t) = R(t) and rf (t) =
Rf (t) ∈ E3 at time t ∈ R and moving, respectively, with
velocities u := dR(t)/dt and uf := dRf (t)/dt, the cor-
responding potential field function W̄ ′ : M4 → R, con-
sidered with respect to the reference frame K′ specified
by Euclidean coordinates (t′, r − rf ) ∈ E4 and moving
with the velocity uf ∈ T (R3) subject to the laboratory
reference frame K, should satisfy [75, 77] the dynamical
equality

d

dt′
[−W̄ ′(u′ − u′

f )] = −∇W̄ ′. (25)

Here, by definition, we have denoted the velocity vec-
tors u′ := dr/dt′, u′

f := drf/dt
′ ∈ T (R3). The dynam-

ical potential field equations (24) and (25) appear to
have important properties and can be used to represent
classical electrodynamic phenomena. Consequently, we

shall proceed to investigate their physical properties in
more detail and compare them with classical results for
Lorentz type forces arising in the electrodynamics of
moving charged point particles in an external electro-
magnetic field.
In this investigation, we were in part inspired by very

interesting investigations [24, 25, 40, 41, 42, 97] and
studies [22, 23] devoted to solving the classical problem
of reconciling gravitational and electrodynamic charges
in the context of the Mach-Einstein ether paradigm.
First, we will revisit the classical Mach–Einstein rela-
tivistic electrodynamics of a moving charged point par-
ticle, and second, we study the resulting electrodynamic
theories associated with our vacuum potential field dy-
namical equations (24) and (25), making use of the
fundamental Lagrangian and Hamiltonian formalisms
which were devised in [15, 76]. Concerening the mod-
ern theoretical and mathematical treatments of the re-
lated electrodynamics problems, one can also recom-
mend [26, 38, 47, 69, 88].

2.1.1 Classical relativistic electrodynamics re-
visited

The classical relativistic electrodynamics of a freely
moving charged point particle in the Minkowski space-
time M4 ≃ R×E3 is based on the Lagrangian approach
[26, 37, 56, 68, 91] with Lagrangian function

L0 := −m0(1− |u|2)1/2, (26)

where m0 ∈ R+ is the so-called particle rest mass pa-
rameter and u ∈ T (R3) is its spatial velocity in the Eu-
clidean space E3, expressed here and in the sequel in
light speed units (with light speed c = 1). The least
action principle in the form

δS = 0, S := −
∫ t2

t1

m0(1− |u|2)1/2dt (27)

for any fixed temporal interval [t1, t2] ⊂ R gives rise to
the well-known relativistic relationships for the mass of
the particle

m = m0(1− |u|2)−1/2, (28)

and momentum of the particle

p := mu = m0u(1− |u|2)−1/2 (29)

and the energy of the particle

E0 = m = m0(1− |u|2)−1/2. (30)

It follows from [56, 68], that the origin of the Lagrangian
(26) can be extracted from the action

S := −
t2∫
t1

m0(1− |u|2)1/2dt = −
τ2∫
τ1

m0dτ, (31)

on the suitable temporal interval [τ1,τ2] ⊂ R. Here m0 ∈
R+ is considered as a constant positive parameter a
priori attributed to the point particle,

dτ := dt(1− |u|2)1/2 (32)
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and τ ∈ R is the so-called, proper temporal parame-
ter assigned to a freely moving particle with respect to
the rest reference frame Kτ . The action (31) is rather
questionable from the dynamical point of view, since
it is physically defined with respect to the rest refer-
ence frame Kτ , giving rise to the constant action S =
−m0(τ2 − τ1), as the limits of integrations τ1 < τ2 ∈ R
were taken to be fixed from the very beginning. More-
over, considering this particle to have a charge ξ ∈ R and
be moving in the Minkowski space-time M4 under the
action of an external electromagnetic field (φ,A) ∈ M4,
the corresponding classical (relativistic) action func-
tional is chosen (see [9, 76, 37, 56, 68, 15, 91]) with
respect to the rest reference system Kτ as follows:

S :=

τ2∫
τ1

[−m0 + ξ < A, ṙ > −ξφ(1 + |ṙ|2)]dτ. (33)

It is parameterized by the Euclidean space-time vari-
ables (τ, r) ∈ E4 satisfying the infinitesimal relationship
dτ2 + |dr|2 = dt2, where we have denoted ṙ := dr/dτ in
contrast to the definition u := dr/dt. The action (33)
can be rewritten with respect to the laboratory refer-
ence frame K as

S =

t2∫
t1

Ldt, L := −m0(1− |u|2)1/2 + ξ < A, u > −ξφ,

(34)
defined on the suitable temporal interval [t1, t2] ⊂ R.
The action function (34) contains two physically in-
compatible sub-integral parts - the first one −m0(1 −
|u|2)1/2dt = −m0dτ, having sense with respect to the
rest reference frame Kτ and the second one ξ < A, dr >
−ξφdt, having sense with respect to the laboratory ref-
erence frame K. Nevertheless, the least action principle
applied to the functional (34) gives rise to the following
[37, 56, 68, 91] dynamical equation

dP/dt = −∇(ξφ− < ξA, u >), (35)

where, by definition, the generalized particle-field mo-
mentum

P = p+ ξA, (36)

the particle momentum

p = mu = m0u(1− |u|2)−1/2 (37)

and its so called “inertial”mass

m = m0(1− |u|2)−1/2. (38)

The corresponding particle conserved energy equals

E = (m2
0 + |p|2)1/2 + ξφ, (39)

that is
dE /dt = 0 = dE /dτ (40)

with respect to both the laboratory reference frame K
and the rest reference frame Kτ .
The above expression (39) for the particle energy

E ∈ R appears to be open to question, since the electri-
cal potential energy ξφ, entering additively, has no effect
on the relativistic particle mass m = m0(1 − |u|2)−1/2,

contradicting the experimental facts [37, 50] that some
part of the observable charged particle mass is of elec-
tromagnetic origin. This fact was also underlined by L.
Brillouin [21], who remarked that the fact that the po-
tential energy has no effect on the particle mass tells us
that “... any possibility of existence of a particle mass
related with an external potential energy, is completely
excluded”. Moreover, it is necessary to stress here that
the least action principle, based on the action functional
(34) and formulated with respect to the laboratory ref-
erence frame K time parameter t ∈ R, appears to be
logically inadequate, for there is a strong physical in-
consistency with other time parameters of the Lorentz
equivalent laboratory reference frames depending simul-
taneously both on the spatial and temporal coordinates.
This was first mentioned by R. Feynman in [37] in his ef-
forts to rewrite the Lorentz force expression with respect
to the rest reference frameKτ . This and other special rel-
ativity theory and electrodynamics problems stimulated
many prominent physicists of the past [19, 21, 37, 68, 95]
and present [22, 24, 25, 45, 58, 59, 64, 65, 67, 80, 97]
to try to develop alternative relativity theories based
on completely different space-time and matter structure
principles.
There also is another controversial inference from the

action expression (34) and resulting dynamical equation
(35): the force Fξ = dP/dt, exerted by the external elec-
tromagnetic field on the particle-field cluster [37] car-
rying the momentum P = p + ξA, appears to be the
standard gradient expression

Fξ = −∇Wξ, (41)

where the generalized “potential energy”

Wξ := ξφ− < ξA, u > . (42)

Its first part ξφ ∈ R equals the classical [37, 50] electri-
cal potential energy, but its second part − < ξA, u > is
strictly related to the magnetic vector potential A ∈ E3

and has nowadays no reasonable physical explanation.
As one can easily show [13, 37, 56, 68, 91] from (35), the
corresponding expression for the classical Lorentz force
is given as

dp/dt = F := ξE + ξu×B, (43)

where we have defined, as before,

E := −∂A/∂t−∇φ (44)

for the corresponding electric field and

B := ∇×A (45)

for the related magnetic field, acting on the point parti-
cle with the electric charge ξ ∈ R. The expression (43)
means, in particular, that the Lorentz force (43) depends
linearly on the particle velocity vector u ∈ T (R3), and so
there is a strong dependence on the reference frame with
respect to which the charged point particle ξ moves. At-
tempts to reconcile this and some related controversies
[21, 37, 80, 52] forced Einstein to devise his special rela-
tivity theory and proceed further to creating his general
relativity theory trying to explain the gravity by means
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of geometrization of space-time and matter in the Uni-
verse.

Here we once again mention that the classical La-
grangian function L : T (M4) → R in (34) is simultane-
ously written as a combination of terms incompatibly ex-
pressed from the physical point of view by means of both
the Euclidean rest reference frame variables (τ, r) ∈ E4,
naturally attributed to the charged point particle, and
arbitrarily chosen Minkowski reference frame variables
(t, r) ∈ M4. It is therefore worth relating this with sim-
ilar ideas suggested in [40, 41, 42], where a canonical
proper-time approach to relativistic mechanics and clas-
sical electrodynamics was devised. It also provides a
physically complete classical background for a new ap-
proach to relativistic quantum theory. It was demon-
strated that there are two versions of Maxwell’s equa-
tions - the new one fixes the clock of the field source
for all inertial observers. This implies that the effective
speed of light is no longer an invariant for all observers,
but depends on the motion of the source. This approach
allows us to account for radiation reaction without the
Lorentz–Dirac equation, divergent self-energy, advanced
potentials or any assumptions about the structure of the
source. The theory also provides a new invariance group
which, in general, is a nonlinear and nonlocal represen-
tation of the Lorentz group. In addition, this approach
provides a natural (and unique) definition of simultane-
ity for all observers.

Some of these problems were recently analyzed using
a completely different “no-geometry” approach [75, 77],
where new dynamical equations were derived, which
were free of the controversial elements mentioned above.
Moreover, this approach avoided the introduction of
the well-known Lorentz transformations of the space-
time reference frames with respect to which the action
functional (34) is invariant. From this point of view,
there are interesting conclusions worthy of discussion in
[6, 7, 8, 46, 82], and where some electrodynamic models,
possessing intrinsic Galilean and Poincaré–Lorentz sym-
metries, are reanalyzed from diverse geometrical points
of view. Subject to a possible geometric space-type
structure and the related vacuum field background ex-
erting the decisive influence on the particle dynamics, we
need to mention here recent results [3, 87] and the closely
related classical articles [51, 71]. Next, we shall revisit
the results obtained recently in [13, 75, 77] from the
classical Lagrangian and Hamiltonian formalisms [15] in
order to shed new light on the physical underpinnings of
the vacuum field theory approach to the study of com-
bined electromagnetic and, eventually, also gravitational
effects.

2.2 Vacuum field theory electrodynam-
ics: Lagrangian analysis

2.2.1 Point particle moving in vacuo - an alter-
native electrodynamic model

In the vacuum field theory approach to electromag-
netism devised in [75, 77], the main vacuum potential
field function W̄ : M4→ R, related to a charged point
particle ξ, satisfies the differential evolution equation

(24), namely

d

dt
(−W̄u) = −∇W̄ , (46)

in the case when all of the external charged particles
are at rest. In particular ∂W̄/∂t = 0, and as above,
u := dr/dt is the particle velocity with respect to
some laboratory reference system K, specified by the
Minkowski coordinates (t, r) ∈ M4.
To analyze the dynamical equation (46) from the La-

grangian point of view, we write the corresponding ac-
tion functional as

S := −
t2∫
t1

W̄dt = −
τ2∫
τ1

W̄ (1 + |ṙ|2)1/2 dτ, (47)

expressed with respect to the rest reference frame Kτ ,
specified by the Euclidean coordinates (τ, r) ∈ E4. Fix-
ing the proper temporal parameters τ1 < τ2 ∈ R, one
finds from the least action principle δS = 0 that

p := ∂L/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 = −W̄u, (48)

ṗ := dp/dτ = ∂L/∂r = −∇W̄ (1 + |ṙ|2)1/2,

where, owing to (47), the corresponding Lagrangian
function is

L := −W̄ (1 + |ṙ|2)1/2. (49)

Recalling now the definition of the particle “iner-
tial”mass

m := −W̄ (50)

and the relationships

dτ = dt(1−|u|2)1/2 = dt(1+|ṙ|2)−1/2, ṙdτ = udt, (51)

from (48) we easily obtain the classical dynamical equa-
tion exactly coinciding with (46):

dp/dt = −∇W̄ . (52)

Moreover, one now readily finds that the corresponding
dynamical mass, defined by (50), is given as

m = m0(1− |u|2)−1/2, m0 := −W̄ (R(t0)), (53)

where u(t)|t=t0
= 0 at the spatial point r = R(t0) ∈

E3, and which completely coincides with expression (28)
of the preceding section. Now one can formulate the
following proposition using the results obtained above.

Proposition 2.3. The alternative freely moving point
particle electrodynamic model (46) allows the physically
reasonable least action formulation based on the action
functional (47) with respect to the “rest”reference frame
variables, where the Lagrangian function is given by ex-
pression (49). The related electrodynamics is completely
equivalent to that of a classical relativistic freely moving
point particle, described in Subsection 2.1.

2.2.2 Interacting charge particle pair moving
in vacuo - an alternative electrodynamic
model

We proceed now to the case when our charged point
particle ξ moves in the space-time with velocity vec-
tor u ∈ T (R3

) and interacts with another external
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charged point particle ξf , moving with velocity vector
uf ∈ T (R3) with respect to a common reference frame
K. As was shown in [75, 77], the corresponding modi-
fied dynamical equation for the vacuum potential field
function W̄ ′ : M4→ R subject to the moving reference
frame K′ is given by the equality (25), or

d

dt′
[−W̄ ′(u′ − u′

f )] = −∇W̄ ′. (54)

Here, as before, the velocity vectors u′ := dr/dt′, u′
f :=

drf/dt
′ ∈ T (R3). Since the external charged particle ξf

moves in the space-time M4, it generates the related
magnetic field B := ∇ × A, whose magnetic vector po-
tential A : M4→ E3 is defined, owing to the results of
[75, 77, 80], as

ξA := W̄uf . (55)

Whence, taking into account that the field potential

W̄ = W̄ ′(1− |uf |2)−1/2 (56)

and the particle momentum p′ = −W̄ ′u′ = −W̄u, equal-
ity (54) becomes equivalent to

d

dt′
(p′ + ξA′) = −∇W̄ ′, (57)

if considered with respect to the moving reference frame
K′, or to the Lorentz force equality

d

dt
(p+ ξA) = −∇W̄ (1− |uf |2), (58)

if considered with respect to the laboratory reference
frame K, owing to the classical Lorentz invariance re-
lationship (56), as the corresponding magnetic vector
potential, generated by the external charged point test
particle ξf with respect to the reference frame K′, is
identically equal to zero. To imbed the dynamical equa-
tion (58) into the classical Lagrangian formalism, we
start from the following action functional, which natu-
rally generalizes the functional (47):

S := −
τ2∫
τ1

W̄ ′(1 + |ṙ − ṙf |2)1/2 dτ. (59)

Here, as before, W̄ ′ is the associated calculated vac-
uum field potential W̄ subject to the moving refer-
ence frame K′, ṙ = u′dt′/dτ, ṙf = u′

fdt
′/dτ, dτ =

dt′(1 − |u′ − u′
f |2)1/2, which takes into account the rel-

ative velocity of the charged point particle ξ subject to
the reference frame K′, specified by the Euclidean co-
ordinates (t′, r − rf ) ∈ E4, and moving simultaneously
with velocity vector uf ∈ T (R3) with respect to the lab-
oratory reference frame K, specified by the Minkowski
coordinates (t, r) ∈ M4. It is also related to those of the
reference frame K′ and Kτ by means of the following
infinitesimal relationships:

dt2 = (dt′)2 + |drf |2, (dt′)2 = dτ2 + |dr − drf |2. (60)

So, it is clear in this case that our charged point particle
ξ moves with the velocity vector u′ − u′

f ∈ T (E3) with
respect to the reference frame K′ in which the external

charged particle ξf is at rest. Consequently, we have re-
duced the problem of deriving the charged point particle
ξ dynamical equation to that solved in Subsection 2.2.1.
Now we can compute the least action variational con-

dition δS = 0, taking into account that, owing to (59),
the corresponding Lagrangian function with respect to
the rest reference frame Kτ is given as

L := −W̄ ′(1 + |ṙ − ṙf |2)1/2. (61)

Simple calculations show that the generalized momen-
tum of the charged particle ξ equals

P := ∂L/∂ṙ = −W̄ ′(ṙ − ṙf )(1 + |ṙ − ṙf |2)−1/2

= −W̄ ′ṙ(1 + |ṙ − ṙf |2)−1/2 + W̄ ′ṙf (1 + |ṙ − ṙf |2)−1/2

= mu′ + ξA′ := p′ + ξA′ = p+ ξA, (62)

where, owing to (56) the vectors p′ := −W̄ ′u′ = −W̄u =
p ∈ E3, A′ = W̄ ′u′

f = W̄uf = A ∈ E3, and giving rise
to the dynamical equality

d

dτ
(p′ + ξA′) = −∇W̄ ′(1 + |ṙ − ṙf |2)1/2 (63)

with respect to the rest reference frame Kτ . As dt′ =
dτ(1 + |ṙ − ṙf |2)1/2 and (1 + |ṙ − ṙf |2)1/2 = (1 − |u′ −
u′
f |2)−1/2, we obtain from (63) the equality

d

dt′
(p′ + ξA′) = −∇W̄ ′, (64)

coinciding with equality (57) subject to the moving ref-
erence frame K′. Now, making use of expressions (60)
and (56), one can rewrite (64) as that with respect to
the laboratory reference frame K:

d
dt′ (p

′ + ξA′) = −∇W̄ ′ ⇒

⇒ d
dt′ (

−W̄u′

(1+|u′
f |2)1/2

+
ξW̄u′

f

(1+|u′
f |2)1/2

) = − ∇W̄
(1+|u′

f |2)1/2
⇒

⇒ d
dt′ (

−W̄dr
(1+|u′

f |2)1/2dt′
+

ξW̄drf/

(1+|u′
f |2)1/2

) = − ∇W̄
(1+|u′

f |2)1/2
⇒

⇒ d
dt (−W̄ dr

dt + ξW̄
drf
dt ) = −∇W̄ (1− |uf |2),

(65)
which is identical with (58):

d

dt
(p+ ξA) = −∇W̄ (1− |uf |2). (66)

Remark The equation (66) allows to infer the following
important and physically reasonable phenomenon: if the
test charged point particle velocity uf ∈ T (R3) tends to
the light velocity c = 1, the corresponding acceleration
force Fac := −∇W̄ (1 − |uf |2) tends to vanish. There-
fore, the electromagnetic fields generated by such rapidly
moving charged point particles, have no influence on the
dynamics of charged objects if observed with respect to
an arbitrarily chosen laboratory reference frame K.

Equation (66) can be easily rewritten as

dp/dt = −∇W̄ − ξdA/dt+∇W̄ |uf |2

= ξ(−ξ−1∇W̄ − ∂A/∂t)

− ξ < u,∇ > A+ ξ∇ < A, uf >, (67)
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or, using the well-known [56] identity

∇ < a, b >=< a,∇ > b+ < b,∇ > a

+ b× (∇× a) + a× (∇× b), (68)

where a, b ∈ E3 are arbitrary vector functions, in the
standard Lorentz form

dp/dt = ξE + ξu×B − ∇ < ξA, u− uf > . (69)

The result (69), which was found with respect to the
moving reference frame K′ in [75, 77, 80] and in a slightly
different form in [62], leads directly to the following im-
portant result.

Proposition 2.4. The alternative classical relativistic
electrodynamic model (57) allows the least action formu-
lation based on the action functional (59) with respect to
the rest reference frame Kτ , where the Lagrangian func-
tion is given by expression (61). The resulting Lorentz
force expression equals (69), as modified by the addi-
tional force component Fc := −∇ < ξA, u−uf >, impor-
tant for explaining [2, 18, 92] the well-known Aharonov-
Bohm effect.

2.2.3 Moving charged particle formulation dual
to the classical alternative electrodynamic
model

It is easy to see that the action functional (59) is
written using the standard classical Lorentz transforma-
tions of reference frames. If we now consider the action
functional (47) for a charged point particle moving with
respect to the rest reference frame Kτ , and take into
account its interaction with an external magnetic field
generated by the vector potential A : M4 → E3, it can
be naturally generalized as

S :=

t2∫
t1

(−W̄dt+ ξ < A, dr >) =

τ2∫
τ1

(−W̄ (1 + |ṙ|2)1/2

+ ξ < A, ṙ >)dτ, (70)

where dτ = dt(1−|u|2)1/2. The chosen form of functional
(70) can be explained by means of the following physi-
cally motivated reasoning. Consider an action functional
like (70) and calculate its value along any smooth arbi-
trarily chosen and dynamically admissible closed path
l ⊂ M4, which should be naturally defined to be zero:

0 =

∮
l

(−W̄dt+ ξ < A, dr >). (71)

Applying this to the right-hand side of (71), one finds
from Stokes’ theorem [1] that∮
l

(−W̄dt+ ξ < A, dr >) =

∫
S(l)

(− < ∇W̄ , dr ∧ dt > −

< ξ∂A/∂t, dr ∧ dt) =

∫
S(l)

< −∇W̄ − ξ∂A/∂t, dr ∧ dt >

=

∫∫
S(l)

< ξE, dr ∧ dt >=

∫∫
S(l)

< Fξ , dr ∧ dt > (72)

= −
∫∫
S(l)

< dE ∧ dt >= −
∫∫
S(l)

d (Edt) = −
∮
l

Edt = 0,

if and only if the charged point particle energy E ∈ R
is conserved along this arbitrarily chosen and admissi-
ble path l ⊂ M4. As a simple consequence of (71), the
work done by the electromagnetic force Fξ depends only
on the electric field E ∈ E3, and not on the related
magnetic field B = ∇× A ∈ E3. Thus, having assumed
that the corresponding charged point particle dynamical
equations conform to the energy conservation condition
above, the action functional (70) can be deemed physi-
cally reasonable.

Remark It is also interesting to remark that
∮
l
Ldt = 0,

similar to (71), calculated for the Lagrangian L =

m |ṙ|2 /2− W̄ in the classical mechanics of a point par-
ticle with mass m ∈ R+, moving under an external po-
tential W̄ : R3 → R, gives rise to classical Newtonian
mechanics∮

l

(
m|ṙ|2

2
− W̄ )dt =

∮
l

(
m

2
< ṙ, ṙ > −W̄ )dt =

=

∫
S(l)

(< mṙ, dṙ ∧ dt > − < ∇W̄ , dr ∧ dt >)

=

∫
S(l)

(− < mdr,∧dṙ > − < ∇W̄ , dr ∧ dt >)

=

∫
S(l)

(− < dr,∧mr̈dt > − < ∇W̄ , dr ∧ dt >)

= −
∫

S(l)

(< mr̈, dr ∧ dt > + < ∇W̄ , dr ∧ dt >)

= −
∫

S(l)

< mr̈ +∇W̄ , dr ∧ dt >= 0, (73)

if and only if Newton’s equation

mr̈ = −∇W̄ (74)

holds.

The least action condition δS = 0, as calculated with
respect to the rest reference frame Kτ , states in the
spirit of Feynman [37] that the charged point particle
ξ chooses in the Minkowski space-time M4 a trajectory
which realizes the least action value of the functional
(70), calculated with respect to its own rest reference
time parameter τ ∈ R, which is a unique physically sen-
sible quantity attributed to the charged point particle dy-
namics. Actually, as stressed by R. Feynman [37], the
least action principle, as applied to the functional (70)
with respect to the laboratory reference frame time pa-
rameter t ∈ R, gives rise to a senseless expression, whose
value is both ambiguous and not physically well-defined.
Thus, the corresponding common generalized particle-
field momentum takes the form

P := ∂L/∂ṙ = −W̄ ṙ(1 + |ṙ|2)−1/2 + ξA (75)

= mu+ ξA := p+ ξA,
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and satisfies the equation

Ṗ := dP/dτ = ∂L/∂r = −∇W̄ (1 + |ṙ|2)1/2

+ ξ∇ < A, ṙ > (76)

= −∇W̄ (1− |u|2)−1/2 + ξ∇ < A, u > (1− |u|2)−1/2,

where

L := −W̄ (1 + |ṙ|2)1/2 + ξ < A, ṙ > (77)

is the associated Lagrangian function. Since dτ = dt(1−
|u|2)1/2, one easily finds from (76) that

dP/dt = −∇(W̄− < ξA, u >). (78)

Upon substituting (75) into (78) and making use of the
identity (68), we obtain the classical expression for the
Lorentz force Fξ, acting on the moving charged point
particle ξ :

dp/dt := Fξ = ξE + ξu×B, (79)

where, by definition,

E := −ξ−1∇W̄ − ∂A/∂t (80)

is its associated electric field and

B := ∇×A (81)

is the corresponding magnetic field. This questionable
result can be summarized as follows.

Proposition 2.5. The classical relativistic Lorentz
force (79) allows the least action formulation based on
the action functional (70) with respect to the rest refer-
ence frame Kτ , where the Lagrangian function is given
by formula (77).

Concerning the related electrodynamics of a charged
point particle ξ, described by the dual classical Lorentz
force (79), we need to state that it is not equivalent to
that of the classical Lorentz force (43). Moreover, one
can easily observe that the classical Lorentz force Fξ =
ξE + ξu×B, exerted on the charged point particle ξ by
an external charged point test particle ξf is not a priori
vanishing as it should follow from relativistic physics.
The details of these aspects will be analyzed in more
details in the next section.
Comparing the above Lorentz forces expressions (79)

and (69), differing by the gradient term Fc := −ξ∇ <
A, u−uf >, which reconciles the dual Lorentz force act-
ing on a moving charged point particle ξ with respect to
an arbitrarily chosen laboratory reference frames K and,
as shall be shown in the sequel, is responsible [2, 18, 92]
for the Aharonov-Bohm effect. This fact is important for
our vacuum field theory approach since it uses no spe-
cial geometry and makes it possible to analyze electro-
magnetic and, under some conditions, also gravitational
fields simultaneously by employing the new definition of
the dynamical mass expressed by (50).

2.3 Vacuum field theory electrodynam-
ics: Hamiltonian analysis

Any Lagrangian theory has an equivalent canonical
Hamiltonian representation via the classical Legendre

transformation [1, 5, 13, 73, 91]. As we have already
formulated our vacuum field theory of a moving particle
with a charge ξ ∈ R in Lagrangian form, we proceed
now to its Hamiltonian analysis making use of the action
functionals (47), (61) and (70).

Take, first, the Lagrangian function (49) and the mo-
mentum expression (48) for defining the corresponding
Hamiltonian function

H :=< p, ṙ > −L
= −|p|2W̄−1(1− |p|2/W̄ 2)−1/2 + W̄ (1− |p|2/W̄ 2)−1/2

= −|p|2W̄−1(1− |p|2/W̄ 2)−1/2

+ W̄ 2W̄−1(1− |p|2/W̄ 2)−1/2 (82)

= −(W̄ 2 − |p|2)(W̄ 2 − |p|2)−1/2 = −(W̄ 2 − |p|2)1/2.

Consequently, it is easy to show [1, 5, 73, 91] that the
Hamiltonian function (82) is a conservation law of the
dynamical field equation (46); that is, for all τ, t ∈ R

dH/dt = 0 = dH/dτ, (83)

which naturally leads to an energy interpretation of H.
Thus, we can represent the particle energy as

E = (W̄ 2 − |p|2)1/2. (84)

The corresponding Hamiltonian system equivalent to the
vacuum field equation (46) can be written as

ṙ := dr/dτ = ∂H/∂p = p(W̄ 2 − |p|2)−1/2 (85)

ṗ := dp/dτ = −∂H/∂r = W̄∇W̄ (W̄ 2 − |p|2)−1/2,

and we have the following result.

Proposition 2.6. The alternative freely moving point
particle electrodynamic model, based on the action func-
tional (47), allows the canonical Hamiltonian formu-
lation (85) with respect to the rest reference frame K,
where the Hamiltonian function is given by (82).

As for the charged point particle electrodynamics,
based on the dynamical equations (85), it is completely
equivalent to the classical relativistic freely moving point
particle electrodynamics described in Subsection 2.1.

In an analogous manner, one can now use the La-
grangian (61) and equation (76) to construct the Hamil-
tonian function for the dynamical field equation (58),
describing the motion of a charged point particle ξ in an
external electromagnetic field as

ṙ := dr/dτ = ∂H/∂P, Ṗ := dP/dτ = −∂H/∂r, (86)

where

H :=< P, ṙ > −L
=< P, ṙf − PW̄ ′−1(1− |P |2/W̄ ′2)−1/2 >

+ W̄ ′[W̄ ′2(W̄ ′2 − |P |2)−1]1/2 =< P, ṙf >

+ |P |2(W̄ ′2 − |P |2)−1/2 − W̄ ′2(W̄ ′2 − |P |2)−1/2

= −(W̄ ′2 − |P |2)(W̄ ′2 − |P |2)−1/2+ < P, ṙf > (87)

= −(W̄ ′2 − |P |2)1/2− < ξA,P > (W̄ ′2 − |P |2)−1/2.
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Here we took into account that, owing to definitions (55)
and (62),

ξfA
′ := W̄ ′u′

f = W̄ ′drf/dt
′ = W̄uf = ξfA = (88)

= W̄ ′ drf
dτ

· dτ
dt′

= W̄ ṙf (1− |u′ − u′
f |)1/2

= W̄ ′ṙf (1 + |ṙ − ṙf |2)−1/2 == −W̄ ′ṙf

(W̄ ′2 − |P |2)1/2W̄ ′−1 = −ṙf (W̄
′2 − |P |2)1/2,

or

ṙf = −ξfA (W̄ ′2 − |P |2)−1/2, (89)

where A : M4→ R3 is the related magnetic vector poten-
tial generated by the moving external charged particle
ξf with respect to the laboratory reference frame K.
Equations (86) can be easily rewritten with respect to
the laboratory reference frame K in the form

dr/dt = u,

dp/dt = ξE + ξu×B −∇ < ξA, u− uf >, (90)

which coincides with the result (69).
Whence, we see that the Hamiltonian function (87)

satisfies the energy conservation conditions

dH/dt = 0 = dH/dτ, (91)

for all τ, t ∈ R, and the suitable energy expression, owing
to (56), is

E =
(
W̄ 2 − |ξA|2 − |P |2

)1/2
+ < ξA,P >(

W̄ 2 − |ξA|2 − |P |2
)−1/2

, (92)

where the generalized momentum P = p + ξA. The re-
sult (92) differs essentially from that obtained in [56],
which is strongly based on the Einsteinian Lagrangian
for a moving charged point particle ξ in an external elec-
tromagnetic field, generated by a charged point test par-
ticle ξf , moving with velocity uf ∈ T (R3) with respect
to a laboratory reference frame K. Thus, we have the
following proposition,

Proposition 2.7. The alternative classical relativistic
electrodynamic model (90), which is intrinsically com-
patible with the classical Maxwell equations (6), allows
the Hamiltonian formulation (86) with respect to the rest
reference frame Kτ , where the Hamiltonian function is
given by expression (87).

The inference above is a natural candidate for ex-
perimental validation of our vacuum field theory. It is
strongly motivated by the following remark.

Remark It is necessary to mention here that the
Lorentz force expression (90) uses the particle momen-
tum p = mu, where the dynamical “mass”m := −W̄
satisfies condition (92). This gives rise to the following
crucial relationship between the particle energy E0 and
its rest mass m0 = −W̄0 (for the velocity u = 0 at the
initial time moment t = 0) :

E0 = m0
(1− |ξA0/m0|2)

(1− 2|ξA0/m0|2)1/2
, (93)

or, equivalently, under the condition |ξA0/m0|2 < 1/2

m0 = E0
(
1

2
+ |ξA0/E0|2 ±

1

2

√
1− 4|ξA0/E0|2

)1/2

,

(94)
where A0 := A|t=0 ∈ E3, which differs markedly from
the classical expression m0 = E0 − ξφ0, following from
(39) and is does not a priori on the external potential
energy ξφ0. As the quantity |ξA0/E0| → 0, the following
asymptotic mass values follow from (94):

m
(+)
0 ≃ E0, m

(−)
0 ≃ ±

√
2|ξA0|. (95)

The first mass value m
(+)
0 ≃ E0 is physically correct,

giving rise to the bounded charged particle energy E0,
but the second mass value m

(−)
0 ≃ ±

√
2|ξA0| is not

physical, as it gives rise to the vanishing denominator

(1 − 2|ξA0/m
(−)
0 |2)1/2 ≃ 0 in (93), which is equivalent

to the unboundedness of the charged particle energy E0.

To make this difference more transparent, we now ana-
lyze the dual classical Lorentz force (79) from the Hamil-
tonian point of view, based upon the Lagrangian func-
tion (77). Thus, we readily find that the corresponding
Hamiltonian function is

H :=< P, ṙ > −L =< P, ṙ > +W̄ (1 + |ṙ|2)1/2

− ξ < A, ṙ >=< P − ξA, ṙ > +W̄ (1 + |ṙ|2)1/2 (96)

= −|p|2W̄−1(1− |p|2/W̄ 2)−1/2 + W̄ (1− |p|2/W̄ 2)−1/2

= −(W̄ 2 − |p|2)(W̄ 2 − |p|2)−1/2 = −(W̄ 2 − |p|2)1/2.

Since p = P − ξA, the expression (96) assumes the final
“no interaction”[55, 56, 68, 78] form

H = −(W̄ 2 − |P − ξA|2)1/2, (97)

which is conserved with respect to the evolution equa-
tions (75) and (76), that is

dH/dt = 0 = dH/dτ (98)

for all τ, t ∈ R. These equations are equivalent to the
following Hamiltonian system

ṙ = ∂H/∂P = (P − ξA)(W̄ 2 − |P − ξA|2)−1/2, (99)

Ṗ = −∂H/∂r = (W̄∇W̄ −∇ < ξA, (P − ξA) >)

(W̄ 2 − |P − ξA|2)−1/2,

as one can readily check by direct calculations. Actually,
the first equation

ṙ = (P − ξA)(W̄ 2 − |P − ξA|2)−1/2 = p(W̄ 2 − |p|2)−1/2

= mu(W̄ 2 − |p|2)−1/2 (100)

= −W̄u(W̄ 2 − |p|2)−1/2 = u(1− |u|2)−1/2,

holds, owing to the condition dτ = dt(1 − |u|2)1/2 and
definitions p := mu, m = −W̄ , postulated from the very
beginning. Similarly, we obtain

Ṗ = −∇W̄ (1− |p|2/W̄ 2)−1/2

+∇ < ξA, u > (1− |p|2/W̄ 2)−1/2 (101)

= −∇W̄ (1− |u|2)−1/2 +∇ < ξA, u > (1− |u|2)−1/2,
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or equivalently, the dual Lorentz dynamical expression

dp/dt = ξE + ξu×B, (102)

exactly coinciding with that of equation (79). This result
can be reformulated as follows.

Proposition 2.8. The dual to the classical relativistic
electrodynamic model (79) allows the canonical Hamil-
tonian formulation (99) with respect to the rest reference
frame Kτ , where the Hamiltonian function is given by ex-
pression (97). Moreover, this formulation circumvents
the “mass-potential”energy controversy associated to the
classical electrodynamic model based on the classical ac-
tion functional (34).

The classical Lorentz force expression (102) and the
related conserved energy relationship

E = (W̄ 2 − |P − ξA|2)1/2 (103)

are characterized by the following remark.

Remark If we make use of the modified relativistic
Lorentz force expression (102) as an alternative to the
classical one of (43), the corresponding charged parti-
cle energy relationship (103) gives rise to a different en-
ergy expression (for the velocity u = 0 at the initial
time moment t = 0). Namely, one naturally obtains the
physically reasonable Einsteinian mass-energy relation-
ship E0 = m0 instead of the senseless classical expression
E0 = m0 + ξφ0 following from (39), where φ0 := φ|t=0

and where the mass parameter m0 is a constant param-
eter independent of the external electromagnetic field.

2.4 Comments

All of the field equations discussed above are canon-
ical Hamiltonian systems with respect to the corre-
sponding physically proper rest reference frames Kτ , pa-
rameterized by the Euclidean coordinates (τ, r) ∈ E4.
Upon passing to the basic laboratory reference frame K,
naturally parameterized by the Minkowski coordinates
(t, r) ∈ M4, the related Hamiltonian structure is lost,
giving rise to a suitably altered interpretation of the real
particle motion. Namely, as was demonstrated above, a
least action principle for a charged point particle dy-
namics makes sense only with respect to the proper rest
reference frame Kτ as, otherwise, it becomes completely
senseless with respect to all other laboratory reference
frames. As for the Hamiltonian expressions (82), (87)
and (97), one observes that they all depend strongly
on the vacuum potential field function W̄ : M4→ R,
thereby avoiding the mass problem related with the well-
known classical energy expression and pointed out by L.
Brillouin [21].
Some comments are also in order concerning the clas-

sical relativity principle and how it is applied to real
physical phenomena. We have obtained our results us-
ing the standard Lorentz transformations of reference
frames - relying only on the natural notion of the rest
reference frame Kτ and its suitable parametrization with
respect to any other laboratory reference frame K. It
seems physically reasonable that the true state evolu-
tion of a moving charged particle ξ is exactly realized
only with respect to its proper rest reference system Kτ .

Thus, the only remaining question would be about
the physical justification of the corresponding relation-
ship between time parameters of the corresponding lab-
oratory and rest reference frames. The relationship be-
tween these reference frames that we have used through
is simply expressed as

dτ = dt(1− |u|2)1/2, (104)

where u := dr/dt ∈ E3 is the velocity vector with which
the rest reference frame Kτ moves with respect to an-
other arbitrarily chosen reference frame K. Expression
(104) implies, in particular, that

dt2 − |dr|2 = dτ2, (105)

which is evidently identical to the classical infinitesimal
Lorentz invariant. This is not a coincidence, since all
our dynamical vacuum field equations were derived in
turn [75, 77] from the governing equations of the vacuum
potential field function W : M4→ R in the form

∂2W/∂t2 −∇2W = ρ, ∂W/∂t+ < ∇, vW >= 0,

∂ρ/∂t+ < ∇, vρ >= 0, (106)

which is a priori Lorentz invariant. Here ρ ∈ R is the
charge density and v := dr/dt the associated local ve-
locity of the vacuum field potential evolution. Conse-
quently, the dynamical infinitesimal Lorentz invariant
(105) reflects this intrinsic structure of equations (106).
If it is rewritten in the following slightly nonstandard
Euclidean form:

dt2 = dτ2 + |dr|2 (107)

it gives rise to a completely different relationship be-
tween the reference frames K and Kτ , namely

dt = dτ(1 + |ṙ|2)1/2, (108)

where ṙ := dr/dτ is the related particle velocity with
respect to the rest reference system Kτ . Thus, we ob-
serve that all our Lagrangian analysis is strongly re-
lated to the functional expressions written in these
“Euclidean”space-time coordinates and with respect to
which the least action principle was applied. So we see
that there are two alternatives - the first one is to ap-
ply the least action principle to the corresponding La-
grangian functions, expressed in the Minkowski space-
time variables with respect to an arbitrarily chosen ref-
erence frame K, and the second one is to apply the least
action principle to the corresponding Lagrangian func-
tions expressed in the Euclidean space-time variables
with respect to the rest reference frame Kτ . But, as
it was demonstrated above, the second alternative ap-
peared to be physically reasonable in contrast to the
first one, which gives rise to different physically sense-
less controversies.
The above discussion leads to a slightly amusing but

thought-provoking observation: It follows that all of the
results of classical special relativity related to the elec-
trodynamics of charged point particles can be obtained
(but not in a one-to-one correspondence) using our new
reasonable definitions of the dynamical particle mass
and the physically motivated least action principle, cal-
culated with respect to the related Euclidean space-time
variables specifying the rest reference frame Kτ .
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3 Maxwell’s equations and the
Lorentz force - Feynman’s
legacy

3.1 Problem setting

In 1948 R. Feynman presented but did not publish
[32, 33] a very interesting, in some respects “heretical” ,
quantum-mechanical derivation of the classical Lorentz
force acting on a charged particle under influence of an
external electromagnetic field. His result was analyzed
by many authors [4, 20, 31, 35, 48, 49, 57, 85, 93] from
different points of view, including its relativistic gener-
alization [89]. As this problem is completely classical,
we reanalyze Feynman’s derivation from the classical
Hamiltonian dynamics point of view on the coadjoint
space T ∗(N), N ⊂ R3, and construct its nontrivial gen-
eralization compatible with results [15, 72, 75] of Sec-
tion 1, based on a recently devised vacuum field theory
approach [76, 77]. Having also obtained the classical
Maxwell electromagnetic equations, we supply the com-
plete legacy of Feynman’s approach to the Lorentz force
derivation and demonstrate its compatibility with the
relativistic generalization, presented in Section 2.

Consider a charged point particle moving under an
electromagnetic field. For its description, it is convenient
to introduce a trivial fiber bundle structure π: M →
N,M = N × G, N ⊂ R3, with the abelian structure
group G := R\{0}, equivariantly acting on the canoni-
cally symplectic coadjoint space T ∗(M), and to endow
it with a connection one-form A : M→T ∗(M)× G as

A(q, g) := g−1(d+ α(1)(q)) g (109)

on the phase space M , where d : Λ(M) → Λ(M) is the
usual exterior derivative, α(1): M → Λ1(N)⊗G is some
smooth mapping, q ∈ N and g ∈ G. If l : T ∗(M) → G∗

is the related momentum mapping, one can construct
the reduced phase space M̄ξ:= l−1(ξ)/G ≃ T ∗(N),
where ξ ∈ G∗≃R is taken to be fixed and have the
reduced symplectic structure

ω̄
(2)
ξ (q, p) =< dp,∧dq > +d < ξ, α(1)(q) >G . (110)

From (110)one readily computes the corresponding Pois-
son brackets on T ∗(N):

{qi, qj}
ω

(2)
ξ

= 0, {pj , qi}ω(2)
ξ

= δij ,

{pi, pj}ω(2)
ξ

= ξFji(q) (111)

for i, j = 1, 3 with respect to the reference frame
K(t, q), characterized by the phase space coordinates
(q, p) ∈ T ∗(N). If one introduces a new momentum
variable p̃ := p + ξA(q) on T ∗(N) ∋ (q, p), where
α(1)(q) :=<A(q), dq > ∈ T ∗

q(N), it is easy to verify that

ω̄
(2)
ξ → ω̃

(2)
ξ :=< dp̃,∧dq >, giving rise to the following

“minimal interaction”canonical Poisson brackets:

{qi, qj}
ω̃

(2)
ξ

= 0, {p̃j , qi}ω̃(2)
ξ

= δij , {p̃i, p̃j}ω̃(2)
ξ

= 0

(112)
for i, j = 1, 3 with respect to the reference frame
Kf (t, q − qf ), characterized by the phase space coordi-
nates (q, p̃) ∈ T ∗(N), if and only if the Maxwell field

equations

∂Fij/∂qk + ∂Fjk/∂qi + ∂Fki/∂qj = 0 (113)

are satisfied on N for all i, j, k = 1, 3 with the curvature
tensor Fij(q) := ∂Aj/∂q

i − ∂Ai/∂q
j , i, j = 1, 3, q ∈ N.

3.2 Lorentz force and Maxwell’s equa-
tions: Lagrangian analysis

The Poisson structure (112) makes it possible to de-
scribe a charged particle ξ ∈ R at point q ∈ N ⊂
R3moving with velocity dq/dt := u ∈ Tq(N) with re-
spect to the laboratory reference frame K(t, q), speci-
fied by coordinates (t, q) ∈ M4, under the electromag-
netic influence of an external charged particle ξf ∈ R at
point qf ∈ N ⊂ R3 and moving with respect to the
same reference frame K(t, q) with velocity dqf/dt :=
uf ∈ Tqf (N). Consider a new shifted reference frame
K′

f (t
′, q−qf ) moving with respect to the reference frame

K(t, q) with velocity uf . With respect to the reference
frame K′

f (t
′, q−qf ), specified by coordinates (t′, q−qf ) ∈

M4, the charged point particle ξ moves with velocity
u′ −u′

f := dr/dt′ − drf/dt
′ ∈ Tq−qf (N) and the charged

particle ξf remains rest. Then one can express the stan-
dard classical Lagrangian function of the charged par-
ticle ξ with a mass m′ ∈ R+ subject to the reference
frame K′

f (t
′, q − qf ) as

Lf (q, u
′) =

m′

2
|u′ − u′

f |2 − ξφ′, (114)

and the suitably Lorentz transformed scalar potential
φ′ = φ/(1 + |u′

f |2) ∈ C2(N ;R) is the corresponding
potential energy with respect to the reference frame
K′

f (t
′, q − qf ). On the other hand, owing to (114) and

the Poisson brackets (112) the following equality for the
charged particle ξ canonical momentum with respect to
the reference frame K′

f (t
′, q − qf ) holds:

p̃′ := p′ + ξA′(q) = ∂Lf (q, u
′)/∂u′, (115)

or, equivalently,

p′ + ξA′(q) = m
′
(u′ − u′

f ), (116)

expressed in the units when the light speed c = 1. Taking
into account that the charged particle ξ momentum with
respect to the reference frame K(t, q) is p′ := m′u′ ∈
Tq(N), one can easily obtain from (116) the important
relationship

ξA′(q) = −m
′
u′
f (117)

for the vector potential A ∈ C2(N ;E3), which was ob-
tained in [76, 77, 80] and described before in Section
2. Now from (114) and (117) one finds the following
Lagrangian equation:

d

dt′
[p′ + ξA′(q)] =∂Lf (q, u

′)/∂q = −ξ∇φ′, (118)

obtained with respect to the shifted reference frame
K′

f (t
′, q − qf ) in [76, 77] and giving rise, as the result of

the obvious relationships p′ = p,A′ = A, to the charged
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point particle ξ dynamics

dp/dt = −ξ∂A/∂t− ξ∇φ(1− |uf |2)− ξ < u,∇ > A

= −ξ∂A/∂t− ξ∇φ− ξ < u,∇ > A+ ξ∇ < u,A >

− ξ∇ < u− uf , A >= −ξ(∂A/∂t+∇φ)

+ ξu× (∇×A)− ξ∇ < u− uf , A > (119)

with respect to the laboratory reference frame K(t, q).
Using (119), we now obtain the modified Lorentz type
force

dp/dt = ξE + ξu×B − ξ∇ < u− uf , A >, (120)

where

E := −∂A/∂t−∇φ, B := ∇×A, (121)

and we have used the slightly modified from the classical
[50, 26, 37, 56] Lorentz force expression

dp/dt = ξE + ξu×B (122)

differing by the gradient component

Fc := −ξ∇ < u− uf , A > . (123)

Observe that the modified Lorentz force expression
(120) can be naturally generalized to the relativistic case
by taking into account that the standard Lorentz condi-
tion

∂φ/∂t+ < ∇, A >= 0 (124)

is imposed on the electromagnetic potential (φ,A) ∈
C2(N ;M4).
More specifically, from (121) one sees that the Lorentz

invariant field equation

∂2φ/∂t2 −∆φ = ρf , (125)

where ρf : N → D′(N) is a generalized density function
of the external charge distribution ξf . Now it follows
directly from [76, 77] that we can easily find from (125)
and the charge conservation law

∂ρf/∂t+ < ∇, Jf >= 0 (126)

the next Lorentz invariant equation for the vector po-
tential A ∈ C2(N ;E3) :

∂2A/∂t2 −∆A = Jf . (127)

Moreover, relationships (121),(125) and (127) imply that
the true classical Maxwell equations

∇× E = −∂B/∂t, ∇×B = ∂E/∂t+ Jf ,

< ∇, E >= ρf , < ∇, B >= 0 (128)

on the electromagnetic field (E,B) ∈ C2(N ;E3×E3).
Consider now the Lorentz condition (124) and observe

that it is equivalent to the local conservation law

d

dt

∫
Ωt

Wd3q = 0, (129)

which gives rise to the important relationship for the
magnetic potential A ∈ C2(N ;E3)

A = ufφ (130)

with respect to the laboratory reference frame K(t, q),
where Ωt ⊂ N is any open domain with smooth bound-
ary ∂Ωt, moving together with the charge distribution
ξf in the domain N ⊂ R3 with the corresponding ve-
locity u′

f . Taking into account (117), one can find the
expression for our charged particle ξ “inertial” mass:

m = −W̄ , W̄ := ξφ, (131)

coinciding with that obtained in [76, 77, 80], where we
denoted by W̄ ∈ C2(N ;R) the corresponding potential
energy of the charged point particle ξ.

3.3 Modified least action principle:
Hamiltonian analysis

Using the representations (130) and (131) one can
rewrite the determining Lagrangian equation (118) with
respect to the shifted reference frame K′

f (t
′, qf ) as

d

dt′
[−W̄ ′(u′ − u′

f )] = −∇W̄ ′, (132)

which is reduced to the Lorentz force expression (120)
calculated with respect to the laboratory reference frame
K(t, q) :

dp/dt = ξE + ξu×B − ξ∇ < u− uf , A >, (133)

where, as before,

E := −∂A/∂t−∇φ, B := ∇×A. (134)

Remark It is interesting to note here that equation
(133) does not allow the Lagrangian representation with
respect to the reference frame K(t, q) in contrast to that
of equation (132) which is equivalent to (118).

The remark above is a challenging source of our fur-
ther analysis concerning the direct relativistic general-
ization of the modified Lorentz force (120). Namely, the
following proposition holds.

Proposition 3.1. The Lorentz force (120) in the case
when the charged point particle ξ momentum is defined,
owing to (131), as p = −W̄u. And it is the exact rel-
ativistic expression allowing the Lagrangian representa-
tion of the charged particle ξ dynamics with respect to the
rest reference frame Kτ (τ, q − qf ), related to the shifted
reference frame K′

f (t
′, q − qf ) by means of the classical

relativistic proper time infinitesimal transformation:

dt′ = dτ(1 + |u′ − u′
f |2)1/2, (135)

where τ ∈ R is the proper time parameter in the rest
reference frame Kτ (τ, q − qf ).

Proof. Take the following action functional with respect
to the charged point particle ξ rest reference frame
Kτ (τ, q − qf ) :

S(τ) := −
∫ t2(τ2)

t1(τ1)

W̄ ′dt′ =

∫ τ2

τ1

W̄ ′(1 + |u′ − u′
f |2)1/2dτ,

(136)
where the proper temporal values τ1, τ2 ∈ R are consid-
ered, in the spirit of Feynman [37], to be fixed in contrast
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to the temporal parameters t2(τ2), t2(τ2) ∈ R depend-
ing, owing to (135), on the charged particle ξ trajectory
in the phase space M4. The least action condition

δS(τ) = 0, δq(τ1) = 0 = δq(τ2), (137)

applied to (136) yields the dynamical equation (132),
which is simultaneously equivalent to the relativistic
Lorentz force expression (120) with respect to the lab-
oratory reference frame K(t, q). This completes the
proof.

Making use of the relationships between the reference
frames K(t, q) and Kτ (τ, q−qf ) when the external charge
particle velocity uf = 0, we can easily derive the follow-
ing corollary.

Corollary 3.2. Let the external charge point ef be in
rest, that is the velocity uf = 0. Then equation (132)
reduces to

d

dt
(−W̄u)] =−∇W̄ , (138)

allowing the following conservation law:

H0 = W̄ (1− |u|2)1/2 = −(W̄ 2 − |p|2)1/2. (139)

Moreover, equation (138) is Hamiltonian with respect to
the canonical Poisson structure (112), with Hamiltonian
function (139) and the rest reference frame Kr(τ, q):

dq/dτ : = ∂H0/∂p = p(W̄ 2 − |p|2)−1/2

dp/dτ : = −∂H0/∂q = −W̄ (W̄ 2 − |p|2)−1/2∇W̄ ,

which implies

dq/dt = −pW̄−1,

dp/dt = −∇W̄ . (140)

In addition, if we define the rest particle mass m0 :=
−H0|u=0, the “inertial”particle mass quantity m ∈ R
takes the well-known classical relativistic form

m = −W̄ = m0(1− |u|2)−1/2, (141)

depending on the particle velocity u ∈ R3.

For the general case of equation (132), results anal-
ogous to the above hold, such as those described in
part in Section 2. We need only mention that the in-
duced Hamiltonian structure of the general equation
(132) results naturally from its least action represen-
tation (136) and (137) with respect to the rest reference
frame Kτ (τ, q).

3.3.1 Comments

In Section 3 we have demonstrated the complete
legacy of the Feynman’s approach to the Lorentz force
based derivation of Maxwell’s electromagnetic field
equations. Moreover, we succeeded in finding the ex-
act relationship between Feynman’s approach and the
vacuum field approach of Section 2, devised in [76, 77].
Thus, the results obtained present a strong argument
for the vacuum field theory approach, based upon which
one can simultaneously describe the physical phenomena
both of electromagnetic and gravity origins. The latter
is physically based on the particle “inertial”mass expres-
sion (131), naturally following from Feynman’s approach
to the Lorentz force derivation and from vacuum field
theory.

4 Modified Lorentz force and
charge radiation: vacuum field
theory approach

4.1 Introductory setting

Maxwell’s equations is one of the fundamental theories
of physics known to allow two main forms of representa-
tions: either by means of the electric and magnetic fields
or potentials. The latter were mainly considered as a
mathematically motivated representation useful for dif-
ferent applications but having no physical significance.
That the situation is not so simple and the evidence

that the magnetic potential possesses physical proper-
ties was doubtless, was understood by the physics com-
munity when Y. Aharonov and D. Bohm [2] formulated
their “paradox”concerning the measurement of a mag-
netic field outside a separated region where it vanishes.
Later similar effects were also revealed in the supercon-
ductivity theory of Josephson media. As the existence
of any electromagnetic field in an ambient space can be
tested only through its interaction with electric charges,
their dynamical behavior, being of great importance,
was studied at length by M. Faraday, A. Ampère and
H. Lorentz subject to its classical second Newton law
form. Namely, the classical Lorentz force

dp/dt = ξE + ξ
u

c
×B (142)

was derived, where E and B ∈ E3 are, respectively,
electric and magnetic fields, acting on a point charged
particle ξ ∈ R, possessing the momentum p = mu, where
m ∈ R+ is the observed particle mass and u ∈ T (R3) is
its velocity, measured with respect to a suitably chosen
laboratory reference frame K.
That the Lorentz force (142) is not a completely sat-

isfactory expression was known to Lorentz himself. The
nonuniform Maxwell equations also describe the elec-
tromagnetic fields radiated by any accelerated charged
particle, easily seen from expressions for the Lienard–
Wiechert electromagnetic four-potential (φ,A) : M4 →
T ∗(M4), related to the electromagnetic fields by means
of the well-known [56, 50, 26] relationships

E := −∇φ− 1

c

∂A

∂t
,B := ∇×A. (143)

This fact had inspired many physicists to “improve
”the classical Lorentz force expression (142) and its
modification was then suggested by G.A. Shott [83] and
later by M. Abraham and P.A.M. Dirac (see [26, 50]),
who found the so-called classical “radiation reaction
”force due to the self-interaction of a charged particle
with charge ξ ∈ R equals

dp

dt
= ξE + ξ

u

c
×B +

2ξ2

3c3
d2u

dt2
. (144)

The additional self-reaction force expression

Fr :=
2ξ2

3c3
d2u

dt2
, (145)

depending on the particle acceleration led right away to
many questions concerning its physical meaning, since
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for instance, a uniformly accelerated charged particle,
owing to the expression (144), experiences no radia-
tion reaction, contradicting the fact that any acceler-
ated charged particle always radiates electromagnetic
waves. This “paradox”was a challenging problem dur-
ing the twentieth century [17, 27, 50, 70, 83] and still
remains to be completely explained [62, 63, 81]. As
there exist different approaches to explaining this reac-
tion radiation phenomenon, we mention here only such
popular ones as the Wheeler–Feynman [96] “absorber
radiation”theory, based on a very sophisticated elab-
oration of the retarded and advanced solutions to the
nonuniform Maxwell equations, the vacuum Casimir ef-
fect approach devised in [66, 84], and the construction of
Teitelboim [90] which extensively exploits the intrinsic
structure of the electromagnetic energy tensor subject to
the advanced and retarded solutions to the nonuniform
Maxwell equations.

It is also worth of mentioning here the deep develop-
ment of Teitelboim’s theory devised recently in [53, 86]
and applied to the non-abelian Yang–Mills equations,
naturally generalizing the classical Maxwell equations.
Nevertheless, all of these explanations prove to be some-
what unsatisfactory from the modern physics of view. In
view of this, we will reanalyze once more the structure
of the “radiative” Lorentz type force (144) from the vac-
uum field theory approach of Section 2 and show that
this force allows some natural slight modification.

4.2 Radiation reaction force: vacuum-
field theory approach

Here, we develop further our vacuum field theory ap-
proach devised in [15, 76, 75, 77] for the electromag-
netic Maxwell and Lorentz electron theories and show
that it is in complete agreement with the classical re-
sults and even more; it allows some nontrivial generaliza-
tions, which may have important physical applications.
It will be also shown that the closely related electron
mass problem can be satisfactorily explained in the con-
text of this vacuum field theory approach and the spatial
electron structure assumption.

The modified Lorentz force acting on a particle of
charge ξ ∈ R exerted by a charged particle ξf ∈ R mov-
ing with velocity uf ∈ T (E3) was derived in Section 2
and equals

dp/dt = −ξE + ξ
u

c
×B −∇ < A, u− uf >, (146)

where (φ,A) ∈ T ∗(M4) is the external electromag-
netic potential calculated with respect to a fixed lab-
oratory reference frame K. To take into account the self-
interaction of this particle, we make use of a spatially
distributed charge density ρ : M4 → R satisfying the
condition

ξ =

∫
R3

ρ(t, r)d3r (147)

for all t ∈ R for this laboratory reference frame K with
coordinates (t, r) ∈ M4. Then, owing to 146 and the
reasoning from Section 2, the self-interacting force of
this spatially structured charge ξ ∈ R can be expressed
with respect to this laboratory reference frame K in the

following equivalent form:

dp/dt := Fs = − 1
c

d
dt [

∫
E3 d

3rρ(t, r)As(t, r)]
−
∫
E3 d

3rρ(t, r)∇φs(t, r) (1− |u/c|2), (148)

where

φs(t, r) =

∫
E3

ρ(t′, r′)|retd3r′

|r − r′|
,

As(t, r) =
1

c

∫
E3

u(t′)ρ(t′, r′)|retd3r′

|r − r′|
, (149)

are the well-known retarded Lienard-Wiechert poten-
tials, which should be calculated at the retarded time
parameter t′ := t − |r − r′| /c ∈ R. Also taking into ac-
count the continuity equation

∂ρ/∂t+ < ∇, J >= 0 (150)

for the spatially distributed charge density ρ : M4 → R
and current J = ρu : M4 → E3 and the Taylor expan-
sions for retarded potentials (149)

φs(t, r) =
∑
n∈Z+

∂n

∂tn

∫
E3

(−|r − r′|)n

cnn!

ρ(t, r′)d3r′

|r − r′|
,

As(t, r) =
∑
n∈Z+

∂n

∂tn

∫
E3

(−|r − r′|)n

cnn!

J(t, r′)d3r′

|r − r′|
, (151)

from (148) and (151), assuming a spherical charge dis-
tribution, |u|/c ≪ 1 and small acceleration, followed by
calculations similar to those of [50, 62], one obtains

Fs =
∑

n∈Z+

(−1)n

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2 + (n−1)J(t,r′)

3(n+2)

)
+ d

dt [
∑

m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

=
∑

n∈Z+

(−1)n+1

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1 J(t, r
′)

+ d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

=
∑

m∈Z+

(−1)m+1

m!cm+2

∫
E3 d

3rρ(t, r)(1− |u/c|2)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1 J(t, r
′)

+ d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)]

−
∑

n∈Z+

(−1)m

3m!cm+2 (1− |u/c|2)
∫
E3 d

3r ∂ρ(t,r)
∂t∫

E3 d
3r′|r − r′|m−1 ∂m+1

∂tm+1 J(t, r
′)

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)],
(152)

The relationship above can be rewritten, owing to the
charge continuity equation (150), gives rise to the radi-
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ation force expression

Fs =
∑

n∈Z+

(−1)n

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2 + n−1

n+2
<r−r′,J(t,r′)>(r−r′)

|r−r′|2

)
+ d

dt [
∑

m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

=
∑

n∈Z+

(−1)n+1

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2 + n−1

n+2
|r−r′,u|2J(t,r′)

|r−r′|2|u|2

)
+ d

dt [
∑

m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)].
(153)

Applying to (4.2) the rotational symmetry property for
calculation of the internal integral, one easily obtains

Fs =
∑

n∈Z+

(−1)n

n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1

(
J(t,r′)
n+2 + (n−1)J(t,r′)

3(n+2)

)
+ d

dt [
∑

m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

=
∑

n∈Z+

(−1)n

3n!cn+2 (1− |u|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1 J(t, r
′)

+ d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

=
∑

n∈Z+

(−1)n

3n!cn+2 (1− |u/c|2)
∫
E3 d

3rρ(t, r)∫
E3 d

3r′|r − r′|n−1 ∂n+1

∂tn+1 J(t, r
′)

+ d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm J(t, r′)]

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)]

−
∑

n∈Z+

(−1)m

3m!cm+2 (1− |u/c|2)
∫
E3 d

3r ∂ρ(t,r)
∂t∫

E3 d
3r′|r − r′|m−1 ∂m+1

∂tm+1 J(t, r
′)

(154)

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)]

−
∑

n∈Z+

(−1)m

3m!cm+2 (1− |u/c|2)
∫
E3 d

3r ∂ρ(t,r)
∂t∫

E3 d
3r′|r − r′|m−1 ∂m+1

∂tm+1 J(t, r
′)

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)]

+
∑

n∈Z+

(−1)m

3m!cm+2 (1− |u/c|2)
∫
E3 d

3r < ∇, J(t, r′) >∫
E3 d

3r′|r − r′|m−1 ∂m+1

∂tm+1 J(t, r
′)

= d
dt [

∑
m∈Z+

(−1)m+1

m!cm

∫
E3 d

3rρ(t, r)∫
E3 d

3r′ |r−r′|m+1

c2
∂m

∂tm [J(t, r′)− 1
3J(t, r

′)],

where we took into account [50] that in case of the spher-
ical charge distribution the following equalities∫

E3 d
3r

∫
E3 d

3r′ρ(t, r)ρ(t, r′) |<r−r′,u(t)>|2
|r−r′|2|u(t)|2 = 1

3ξ
2,∫

E3 d
3r < ∇, J(t, r′) >∫

E3 d
3r′|r − r′|m−1 ∂m+1

∂tm+1 J(t, r
′) = 0,∫

E3 d
3r

∫
E3 d

3rρ(t, r)ρ(t, r′) (r−r′)
|r−r′|3 = 0

(155)
hold. Thus, from (152) one easily finds up to the
O(1/c4) accuracy the following radiation reaction force

expression:

dp
dt = Fs = − d

dt

(
4Ees

3c2 u(t)
)
− d

dt

(
2Ees

3c2 |u/c|2 u(t)
)

+ 2ξ2

3c3
d2u
dt2 +O(1/c4)

= − d
dt

(
4
3m

(es)
0 (1 + |u/c|2

2 )u(t)
)
+ 2ξ2

3c3
d2u
dt2 +O(1/c4)

= − d
dt

(
4
3

m
(es)
0 u(t)

(1−|u/c|2)1/2

)
+ 2ξ2

3c3
d2u
dt2 +O(1/c4)

= − d
dt

(
4
3m

(es)u(t)
)
+ 2ξ2

3c3
d2u
dt2 +O(1/c4),

(156)
where we defined the electrostatic self-interaction repul-
sive energy as

Ees :=
1

2

∫
R3

d3r

∫
R3

d3r′
ρ(t, r)ρ(t, r′)

|r − r′|
, (157)

and the electromagnetic charged particle rest and iner-
tial masses, respectively, as

m
(es)
0 :=

Ees
c2

, m(es) :=
m

(es)
0

(1− |u/c|2)1/2
. (158)

Now it follows from (146) that

d

dt

[
(mg +m(es))u

]
=

2ξ2

3c3
d2u

dt2
+O(1/c4), (159)

where we made use of the inertial mass definition

mg := −W̄g/c
2, ∇W̄g ≃ 0, ms := Ws/c

2, (160)

following from the vacuum field theory approach, where
the mg ∈ R is the corresponding gravitational mass of
the charged particle ξ, generated by the vacuum field
potential W̄g. The corresponding radiation force

Fr =
2ξ2

3c3
d2u

dt2
+O(1/c4), (161)

coincides exactly with the classical Abraham-Lorentz-
Dirac results. From (159) it follows that the observable
physical charged particle mass mph ≃ mg + m(es) con-
sists of two impacts: the electromagnetic and gravita-
tional components, giving rise to the final force expres-
sion

d

dt
(mphu) =

2ξ2

3c3
d2u

dt2
+O(1/c4), (162)

where mph ≃ mg + m(es) is the physically observed
charged particle mass. It means, in particular, that the
physically observed “inertial” mass mph of a real elec-
tron strongly depends on the external physical interac-
tion with the ambient vacuum medium, as it was re-
cently demonstrated via different approaches in [66, 84]
based on vacuum Casimir effect considerations. More-
over, the assumed boundedness of the electrostatic self-
energy Ees appears to be completely equivalent to the
existence of so-called intrinsic Poincaré type “tensions”,
analyzed in [17, 39, 66], and to the existence of a special
compensating Coulomb “pressure”, suggested in [84],
guaranteeing the observable electron stability.

4.3 Comments

The charged particle radiation problem, revisited in
this section, allows to conceive the following explana-
tion of the charged particle mass as that of a compact
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and stable object which should be influenced by a vac-
uum field interaction energy potential W̄ ∈ R3 of nega-
tive sign as follows from (160). This can be satisfied if
and only if the expression (159) holds, thereby imposing
on the intrinsic charged particle structure [63] certain
nontrivial geometrical constraints. Moreover, as follows
from the physically observed particle mass expressions
(160), the electrostatic potential energy, being of the re-
pulsive force origin, does contribute to the full mass as
its main energy component.
There also exist different relativistic generalizations of

the force expression (159), which suffer the same com-
mon physical inconsistency related to the no radiation
effect of a charged particle in uniform motion.
Another problem closely related to the radiation re-

action force analyzed above, is the search for an ex-
planation of the Wheeler and Feynman reaction radia-
tion mechanism, called the absorption radiation theory,
based on the Mach type interaction of a charged parti-
cle with the ambient vacuum electromagnetic medium.
There are observable relationships between this prob-
lem and the ones investigated here using the vacuum
field theory approach, but this needs a more detailed
and extended analysis.
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