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Abstract ertheless, one can be sure that they must be huge.
For example, in Copenhagen the economic loss due
A model of city traffic based on Nagelto vehicle delays is abou&750 millions per year
Schreckenberg cellular automaton (CA) model (8varberg et al., 2008), while in the entire Germany
presented. Traffic control is realized at interse¢he damage is estimated to be of order $100 bil-
tions with two conflicting streams each (at anjon each year (Helbing, 2001). Emissions of gases
time at most one stream can have ,green ligh&ie significant and can be compared with industrial
assigned to it). For simple and regular lattice-likpollution. All these problems are especially bur-
networks which are considered, it is easy ft@ensome in large cities and agglomerations.
find optimal switching periods giving maximum

ible fl t Th timal strateai Flow of vehicles in an urban street network is
nossibie TOW Tares. ese opumal Strategies ost entirely controlled by traffic lights. Con-
are compared with a self-controlling approac

y . _sequently by choosing signal control schemes one
proposed by Ldmmer and Helbing (2008), whi 1as a large impact on average fuel consumption

has not be(_an implemented in a CA model un_ténd travel times. One of the most popular ways
NOW. Prgwous WOI‘.k proved that generally th'gf optimizing traffic is to choose pre-calculated
methgd glves Superior res_ults when compared §8hemes, which are aimed at synchronizing green
classical methods. In this paper we show thﬁthes along a one-way or two-way main arterials.

for deterministic scenario such control leads li?] principle such methods force the traffic flow to

sel_f-li)lrgamzatlon, z:mo![hthat t‘;he ISOIlIJt't(.)n alvt:/?ycsomply with previously designed patterns in order
quickly converges 1o the optimal solution w 'CtPo minimize travel times. However, since traffic de-

IS kngmf[n m_th_lst_case. I\/_Iorttiover, we tchor;sder_z!l and varies, there is a need for some responsive-
n;)r;- € e”“”?t'; Ic case, mb E_Is_ten_se ”a p%SS' I“%ss to the current traffic state. The simplest way is
of furhing With given probabliity 1S alowed. Ly, se pre-calculated green times for different times
'S shown that the self-controliing strgtegy alwaygf a day and for different weekdays — traffic varies
?_lveds belt ter rfhs ults than any solution based gﬁlgnificantly between Friday afternoon and Sunday
Ixed cycles with green waves. night. Nevertheless, any deviation of traffic inten-
sity from its averaged values for which the scheme
1 Introduction was calculated mgs'F inevitable lead to some _meffl-
ciency. Such deviations are always present in any

Many real complex systems such as vehicular tr&£2! traffic system.

fic or production networks are characterized by In order to improve efficiency of control methods
complicated dynamics of the underlying transt is necessary to implement an on-line optimiza-
portation processes. Undoubtedly, optimization tion techniques based on real time traffic intensity
terms of time and cost is of vital importance in sucbbservations. This can be done in a centralized sys-
systems. However, due to highly complicated dyem, in which there exists a central unit possess-
namics it is not an easy task. Lack of the efficieimg all informations concerning current state of the
optimization can be seen, for example, in everyraffic and it calculates optimal control schemes.
days life when spending hours waiting in traffitlowever, there are many problems with this ap-
jams. It is difficult to reasonably calculate ecagproach. Firstly, all the measuring devices must be
nomical costs connected with vehicle delays, nesennected to the central unit, secondly it is not easy



to find the optimal solution: in general the prob-  states at timé andt + 1 (velocity and acceler-
lem can be stated as NP-hard (Papadimitriou and ation are continuous variables);
Tsitsiklis, 1999) and significant amount of compu-
tational time is required. Moreover, the solution is
found for averaged flow rates from the past which
certainly will not be repeated in the future exactly.
Therefore there is a recent trend towards decentral-
ized and self-organizing optimization techniquth
(Helbing et al., 2005; Gershenson, 2004; La&mmer
etal., 2007; Lammer and Helbing, 2008) which in- ¢ Fluid dynamical models (kinematic waves, in-
stantly respond to the current traffic state (known, compressible Navier-Stokes-like momentum
e.g., from vehicle detectors mounted at some dis- equations);
tance before an intersection).

In this paper we shortly discuss methods used® Gas-kinetic models (based on an equation for
in traffic modeling and some important features of ~ the phase-space densfiyx, v,t)).
vehicular TIOW' Then we prgser_ﬂ our ce.IIuIar AU First models for traffic flows appeared already
tomaton city traffic model which is essentially sim-

) in 1950s, today there are tens of variations of
ilar to that by Brockfeld et al. (2001) and app|¥hem (Helbing y2001. Chowdhury et al., 2000).

it to flows in the simplest possible networks. Fiz ach model of vehicular traffic should resem-

nally self-organizing controlling strategy propose le flow phenomena observed in different circum-

by Lammer and Helbing (2008) is implemented ®Qances: transitions from one dynamical phase to
the top of the CA model.

another (generally there are three dynamical phases
of the flow: free-flow, synchronized flow, stop-
and-go flow), criticality and self-organized critical-

Movement of vehicles is an example of a selily, metastability and hysteresis, phase-segregation,
driven many-particle system driven far from equﬁtc-
librium. There are many different approaches for
modeling such systems, for excellent reviews see City traffic model
Helbing (2001); Chowdhury et al. (2000). Roughly
we can divide them into two categories: MiCrofhe city traffic model used in this paper is es-
scopic and macroscopic. In the former attentiasentially similar to the one presented in Brockfeld
is paid to each individual vehicle represented kgt al. (2001) (BBSS). There aN? nodes (intersec-
a particle. Interactions among the particles dﬁons)li,j, i=1,...,N, j=1,...,N, which form a
pend on the way the vehicles influence each othgguare lattice. Each node has two incoming links:
Macroscopic models describe collective vehiclgne from west-side and one from south-side, and
dynamics in terms of the spatial vehicle density pgfo leaving links: one towards east-side and one
lanep and the average velocily as a function of towards north-side. Each node makes a decision
the locatiorx and timet. They are often suitable forwhich traffic stream should be served (i.e., decide
analytical investigation, ensure simple treatment @hich stream gets ,green light”): the one from west
inflows, enable simulations of several lanes by &bwards east or the one from south towards north.
fective one-lane models with certain probabilitiegdditionally a setup time can be specified. This is
of overtaking. the amount of time which must pass when switch-
The microscopic models include: ing between streams. During the setup time all the
e Follow-the-leader models in which it is as_stregms .have red Ii.ght” (or ~orange light”) and in
sumed that the acceleration is determined f)eea“ty th'_s stage fulfills safe_ty reqwrgments and al-
vehicles in front of the driver (e.qg., intelligen OWS veh|cle§ o 'ef"“’e the mtersechon. A sample
driver model): 4x4 network r_s depicted in Fig. 1 o
Through this paper we assume periodic bound-
e Coupled-map lattice models in which dynamary conditions. This means that vehicles leaving
ical equations for individual vehicles are fornodes placed at east and north boundarigs,
mulated as discrete dynamical maps that relatad |; j_n, will be placed again at corresponding

e Cellular automata (CA) models in which each
vehicle is represented by an occupied cell in
a CA model (e.g., the Nagel-Schreckenberg
models and its variants).

e macroscopic models include, among others:

1.1 Traffic models
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links at west and south boundaries which are cond. Acceleration:v, — min(vy + 1, Vmax),
nected toli_; j andl; j—; respectively. Therefore

the total number of vehicles in such network re-z'
mains constant and depends solely on initial condi3  rRandomization with probabilityP: v, —

tions. max(Vp — 1, 0),

Breaking:vy, — min(vy,dy — 1),

CIIT—— A my _gimm A 4. Vehicle movementx, — X, -+ Vp.

All steps of this is basic model are necessary
to reproduce the basic features of real traffic flow,

11 ] [ T I‘

| LTI LT » like, e.g., the fundamental diagram. Step 1 rep-
H resents driver tendency to drive as fast as possi-
i 0 ble, step 2 is necessary to avoid collisions and
| | : H  step 3 introduces random perturbations necessary
d e A——I——1  {; trigger spontaneous jam formation (which is a
H real phenomenon in traffic dynamics due to ran-
1 dom changes of vehicle velocity in regions with
o o i‘ - 'i high density). Finally, in step 4 the vehicles are

moved according to the new velocity calculated in
steps 1-3. There exists many modification of the
Nagel-Schreckenberg model (NaSch), like incor-
porating cruise control where the fluctuations are
turned off forv, = Vimax (Nagel and Paczuski, 1995)

Figure 1: A sample 4x4 netwith link leng@=50. o implementing slow-to-start rule (Takayasu and
Vehicles leaving at east and north side are plaC?Qkayasu 1993) and many others.

back on beginning of links at the west and south Through this paper we usemax = 5, which

side. At the nodes: triangles represent flow dioyid be equivalent to about 50km/h in a real city
rection (,green light” for each stream), rectanglegaffic flow. Then, assuming that a single cell cor-
identify nodes during setup time. Vehicles on ”nki%sponds to a real size of 7.5m (a vehicle length
are represented by small rectangles. with safety distance in front and behind it), each
step is about 2 seconds in real time. All the results
presented below are calculated for automata with
2.1 Asingle link C =100 orC = 50 cells, all vehicle veIoci‘Fi_es arg
0 and vehicles are placed at random positions in a
Each link in a network represents a single-lanik in the initial state.
street which is a one-dimensional cellular automa-Figure 2 shows simulation of classical NaSch
ton with C cells. An occupied celih symbolizes a cellular automaton, i.e., a single link of our net-
single vehicle, therefore number of cells per langork. Again, the boundary conditions are periodic,
should be chosen in such a way that the physi¢al., the end of the street is connected with its be-
size of a cell is about the size of the vehicle. ginning. The densitp = m/C is simply the num-
discrete, integer variable, corresponding to theber of vehiclesmin the initial state divided by to-
vehicle velocity is associated with each occupiadl number of cells in the linkC. For the density
cell. At each discrete time stép— t + 1 the state p = 0.16 (which means that 16 cells are occupied
of automaton is updated according to certain rulda.an automaton consisting of 100 cells) dhe- 0
Let the maximum allowed velocity bg,ax and the the flow is in its free-flow state, that is, all the ve-
distance to the next vehicld,, then in the classi- hicles quickly reach their maximum velocityax
cal model by Nagel and Schreckenberg (1992), thdthout any stops. However, when fluctuations are
four consecutivesteps for parallel updatingare:  introducedP = 0.25, one can see spontaneous traf-

fic jam formation.

Iparallel updating essentially means that all these steps ar
applied forall the vehicles at the same time. Note that thesltom sequential manner which gives different results ar, e.
rules guarantee that the system is accident-free. In cEntrdoes not lead to spontaneous traffic jam formation (Chowd-
to parallel updating, there is also possibility to do it im+a hury et al., 2000).
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Figure 3: Fundamental diagram for NaSch CA
200 ¢ model. Mean flow ratd(p) against vehicle density
= 150 is shown. Notice the influence of different fluctu-
2 ation probabilitiesP (J(p) for P = 0 has a simple
% 100 [ exact analytical solution).
E 50
In deterministic limitsP = 0 andP = 1 it is pos-
0 sible to find dependenc&p) exactly. ForP =0,

in free flow regime, we have simply = pVnax if

P > Pmax the average headway distance jp11,
giving average flux p, so forP =0, J(p) =
Figure 2: Phase diagram showing movement of M@rin(pvmax, 1L — p). On the other hand, foP = 1,
hicles in a cellular automaton with NaSch ruleshe flow rate is always zerd(p) = 0 since vehi-
Each line represents a single vehicle, the maxes are not able to accelerate. Although in this
imum velocity isVmax = 5, there are 100 cells,case forp < (Vmax— 1)1 it is possible to obtain
black color corresponds to the maximum velocity metastable state in which all vehicles travel with
Top: p = 0.16, P = 0.0, the density is close tovelocity vmax— 1, such flow breaks down if any per-
Pmax= 0.17, there are no fluctuations and resultingirbations are present (Chowdhury et al., 2000).
flow J = 0.8 is near its maximumJnax = 0.83 for Al results presented below are for the determin-
Pmax = 0.17). Bottom: due to the presence of flugstic limit P = 0. This is somewhat artificial as-
tuations,P = 0.25, traffic jams are spontaneouslgumption, however it makes possible to fully define
formed and the mean flow is significantly reducedelf-controlling nodes described in Section 3.2.

J =0.503.

Distance [cells]

2.2 Intersections

Of course, for givevmax there exists a maximum
density for which all the vehicles can move freelf\s already mentioned above, each link connects
With Vimax, Pmax = Vimsy If this density is exceeded,to a node which represents intersection of two
there exists at least one vehicle which has less ttfeams. Each intersection gives ,green light” to
Vmax Occupied cells in front of it, and therefore igither west-east or south-north streams. There is an
forced to slow down. intermediate period between switching from ,red”

Relation between mean flow (number of vehicld@ »dréen” and ,green” to ,red”, the setup time
leaving a street per unit time) and densityp), is whlph takest steps. Durlng the setgp time no vehi-
known as the fundamental diagram. The diagra?‘he IS allowec! to pass the |ntersecthn.
for the NaSch model is presented in Fig. 3. Maxi- In order to implement these rules into thg model,
mum value of flowd determines the critical densityV€ change rule 2 of the automata according to the
Pmax @bove which the flow is no longer in free-floWBBSS model into:
state. Notice that including fluctuations decreases
flow rate significantly. 2. Breaking:



e Traffic light at the intersection to which
the link is connected is ,red” or the o {headQ if Q#0
intersection is in setup time:vy, — arg maxTm, otherwise
min(vp,dn — 1,8, — 1)

whereQ is an ordered set containing stream in-
o Traffic light is ,green”: if two cells be- gices which should be served in order to maintain
hind the intersection are occupieth —  stapility, 15 is a priority index for the correspond-
min(Vn,dy — 1,8 — 1), otherwisevh — jng streami. The controller realizes combination
min(Vn, dn — 1), of two control strategies. One is called stabiliza-
tion strategy which assures that each stream will be
wheres, is the distance between vehicland its served at least once ey period and, on average,
next intersection. The main difference between thgce iNT,yg. If & streami should be served in order

model applied here and the BBSS model is intrey fulfill these requirements, its index is placed into
duction of the setup time. The nonzero case0 theQ set.

does not change general features of the flow, how-if set Q is empty,Q = 0, a stream with the high-
ever, it makes possible to relate flow rates directiyst priority indext is chosen for serving. The pri-
with these for networks with self-controlling nodegyity indicesmare chosen in such a way that the to-
(such nodes require# 0). Throughout this paperta| expectedvaiting time for vehicles is minimized.
we always use = 2 (steps). This control regime works well for small densities
and consequentl® = 0 whenp is small.

The priority index for stream provided that cur-

3 Contm”mg strategles rently served stream is, is defined as
3.1 Periodic switching f;

M= Jenr——
pen P

The simplest possible strategy for control in nodes Tig TT10

is to use cycle-based switching. For each node thevherer is number of vehicles expected to be

cycle is served in timet + §; for the stream, T is the re-
. maining setup timeg; is time required to clear ex-
e ,red light” for T steps isting queue at the intersecti@nd all vehicles ar-

riving just after clearing, provided that they arrive
with the maximum flow rate (i.e., as a platoon trav-
eling with vin,), T is the additional penalty term
for switching from streano toi.

e setup time for steps Let us consider two streamso (with ,green

light”) andi (with ,red light”) for flows with densi-

giving 2T + 21 steps in total. Additionally we allow ties p < pmax (the same for each stream). The pri-
phase shift ¢ for different nodes in network. Thisoritization strategy will determine wheter to con-
means that the first step of the cycle is realized tiue servingo or start serving in such a way that
time stept + T¢. the expected waiting time for all vehicles is mini-
mized. For example, i is being open, it may be
more efficient to leave it open in order to serve ap-
proaching platoon instead of switchingitnvhere
In contrast to the imposing cycle-based control preehicles queue grows). Moreover, each switching
cess described above, we will consider a responsiggenalized due to presence of setup times.
self-controlling strategy proposed by Lammer and However, if densities are large enough switching
Helbing (2008) (LH). Here we only briefly sketchfrom o toi could never occur (for example if queue
the general approach, for more detailed informaeing cleared at is infinite). This is when the sec-
tion see the paper by Lammer and Helbing (tfend strategy takes ove # 0, so each stream is
symbols used here are the same as in the citmved at least once ayx Steps.

e setup time for steps

e .green light” for T steps

3.2 Self-controlled nodes

work). This LH controlling strategy has been imple-
Let o denote the stream which should be openented in our cellular automata city traffic model.
for service (i.e., should get ,green light”), Here we consider only deterministic linft= 0, so



T F mal mean flow will be achieved for all initial con-
ditions (in the fact, such state must be explicitly
designed whep is close topit).

On the other hand, for some values Dfpla-
toons are always stopped when arriving to the inter-
section. Consequently one can observe significant
variations inJ(p) especially for smaller densities,
P < Pmax Where is the largest potential for opti-
mization. Note that by adjusting the green times it
Figure 4: Platoons of vehicles formed by the cyclés possible to vary the mean flow by almost 100%.
based intersectionT is chosen in such a way that If the cycle-based strategy is replaced by the LH
all vehicles always get a ,green light”. This is posself-controlling one, the situation is different. The
sible, since the initial density for all links was smalbnly adjustable parameters aigax andTayg Which
enoughp = 0.05, P=0, C = 100. are relevant only in the stabilization regime, i.e.,
for large densities. FQv < pmax the strategy based
that it is possible to calculate exact number of aop p_nonty indices defined aboye quickly a nd auto-

atically converges to the optimal solution found

proachlr_lg veh!cle_:s t.o an intersectigy. Therefore for the cycle-based method. The resulting flow rate
appropriate priority indices can be found for eaq horizontal lines on Fig. 5) for the LH controller is

node. Note that such controller at each node uses

. i . . near the maximum possible value.
only information from two links which are con- : . ) L . .
The two working regimes: optimizing with pri-

nected to it ority indexes and stabilizing, can be clearly identi-
fied in Fig. 6. The vertical line denotggs,ax above

4 Results for regular networks which the stabilizing strategy is dominant.

4.1 Single node case, N=1 4.2 16 Nodes case, N=4

The simplest possible network is, of course, whéaturally, even if the control at each intersection is
N =1 (Fig. 4). First, let us consider periodic cycleeptimal, the dynamic coupling of intersections in
based switching strategy. Then, for given initidhe network can make the overall flow inefficient
densityp, P andrt, the flow rate through this sin-or even unstable (meaning that queue length grow
gle node depends solely dh Such dependence isnfinitely). In reality even very small and simple
depicted in Fig. 5. Detailed discussion concerningetworks with simple switching rules can produce
dynamical phases of the flow for differeptandT complex and chaotic dynamics, and generally it is
is presented in Brockfeld et al. (2001). impossible to predict the evolution of the system
Naturally, strategy based on regular cycles inover longer time horizons. However, for the case
poses certain dynamical situation rather being ref regular lattice-like network with one-way links
sponsive to the current traffic state. Wh@n and periodic boundaries, finding strategies giving
is properly adjusted vehicle platoons which amgood results is straightforward.
formed usually get ,green light” giving maximum Consider now a network withl = 4 and cycle-
possible (optimal) flow ratd. If density is small based switching strategies in each node. In order
enough, i.e., platoon lengthvmaC per link is to find maximum average flow (i.e. sum of average

shorter tharC/2 — tvmayx, that is flow through all the nodes divided by the number of
nodes) a green-wave optimization is applied. Such
p< }Vmax_T/C = Derit scheme is easy to find, because dista@ce 100
2 between all the nodes is the same.

then there exists a cycle for which vehicles can Let all the nodes have the cycle period set to
move without stopping and the resulting mean floW. At the timet, light at the intersectiom 1 turns

is maximal, J = Jnax = PVmax (Similar relation ,green”, and at the same time a vehicle approaches
holds for networks folN > 1 as well). However, this intersection from the west side with maximum

since vehicle acceleration is finite, the conditiovelocity. It takesTgelay= C/Vimax Steps for the ve-

p < perit does not guarantee that a state with madiicle to get to the next intersection at the node

6
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= 015 . .
the vertical line).
o1 0 20 40 60 80 100 120 140
Period T [steps] I 1. Consequently the cycle in this intersection
045 N should be delayed blkeiay: T3 1) = Tdelay: ASSUM-
04 ing that forl 1, T(‘f 1) =0, the phase shift for all the
g other nodes is then
£ 035
% 0.3 . ® . .
§ 0.2 Again, for cycle-based switching the flow rate
é depends only on the initial density(the same for
0.15 . all the links) and cycle period. Such dependence
0.1 : : : : . . . is shown in Fig. 7.

0 20 40 60 80 100 120 140

Period T [steps] Analogously like forN = 1 case, simulations

with self-controlled LH nodes were performed for

Figure 5: Dependence of the mean fldwn green- different initial densities. The results are repre-

time period T for a crossing of two streets withsented in Fig. 7 as horizontal lines. It is clear

periodic boundary conditions for different densithat also in this case, proper switching periods and
ties. Top: p < Pmax = 0.17, bottom: p > pmax, Phase shifts are found and the resulting mean flows
Vmax = 5. The horizontal lines denotkfor a net- are close to the maximum possible values. Note,
work with self-controlled nodes. In the free-flowihat this is achieved without any parameterization
regime the LH strategy performs very well and thegxcept, of course, the stabilization regime where
mean flow converges closely to the optimal valu&avg = 50 andTmax= 100 were specified).

For densitiep > pmax the stabilizing strategy with

Tavg = 50, Tmax = 100 takes over and the controlled.3 N=4 with turning allowed

is forced to switch periodically withl = Tayg/2—T. .
Apart form the initial state, all the results presented

above were fully deterministid= 0 with random
vehicle positions in the first steap= 0). Let us in-
troduce now an important feature of any real traf-
fic flow, namely possibility of turning with given
probability Pym. This means that vehicles traveling
along west-east (south-north) direction can enter an
intersection provided that there is ,green light” as-
signed to the appropriate stream. However, these
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Figure 7: J(T) for cycle-based controllers in theFigure 8: As in Fig. 7 but here vehicle turning
N = 4 network for different densities. Horizon-with probability Pym = 0.2 in each direction was
tal lines mark mean flow values achieved when tialowed. Again, the horizontal lines denote aver-
LH self-controlling were used instead of the cycleage performance of the self-controlled LH strategy
based. which gives very good results.

vehicles do not have to follow theirs straight routes, 12

but are allowed to turn to south-north (west-east) 1
link with probability Pyn. g

This is a significant change, since any strateg%
based on precalculated parameters relevant to cer- ¢
tain flow characteristics (like the density which is}%
obviously related to inflow rates) undoubtedly will §
perform worse ifPym # 0. The question is to what =
extend. In reality this is a general problem for any
controlling strategy based on some flow observa- ©
tions from the past, because traffic conditions never
occur in future exactly with the assumed, averaged
parameters. There are always unpredictable evelhtgure 9: Normalized histogram showing fre-
like traffic collisions, road works, etc., leading t@juency for ,green” time periods in 10000 steps for
significant discrepancy between expected and ré#hulationN = 4 network withPym = 0.2 and self-
traffic properties. controlling LH nodes.

Figure 8 shows mean flow rates in tNe= 4 net-

work with turning p'robabi_lityPtum = 0.2 for cycle— small densityp — 0.05, very short ,green time” pe-

ba;ed ‘?O”t“’”er with periodl and phase shifts "€ liods are dominating. That means that switching
_sultlr;]g '?. the grgian_vav;a scheme. When C_Om_?%récurs frequently in order to serve approaching ve-
Ing this figure with Fig. 7, one can notice signifip; oo The situation is different for larger densi-

cant degradation in terms of the mean flow vallies; . \\here many different ,green time” periods are
As before, we have also performed Simu"’b‘resent

tions with self-controlled nodes (horizontal lines in

Fig. 8). As one can see, the resulting mean flow is

very large and, fop = 0.05, even larger than the5 Conclusions

maximum values for the cycle-based strategy. This

means that irregular switching cycles are presentthis paper we demonstrated two possible strate-

which, however, give superior overall performancejies for controlling flow in a simple and regular
In order to investigate what cycles are selecteity-like traffic network with use of cellular au-

by the LH strategy in this scenario, we plot a higomata model. One strategy is based on periodic

togram with frequencies for ,green light” periodsycle-based switching mechanism in which each of

during simulation, see Fig. 9. We note that, fdwo streams is granted ,green” light far steps. It

0.8

0.4

0.2

Green time period T
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is easy to find optimal valu& for which the re-  There are recent realistic simulations of the LH
sulting mean flow in the network is maximal, bytrategy for a specific network of 13 intersections
performing simulations for all relevant valuesDf in the center of Dresden by Lammer et al. (2009).

It is evident that the most promising regime fofhe authors show that it possible to reduce wait-
optimization is for low density flowsp < pmax. N9 times by 56% for public transport vehicles, 9%
This is understandable since for congested traff@f regular cars and by 36% for pedestrians and
where for each stream a large queue is presepigycle riders. The large differences in improve-

there are no switching schemes which would ouent are due to assignment different of weights for
perform others significantly. buses and trams when calculating priority indices,

As the second control method we implemented®§€ S€¢- 3:2. In this way there is a possibility to
self-controlling strategy proposed by Lammer antalorltlze cer_taln vehlcles in order to promote pub-
Helbing (2008). It has been shown that this metfiC transport in the city.
ods quickly converges to the best solution (i.e.,
giving maximum possible mean flow), constructe
with cycle-based scheme with optimal periotls Eeeferences

_shiftg ® i -
and phase-shiff3* leading to the green wave for E, Brockfeld, R. Barlovic, A. Schadschneider, and

mation. I othe_r words, green waves .emergedM. Schreckenberg. Optimizing traffic lights in a
spontaneously without any parameterization. Such

o . cellular automaton model for city traffi®®hysi-
synchronization was possible because the strateg y y

tal Review E64(5):056132, 2001
makes use of knowledge concerning approaching al Review E64(5) '
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