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ABSTRACT

Motivation: cis-regulatory DNA sequence elements such as

enhancers and silencers function to control the spatial and temporal

expression of their target genes. While the overall levels of gene

expression in large cell populations appear precisely controlled,

transcription of individual genes in single cells is extremely variable

in real time. It is therefore important to understand how these

cis-regulatory elements function to dynamically control transcription

at single cell resolution. Recently, statistical methods have been

proposed to back calculate the rates involved in mRNA transcription

using parameter estimation of a mathematical model of transcription

and translation. However, a major complication in these approaches

is that some of the parameters, particularly those corresponding to

the gene copy number and transcription rate, cannot be distinguished

and so these methods cannot be used when the copy number is

unknown.

Results: Here, we develop a hierarchical Bayesian model to estimate

biokinetic parameters from live cell enhancer-promoter reporter

measurements performed on a population of single cells. This allows

us to investigate transcriptional dynamics when the copy number

is variable across the population. We validate our method using

synthetic data and then apply it to quantify the function of two known

developmental enhancers in real time and in single cells.

Availability: Supporting information is submitted with the article.

Contact: d.j.woodcock@warwick.ac.uk

1 INTRODUCTION

The rate of transcription of RNA polymerase II transcribed genes

is determined by interactions between general transcription factors

assembled at the core promoter and sequence specific transcription

factors bound to cis-regulatory DNA sequences such as enhancers.

Experiments in cell populations have suggested that enhancers

∗to whom correspondence should be addressed

†authors contributed an equal amount to the work

function either as rheostats, by increasing the rate of transcription

initiation from a promoter in a graded manner, or as on/off switches

increasing the proportion of cells transcribing a gene without

affecting the rate (Jeziorska et al., 2009). However, recent studies

have shown that even though gene expression levels appear precise

when averaged over a large population of cells, the process of

transcription in individual cells is stochastic (Elowitz et al., 2002;

Paulsson, 2005). A mammalian gene has intermittent random bursts

of expression in a single cell separated by refractory periods of

inactivity with the kinetics of this process varying widely between

genes (Harper et al., 2011). This results in variability in protein

expression both within individual cells and between cells in a

population (Paulsson, 2004). While the kinetics of transcription has

been studied in single cells, the ability of enhancers to regulate

transcription at single cell resolution remains poorly understood.

Studies with stable cell lines containing integrated luminescent

and fluorescent reporters have been used to measure fine-scale

dynamics of transcription (Harper et al., 2011; Suter et al., 2011).

This approach could, in theory, be used for large scale analyses

of enhancer function, but transient transfection is more amenable

due to the numbers of constructs involved. However, transient

transfection has a major disadvantage in that the variation in copy

number makes the reliability of any quantification problematic.

It is therefore of considerable interest to provide a method that

can deal with copy number variation and estimate transcription

rates using transient transfection. To address this problem we have

developed a hierarchical Bayesian model to estimate transcriptional

dynamics in single cells and we have used it to gain a more detailed

understanding of cis-regulatory enhancer function.

Our hierarchical model builds on previous models of gene

transcription (Finkenstädt et al., 2008) and uses the linear noise

approximation (Elf and Ehrenberg, 2003) to establish a likelihood

function which enables us to estimate the model parameters using

Markov Chain Monte Carlo (MCMC) (Komorowski et al., 2009).

This forms the first ‘layer’ of the hierarchical structure of the model

and incorporates the variation within an individual cell. The second

layer models the variation between cells. This has a dual function:
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it provides information about extrinsic noise and heterogeneity

(Elowitz et al., 2002) that is of considerable value in itself and,

importantly, it aids the estimation process making it more robust. In

this approach we assume that some of the parameters for each cell

are drawn from an overarching distribution at the population level.

By estimating the parameters of these distributions (henceforth

referred to as hierarchical distributions) alongside the individual cell

parameters, we can gain information about the entire population of

cells. This allows a much more principled and informative method

of estimating these distributions than is achieved by treating the

single cells separately and then subsequently pooling the statistics

to get population estimates. Since the inference of the hierarchical

distributions is performed concurrently with the estimates for the

single cells, the parameter estimation procedure can be carried out

in such a way that the single cell parameters inform the hierarchical

population distribution, which in turn provides information for the

individual cell estimates.

This cyclical information transfer, sometimes referred to as

borrowing strength from the other parameters, not only allows us

to estimate parameter distributions, but also enables us to extract

information about parameters that may not previously have been

available. Such a situation arises here, where we try to estimate

transcription rates from reporter protein measurements using a

model of protein and mRNA kinetics. The problem is that for a

single cell the production term for the mRNA is proportional to the

product of the single copy transcription rate τ(t) and the gene copy

number c for that cell. These two values are then inseparable and

thus unidentifiable. However, with the hierarchical model, robust

quantitative analysis can still be performed when the copy number

is allowed to vary, although with the caveat that we cannot identify

absolute values for the per-copy transcription rate. In spite of this,

we can estimate the ratio of the per-copy transcription rate between

given promoter structures and can therefore deduce the function of

the individual cis-regulatory elements. We apply this algorithm to

both simulated and experimental data. The former allows us to test

the effectiveness and reliability of the algorithms at reconstructing

the statistics of the known underlying process, and the latter shows

that these techniques can provide informative insights into the

kinetics of real regulatory elements that would not be possible with

bulk-cell methods.

2 METHODS

2.1 Mathematical Model of Gene Expression

We follow the conventional model of gene expression (Paulsson, 2005)

in which a gene transcribes mRNA which is subsequently translated into

protein. The protein in question is assumed to be a reporter protein which

can be detected by a microscope. We assume that the molecule numbers are

sufficiently high so we can model the creation and degradation of mRNA

and protein as a continuous stochastic process (Finkenstädt et al., 2008) and

hence model the system as a pair of stochastic differential equations (SDEs)

dM = (cτ(t)− δMM(t)) dt+
√

cτ(t) + δMM(t) dWM (1)

dP = (αM(t)− δPP (t)) dt+
√

αM(t) + δPP (t) dWP . (2)

We also model the microscope detection of the fluorescence in a

measurement equation

F̃ (t) = κP (t) + ε. (3)

Equation 1 describes the change in mRNA concentration in a time period of

duration dt in a cell containing c plasmids where each plasmid transcribes

mRNA at a rate according to τ(t). The mRNA in the cell, M(t), degrades at

rate δM . Similarly, Equation 2 describes the change in protein concentration

in time period dt. Here, protein is translated at rate α, dependent on the

mRNA concentration M(t), and is degraded at a rate δP proportional to

the protein concentration P (t). The terms in the square root represent the

noise expected in the process, which arises as a result of the Central Limit

Theorem applied to the number of events in the birth/death process (Heron

et al., 2007), and dWM and dWP represent Wiener processes which model

the intrinsic stochastic fluctuations of the processes. In the measurement

equation (Equation 3), κ is the fluorescence per mole of protein and ε is

an additive measurement error term taken from the distribution N (0, σ2
ε).

There is evidence that transcription can occur in a number of ways,

from short pulses to sustained bursts and with stalling and other refractory

mechanisms involved (Ingram et al., 2008). In these cases any information

about the transcriptional mechanism would have to be encoded in the

transcription function τ(t). For clarity and simplicity, here we will assume

a very simple changepoint functional form in which transcription may occur

at two levels: a low level, corresponding to basal transcription levels (an off-

phase) which subsequently leads to a high level where active transcription is

taking place (an on-phase). We also assume that the plasmid copies switch

from the off-phase to the on-phase at the same time. Thus we assume that

τ(t) =

{

τ1 if t is during an on-phase

τ0 if t is during an off-phase

In this study, we only assume that there is one transition between the

two states, from the off-phase to the on phase. As such, this form

of the transcriptional model also has the advantage of a parsimonious

parameterisation as it only requires three parameters: the two values of τ
which correspond to the active and inactive phases, and a time s when the

changepoint, henceforth referred to as a switch, occurs.

2.2 Hierarchical Bayesian Model

Since the total transcription rate in Equation 1 is given by cτ(t), the

parameters c, τ0 and τ1 are not identifiable and the most that we can hope

to estimate is cτ0 and cτ1. In fact, we shall not attempt to evaluate absolute

values of τ0 and τ1 but shall instead be interested in comparing the relative

rates corresponding to two or more promoter constructs. If, for example, we

make the unreasonable assumption that the copy number c is the same for

these constructs in all cells, then if we can estimate cτ0 and cτ1 for each

construct we can evaluate the ratios of the transcription rates between them

and thus determine the extent to which they enhance or repress transcription.

We do not make this assumption but instead note that it is reasonable to

assume that the variation of the copy number can be modelled by a common

probability distribution across all cells. In fact, if we constrain c so that

it is drawn from a common distribution, then we can decouple the two

parameters in a similar way to the above case where c was constant. This

is because each c value will be estimated with respect to the rest of the

c values in the population via the distribution, and so the potential values

that would be viable as an estimate are restricted. Therefore it follows that

if we estimate values of τ1 and τ0 for each promoter construct, then these

transcription rate estimates will also be restricted as they are contingent upon

values of c which are themselves constrained by their common distribution.

This means that the relative transcription rates for each construct will be

comparable at the population level as the estimates are all dependent on the

same underlying distribution over c. Equally, the converse is true, so if we

assume that the transcription rates for each construct are also drawn from

a common distribution, then the estimates of c will be constrained by the

distributions over the transcription rates. As such, by assuming distributions

over the transcription rates and the copy number, the estimates will borrow

strength from each other and this will further facilitate the identification of

the parameters.

Furthermore, if we similarly assume a probability distribution over some

of the other parameters, this will assist in the decoupling of the various rates.
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Fig. 1. A schematic diagram highlighting the flow of information through

the hierarchical estimation procedure. The starting values (1) for each

cell are updated using the likelihood derived from their single cell time

courses (2). These estimates (3) are then used to update the parameters

of the hierarchical distributions over the single cell parameters (4). The

distributions (5) are then used to inform the next set of single cell estimates

(2). This process is repeated until both sets of parameters have converged to

a stationary distribution.

In the model described in Section 2.1, we would expect that the values of

α and σ2
ε would also be similar between cells and warrant modelling with a

distribution. We also assume that the variation in κ would be negligible and

make it equal for all cells. Conversely, for the purposes of this investigation,

we would expect that the switch times will be independent and hence will

not be amenable for modelling with a distribution. We can now construct a

hierarchical Bayesian model, reflecting these assumptions, which will allow

the estimation of these distributions alongside the single cell parameters.

Given data d and parameters θ, a non-hierarchical Bayesian analysis

starts with a prior distribution p(θ) and likelihood p(d|θ) and uses

these to compute a posterior probability p(θ|d) ∝ p(d|θ)p(θ). In

our case θ = {τ0, τ1, c, α, κ, σ2
ε , s}. Using a hierarchical model, we

treat a group of time-series data D = {di} coming from single cells

in a common framework. We estimate the parameter values θi =

{τ0,i, τ1,i, ci, αi, κ, σ
2
ε,i, si} for each time series di. We divide Θ = {θi}

into those parameters that will be modelled with the hierarchical approach,

ΘH = {θH
i } = {θHi,j} = {τ0;i,j , τ1;i,j , ci,j , αi,j , σ

2
ε;i,j} and those that

are not, ΘH′

= {θH′

i } = {κ, si}.

We then introduce new parameters Φ to describe a probability distribution

p(ΘH |Φ) on ΘH and replace the prior p(ΘH) by the prior p(ΘH |Φ).
Together with a hyperprior p(Φ), this results in a posterior probability

p(ΘH ,ΘH′

,Φ|D) ∝ p(D|ΘH ,ΘH′

)p(ΘH |Φ)p(Φ)p(ΘH′

),

where, for n cells and m hierarchical distributions,

p(ΘH |Φ) =

n
∏

i=1

p(θHi |Φ) =

n
∏

i=1

m
∏

j=1

p(θHi,j |φj).

We assume that each of the p(θHi,j |φj) except those corresponding to

the variance of the measurement error and copy number are lognormal

distributions where φj = {φj} = {µj , σj} and µ and σ are the mean

and standard deviation. For the variance of the measurement error, we

assume a gamma distribution over 1/σ2
ε as this is the standard prior for

the precision of a normal distribution in a hierarchical framework. Finally,

we assume a truncated Poisson distribution (David and Johnson, 1952) for

the copy number as, in transient transfections, a plasmid entering a cell

can be considered as an event and the Poisson distribution is the correct

way to describe a count of independent events in a time interval. This

distribution is truncated at zero as if no plasmids enter the cell then we will

be unable to detect them and include them in the analysis. As the magnitude

of the transcription rates and the copy number are indistinguishable, we use

a continuous form (Marsaglia, 1986) to calculate the pdf of the Poisson

distribution, in which the factorial is replaced by a gamma function, and

is defined as

P (k) =
λke−λ

Γ(k + 1)(1− e−λ)
, (4)

where 1/(1− e−λ) is the renormalisation term included to account for the

truncation at zero.

Using this framework, we can estimate the transcription rates of each

cell conditional on the other cells containing the same construct via the

corresponding hierarchical distribution. As these rates are estimated relative

to the copy number distribution which is the same across all cells regardless

of construct, these distributions are comparable with each other. It should be

noted that in the absence of a suitable control population, it is not possible

to determine the exact copy number or transcription rates as they are only

defined with respect to the other. As such, comparisons can only be made in

terms of the relative differences between the constructs.

2.3 Parameter Estimation

We use the Metropolis-Hastings Markov Chain Monte-Carlo (MCMC) to

estimate the parameters (conditions given in the supporting information).

A schematic representation of the algorithm is given in Figure 1. The

likelihood for the individual gene expression model for each cell was

calculated using the linear noise approximation (LNA) (Elf and Ehrenberg,

2003; Komorowski et al., 2009). Although the formulation of the LNA

requires the assumption of high molecule numbers, empirical evaluation

has shown that the LNA approximation remains valid for low numbers

of mRNA (5-35) and protein (100-500) molecules (Komorowski et al.,

2009). As all the parameters are positive, we sampled the logarithms of the

parameters and corrected the posterior estimate with the Jacobian. As we

sample in log-space, it is natural to estimate the parameters of the normal

distribution underlying each lognormal hierarchical distribution directly. For

the measurement error variance and copy number distributions, we converted

back from log-mean and variance estimates to the relevant parameters.

As we are estimating parameters for all the cells together the algorithm

can be quite slow, so we used a parallelised block-updating algorithm in

which the number of cells to be updated in each iteration was chosen to

be equal to the number of processor cores available. In the time series

parameter estimation step, the calculation was split so that on each core

we proposed three new parameters for each of the chosen cells based on

a normally-distributed perturbation from the old parameter value, calculated

the log-likelihoods using the LNA and then returned the likelihood values

to the main program which summed them and accepted or rejected in the

usual Metropolis-Hastings fashion. Aside from a speed increase proportional

to the number of cores available, this method also has the advantage of

better mixing and fewer correlations over the standard Metropolis-Hastings

algorithm. This also means the algorithm will scale to much larger data

sets if a sufficiently large cluster computer is available. The hierarchical

parameters were subsequently updated in serial in the standard manner.

Another implementation issue to note is that the normalisation constant

should not be omitted when calculating the individual cell likelihoods in

the MCMC procedure. This is because the time series may be of different
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Table 1. Ratios of mean transcription rate

estimates between Groups A, B and C.

B/A C/B C/A

Actual Ratio 2 2.5 5

Standard Ratio 2.94 3.29 9.71

Hierarchical Ratio 2.11 2.49 5.25

lengths and the omission of the normalisation constant in the LNA will result

in long time series having a disproportionately greater effect on the combined

likelihood than short time series.

3 RESULTS

3.1 Synthetic data

Three data sets, Group A, Group B and Group C, of synthetic data

were generated using the Gillespie algorithm based on the model

given in Section 2.1. The transcription and translation rates were

drawn from lognormal distributions, the measurement error variance

drawn from an inverse gamma distribution, and the copy number

drawn from a Poisson distribution. Group A consisted of cells with

a low active transcription rate mean (µτ1 = 10), Group B consisted

with a medium active transcription rate mean (µτ1 = 20) and Group

C consisted of cells with a high transcription rate mean (µτ1 = 50).

The variances of the transcription rates were assumed to be the same

as the mean so the Fano factor was always equal to 1. The other

parameters were drawn from the same distributions for all groups,

the values of which can be found in the supporting material. There

was only one switch from inactive to active gene transcription and

so there will be little information on the degradation rates. These

were assumed to be known and were fixed at the correct values for

the estimation.

To evaluate the effectiveness of the hierarchical model, we ran

the algorithm once with the standard non-hierarchical likelihood

(model S) and once with the full hierarchical likelihood (model H).

In the algorithm using the standard model, we used uninformative

priors over the parameters and the mean and variance reported in

this case were calculated at the end of the estimation procedure

using the means of the chains for each cell. In the algorithm using

the hierarchical model, we updated the hierarchical distributions

alongside the regular parameter updates and the mean and variance

reported is calculated from the distributions constructed using the

mean of the chains for the hierarchical parameters. As we are

primarily interested in comparisons between the groups, we only

report the ratios between the active transcription rates of the three

groups; the full parameter estimates and a discussion on their

accuracy can be found in the supporting information. It should

also be noted that differing numbers in each group does not

adversely affect the estimation (see supporting information) and in

this case we chose equal numbers solely to facilitate the subsequent

comparison.

The ratios between the three groups, given in Table 1, show

that the parameter estimates performed using the hierarchical

procedure are significantly more robust than the standard procedure

in reproducing the magnitude of the difference between the groups.

Furthermore, another hierarchical estimation run was performed on

� �

�

� �

�
����� � �
	��
��� �����
�����
������ � �
	������ �����������
�

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

' ( ' (

( ) * ) ( ' * ( ) * ) ( ' *

� �

�

� �

�
�+��� � �
	����
� ���
�
�����
������ � �
	������ �,�
�
�����
�

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

' ( ' (

( ) * ) ( ' * ( ) * ) ( ' *

� �

�

� �

�

����� � �
	������ ���
�������
��+��� � �
	������ � �
�������
�

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

� ��
��
��� �
��  
�
! �
� "
# �
$% $
&

' ( ' (

( ) * ) ( ' * ( ) * ) ( ' *

-.� ���
/10

-1� �
�
/��

-.� ���
/10

-.� ���
/��

243�57698957:+8<;>=98@?7A BDC ?7:+57:�E7F9C E757A7;<=98G?HA

-.� ���
/�I -.� ���
/�I

Fig. 2. Comparison of the relative transcription rate estimates of synthetic

data Groups A (top), B (middle) and C (bottom) for the standard non-

hierarchical model (left) and the full hierarchical model (right). The coloured

bars represent the distribution of the Markov chain estimates for that cell in

which a high probability mass corresponds to a light colour ranging to a dark

colour for low probability mass. All units are arbitrary.

synthetic data created with the same transcription rate distributions

but using a higher mean copy number, which returned very similar

results indicating that the value of the copy number has no effect on

the ability of the algorithm to reproduce these ratios (see supporting

information). We can investigate why this is so by examining the

aggregate behaviour of the individual transcription rate estimates

that inform the hierarchical distributions.

Figure 2 shows the transcription rate estimates sorted into

ascending order for each group for both the standard and the

hierarchical estimation procedures. These values should not be

considered as an accurate transcription rate estimate for each cell

because there is still some ambiguity in the estimate at the individual

cell level as the exact copy number is unknown. However, as they

are all estimated relative to the same copy number distribution,

we can use information from the collective behaviour of the

individual estimates. We can immediately observe that the three

distinct parameter ranges are distinguishable for each group in both

procedures but there is a larger range of values in the estimates using

the standard model than the hierarchical one. Also, although these

are on comparable scales, the range of estimates for each group

is much tighter in the hierarchical than in the standard procedure.

Furthermore, the actual distributions of the MCMC estimates are

4

 at Instytut Podstaw
ow

ych Problem
ow

 T
echniki on N

ovem
ber 29, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


� ��� ��� ��� � � � � � ��

�

���

���
	 � ���

��
 ������
 �
�������
� ��� � �������
�� !
"$#
� ��%

&' (
)*+
,-+
.-+

/1012
3�4 � "$��"
� ���657�
� 8

� ��� ��� ��� � � � � � ��

�

���

���
	 � ���

��
 ������
 �
�������
� ��� � �������
�� !
"$#
� ��%

&' (
)*+
,-+
.-+

/9012
3$: 4 � "
;�<1�
!

� ��� ��� ��� � � � � � ��

�

���

��� 	 � � �

��
 ������
 �
�������
� ��� � �������
�� !
"$#
� ��%

&' (
)*+
,-+
.-+

/1012
3
: = 
 ��� <1�
!

>

?

@

A

B

Fig. 3. Generation of the data sets. Pane A. shows a schematic diagram

showing the locations of the two enhancers respective to the transcription

start site in the Msx1 gene, with B. showing the three corresponding reporter

protein constructs. The three lower panes show onset curves from cells

containing C. the promoter only, D. the proximal enhancer and E. the distal

enhancer.

often much tighter when the hierarchical model is used as the

estimates are more likely to spread over a wider range of values.

These observations highlight the adverse effect the trade off between

the copy number and transcription rate values can have on the

estimations, and how using the hierarchical model overcomes this.

3.2 Real Data

We applied the method to investigate how different enhancer regions

affect the way transcription rates are distributed in a population of

living cells.

The Msx1 transcription factor is expressed in mesenchymal

precursor cells at multiple locations in the developing mouse

embryo. Two enhancer regions have been shown to control Msx1

expression (Figure 3A). The proximal enhancer (ProxEnh) situated

2.2 kb upstream of the Msx1 TSS activates expression in the first

branchial arch and dorsal neural tube while the distal enhancer

(DistEnh) at 4.0kb upstream upregulates Msx1 expression in

Table 2. Population level relative transcription rate mean, standard deviation and

coefficient of variation estimated for each promoter construct. Theˆabove the

statistic denotes those obtained directly from the hierarchical distribution and the

¯ above the statistic denotes the population statistics are calculated from the mean

values of the individual MCMC estimate.

Group µ̂τ1 σ̂τ1 σ̂τ1/µ̂τ1 µ̄τ1 σ̄τ1 σ̄τ1/µ̄τ1

Promoter Only 34.31 19.86 0.58 33.66 16.32 0.48

Proximal Enhancer 44.34 35.73 0.80 43.28 29.79 0.68

Distal Enhancer 44.30 49.99 1.12 44.07 37.52 0.85

These values are conditional on the common copy number distribution and do not represent

the absolute transcription rates. All units are arbitrary.

the limb mesenchyme, second branchial arch and the myotome

(MacKenzie et al., 1997).

C2C12 myoblasts, derived from mouse satellite cells, have

previously been used to study Msx1 transcriptional control.

Msx1 is expressed in proliferating C2C12 myoblasts but not in

differentiated C2C12 myotubes while misexpression of Msx1 in

differentiated C2C12 cells induces the dedifferentiation of myotubes

into multiple mesenchymal progenitors (Odelberg et al., 2000). To

study Msx1 enhancer function we first tested whether the known

Msx1 enhancers are active in C2C12 myoblasts. To do this, the

Msx1 proximal and distal enhancers were cloned upstream of the

heterologous SV40 promoter in the pGL3 luciferase reporter (Figure

3B) and the activity of these constructs compared to the SV40

promoter alone in a transient transfection assay. The results of

this experiment are given in the supporting information and reveal

that the ProxEnh and DistEnh containing reporters are 4.2 fold

and 4.9-fold more active compared to the SV40 promoter alone.

Transient transfection of enhancer-promoter reporters in C2C12

cells therefore represents a good system to study Msx1 enhancer

function in populations of individual cells.

We next replaced the luciferase gene with a nuclear localised

variant of the the gene encoding the Venus fluorescent protein

(Jeziorska et al., 2012) to generate SV40, ProxEnh-SV40 and

DistEnh-SV40 Venus reporters (Figure 3). These constructs were

transiently transfected into C2C12 cells (experimental methodology

can be found in the supporting information) and analysed using

single cell time lapse microscopy in combination with custom

tracking and segmentation algorithms to generate fluorescent time

courses for each construct (Downey et al., 2011). From these,

we randomly selected 25 cells for each construct and assembled

fluorescent onset curves from the time of transfection to the point

when maximal fluorescence was reached. These data sets are shown

in Figure 3C, D and E.

We calculated transcription rate estimates for all 75 single

cell fluorescent reporter onset curves simultaneously using the

hierarchical Bayesian model as outlined in Section 2. The algorithm

is robust to choices of the degradation rate parameters as the

transcription rate information is contained in the ascending part of

the onset curves (Figure 3C,D and E). This is because the rate of

increase in mRNA and subsequently reporter protein levels caused

by the higher levels of transcription by far outweighs the rate at

which those molecules degrade, particularly as the Venus reporter

used in these experiments is highly stable. As such, degradation
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Fig. 4. Comparison of the transcription rate estimates of for cells containing

the promoter only (top left), the proximal enhancer (top right) and the distal

enhancer (bottom) estimated using the full hierarchical model. The coloured

bars represent the distribution of the Markov chain estimates for that cell in

which a high probability mass corresponds to a light colour ranging to a dark

colour for low probability mass.

rate parameters were fixed to values estimated from population

experiments (see supporting information) and the transcription rate

estimations conditioned on these parameters providing a consistent

basis for comparison. The mean values generated from this were

then used as the parameter estimates.

The estimated mean, variance and coefficient of variation of the

hierarchical distributions are given in Table 2. These clearly show

that the enhancer function of the two Msx1 regulatory elements is

recovered using the model as the presence of either the ProxEnh or

DistEnh increases the mean transcription rate. Although the mean of

the proximal enhancer is approximately the same as that of the distal

enhancer, the coefficient of variation is higher in the distal enhancer

indicating that the extrinsic noise in the population increases at least

partially independently of the transcription rate.

Moreover, we can also investigate the contribution of each

individual cell to the relative transcription rate distribution by

analysing the first layer estimates corresponding to each cell. Figure

4 shows the transcription rate estimates generated from the MCMC

chains for each construct sorted into ascending order by their means.

We observe that the range of transcription rates in individual cells

containing the ProxEnh and DistEnh constructs is greater than

that obtained by the promoter alone, consistent with the results in

Table 2. In addition, the results show that although the maximum

transcription rate achieved in cells containing the SV40 promoter

alone is substantially lower than those in the ProxEnh and DistEnh

groups, approximately 60% of the cells containing the enhancers

transcribe at similar rates to the cells with the promoter only. This

is important as it implies that enhancers only have an effect on

a proportion of the cellular population rather than providing an

incremental increase to the entire population.

4 DISCUSSION

We have presented a method of extracting comparable transcription

rates from populations of single cells with variable copy number and

validated it on synthetic data sets. Previously, all single cell analysis

would have been performed on a population of cells with a known

copy number as this unknown variable renders any robust analysis

of transcription intractable. With our method, constructed under the

assumption that the rates involved in transcription are drawn from

a statistical distribution, we can decouple the processes involved

in transcription, allowing the estimation of values relative to each

other. As such, this method is especially suited to the analysis of a

large number of cells transiently transfected with a suitable reporter

protein. This removes the significant overhead of constructing a

stable cell line with fixed copy number for each construct, and so

facilitates large scale investigations of transcriptional output.

Although in this study, the algorithm was run on all the cell

data at once, the nature of the hierarchical distribution means that

the copy number, translation rate and other distributions can be

used as a fixed prior in subsequent analysis and so comparison

between separate runs will still be valid. Also, if experiments

were undertaken to investigate the nature of these distributions,

the hierarchical model would provide a framework in which this

information could be incorporated into the estimation procedure.

However, care must be taken to ensure that there is no reason

to believe that the distributions will be different in the separate

experiments.

Another strength of this hierarchical procedure is that it is

inherently very flexible, and could potentially be used to answer a

number of other biological questions such as how certain stimuli

affect the transcription of a gene in a population of cells. The

form of the hierarchical distributions can be chosen to fit the

investigation, and it would even be possible to incorporate mixtures

of distributions or a class allocation methodology if the application

warranted it. Furthermore, the model can easily be extended to

incorporate oscillatory systems such as the NF-κB system without

requiring a full mathematical model of the entire network (Ashall

et al., 2009). This is because the likelihood for each individual cell is

fundamentally based on a changepoint model and so we can model

oscillations by the addition of more changepoints, similar to the

non-hierarchical model in Harper et al. (2011).

We applied this method to data gathered from live cell imaging

to investigate how the enhancer function of two known cis-

regulatory elements affects transcription rates in cell populations.

Our results confirmed and extended findings based on bulk cell

measurements, namely that the presence of these enhancers leads

to increased transcription rates, but we were also able to investigate

how each individual cell contributes to the output. Our results

indicated a lower fold change than results obtained using bulk

cell measurements with the luciferase reporter. However, these

experiments are unlikely to be directly comparable as we use a

fluorescent reporter and specifically measure differences in active

transcription in our algorithm, whereas the previous test measured

luminescence at a single time point regardless of transcriptional

activity at that time.

Using our method, we were able to establish that these enhancers

do not engender increased transcription rates across all cells, but

act to substantially increase transcription rates in a proportion of

the population. This implies that transcription of a gene is not

6

 at Instytut Podstaw
ow

ych Problem
ow

 T
echniki on N

ovem
ber 29, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


always affected by the presence of an enhancer, but those that

are affected transcribe at a higher rate. This may be because the

transcription factors that interact with an enhancer may not be

present or active in every cell and so transcription occurs at a similar

level as when the enhancer is not present. Furthermore, by analysing

the single cell estimates we can distinguish between a binary and

graded response to the enhancer module and provide a more detailed

description of cis-regulatory element function. Our data shows that

both the ProxEnh and DistEnh increase transcription rates in a

graded fashion in the responding cells, i.e. in the proportion of

cells that have a higher transcription rate than the promoter alone. It

will be of interest to test, using a range of enhancers, whether the

proportion of responding cells is modulated by enhancer strength.

These insights into the nature of transcriptional regulation would be

difficult to uncover without recourse to single cell analysis.

Our hierarchical model enables studies of systems involving

intricate transcriptional dynamics and can easily be extended to

large scale investigations by accounting for uncontrolled reporter

gene copy numbers inherent in transient transfections. The approach

can feasibly be expanded to systematically measure the activity of

several hundred cis-regulatory element promoter reporter variants

in parallel and infer gene regulatory logic. Undertaking very high-

throughput studies similar to (Melnikov et al., 2012; Patwardhan

et al., 2012; Sharon et al., 2012) in which potentially several

thousands of different gene configurations would be analysed is

technically possible with this framework, although the resources

needed to automatically segment and track many thousands of

individual cells over long time courses would currently impede

scaling up to such levels. Also, the computational time required

to run the algorithm could be a limiting factor, as the time needed

to run the algorithm increases linearly as cell numbers increase,

although this could be offset by the use of parallel programming on

a suitably large cluster computer. As such, we would recommend

that these limitations be taken into account when considering the

scope of such a study. However, due to its wide applicability

and extensibility, the proposed algorithm provides an invaluable

framework for large scale analysis of enhancer function and the

investigation of other transcriptional mechanisms.
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