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Abstract

A model of city traffic based on Nagel-
Schreckenberg cellular automaton (CA) model is
presented. Traffic control is realized at intersec-
tions with two conflicting streams each (at any
time at most one stream can have „green light”
assigned to it). For simple and regular lattice-like
networks which are considered, it is easy to
find optimal switching periods giving maximum
possible flow rates. These optimal strategies
are compared with a self-controlling approach
proposed by Lämmer and Helbing (2008), which
has not been implemented in a CA model until
now. Previous work proved that generally this
method gives superior results when compared to
classical methods. In this paper we show that
for deterministic scenario such control leads to
self-organization, and that the solution always
quickly converges to the optimal solution which
is known in this case. Moreover, we consider also
non-deterministic case, in the sense that possibility
of turning with given probability is allowed. It
is shown that the self-controlling strategy always
gives better results than any solution based on
fixed cycles with green waves.

1 Introduction

Many real complex systems such as vehicular traf-
fic or production networks are characterized by
complicated dynamics of the underlying trans-
portation processes. Undoubtedly, optimization in
terms of time and cost is of vital importance in such
systems. However, due to highly complicated dy-
namics it is not an easy task. Lack of the efficient
optimization can be seen, for example, in every-
days life when spending hours waiting in traffic
jams. It is difficult to reasonably calculate eco-
nomical costs connected with vehicle delays, nev-

ertheless, one can be sure that they must be huge.
For example, in Copenhagen the economic loss due
to vehicle delays is aboute750 millions per year
(Warberg et al., 2008), while in the entire Germany
the damage is estimated to be of order $100 bil-
lion each year (Helbing, 2001). Emissions of gases
are significant and can be compared with industrial
pollution. All these problems are especially bur-
densome in large cities and agglomerations.

Flow of vehicles in an urban street network is
almost entirely controlled by traffic lights. Con-
sequently by choosing signal control schemes one
has a large impact on average fuel consumption
and travel times. One of the most popular ways
of optimizing traffic is to choose pre-calculated
schemes, which are aimed at synchronizing green
times along a one-way or two-way main arterials.
In principle such methods force the traffic flow to
comply with previously designed patterns in order
to minimize travel times. However, since traffic de-
mand varies, there is a need for some responsive-
ness to the current traffic state. The simplest way is
to use pre-calculated green times for different times
of a day and for different weekdays – traffic varies
significantly between Friday afternoon and Sunday
night. Nevertheless, any deviation of traffic inten-
sity from its averaged values for which the scheme
was calculated must inevitable lead to some ineffi-
ciency. Such deviations are always present in any
real traffic system.

In order to improve efficiency of control methods
it is necessary to implement an on-line optimiza-
tion techniques based on real time traffic intensity
observations. This can be done in a centralized sys-
tem, in which there exists a central unit possess-
ing all informations concerning current state of the
traffic and it calculates optimal control schemes.
However, there are many problems with this ap-
proach. Firstly, all the measuring devices must be
connected to the central unit, secondly it is not easy
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to find the optimal solution: in general the prob-
lem can be stated as NP-hard (Papadimitriou and
Tsitsiklis, 1999) and significant amount of compu-
tational time is required. Moreover, the solution is
found for averaged flow rates from the past which
certainly will not be repeated in the future exactly.
Therefore there is a recent trend towards decentral-
ized and self-organizing optimization techniques
(Helbing et al., 2005; Gershenson, 2004; Lämmer
et al., 2007; Lämmer and Helbing, 2008) which in-
stantly respond to the current traffic state (known,
e.g., from vehicle detectors mounted at some dis-
tance before an intersection).

In this paper we shortly discuss methods used
in traffic modeling and some important features of
vehicular flow. Then we present our cellular au-
tomaton city traffic model which is essentially sim-
ilar to that by Brockfeld et al. (2001) and apply
it to flows in the simplest possible networks. Fi-
nally self-organizing controlling strategy proposed
by Lämmer and Helbing (2008) is implemented on
the top of the CA model.

1.1 Traffic models

Movement of vehicles is an example of a self-
driven many-particle system driven far from equi-
librium. There are many different approaches for
modeling such systems, for excellent reviews see
Helbing (2001); Chowdhury et al. (2000). Roughly
we can divide them into two categories: micro-
scopic and macroscopic. In the former attention
is paid to each individual vehicle represented by
a particle. Interactions among the particles de-
pend on the way the vehicles influence each other.
Macroscopic models describe collective vehicle
dynamics in terms of the spatial vehicle density per
laneρ and the average velocityV as a function of
the locationx and timet. They are often suitable for
analytical investigation, ensure simple treatment of
inflows, enable simulations of several lanes by ef-
fective one-lane models with certain probabilities
of overtaking.

The microscopic models include:

• Follow-the-leader models in which it is as-
sumed that the acceleration is determined be
vehicles in front of the driver (e.g., intelligent
driver model);

• Coupled-map lattice models in which dynam-
ical equations for individual vehicles are for-
mulated as discrete dynamical maps that relate

states at timet andt +1 (velocity and acceler-
ation are continuous variables);

• Cellular automata (CA) models in which each
vehicle is represented by an occupied cell in
a CA model (e.g., the Nagel-Schreckenberg
models and its variants).

The macroscopic models include, among others:

• Fluid dynamical models (kinematic waves, in-
compressible Navier-Stokes-like momentum
equations);

• Gas-kinetic models (based on an equation for
the phase-space densityρ(x,v, t)).

First models for traffic flows appeared already
in 1950s, today there are tens of variations of
them (Helbing, 2001; Chowdhury et al., 2000).
Each model of vehicular traffic should resem-
ble flow phenomena observed in different circum-
stances: transitions from one dynamical phase to
another (generally there are three dynamical phases
of the flow: free-flow, synchronized flow, stop-
and-go flow), criticality and self-organized critical-
ity, metastability and hysteresis, phase-segregation,
etc.

2 City traffic model

The city traffic model used in this paper is es-
sentially similar to the one presented in Brockfeld
et al. (2001) (BBSS). There areN2 nodes (intersec-
tions) Ii, j , i = 1, . . . ,N, j = 1, . . . ,N, which form a
square lattice. Each node has two incoming links:
one from west-side and one from south-side, and
two leaving links: one towards east-side and one
towards north-side. Each node makes a decision
which traffic stream should be served (i.e., decide
which stream gets „green light”): the one from west
towards east or the one from south towards north.
Additionally a setup timeτ can be specified. This is
the amount of time which must pass when switch-
ing between streams. During the setup time all the
streams have „red light” (or „orange light”) and in
reality this stage fulfills safety requirements and al-
lows vehicles to leave the intersection. A sample
4x4 network is depicted in Fig. 1

Through this paper we assume periodic bound-
ary conditions. This means that vehicles leaving
nodes placed at east and north boundaries,Ii=N, j

and Ii, j=N, will be placed again at corresponding
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links at west and south boundaries which are con-
nected toIi=1, j and Ii, j=1 respectively. Therefore
the total number of vehicles in such network re-
mains constant and depends solely on initial condi-
tions.

Figure 1: A sample 4x4 net with link lengthC= 50.
Vehicles leaving at east and north side are placed
back on beginning of links at the west and south
side. At the nodes: triangles represent flow di-
rection („green light” for each stream), rectangles
identify nodes during setup time. Vehicles on links
are represented by small rectangles.

2.1 A single link

Each link in a network represents a single-lane
street which is a one-dimensional cellular automa-
ton withC cells. An occupied celln symbolizes a
single vehicle, therefore number of cells per lane
should be chosen in such a way that the physical
size of a cell is about the size of the vehicle. A
discrete, integer variablevn corresponding to the
vehicle velocity is associated with each occupied
cell. At each discrete time stept → t + 1 the state
of automaton is updated according to certain rules.
Let the maximum allowed velocity bevmax and the
distance to the next vehicledn, then in the classi-
cal model by Nagel and Schreckenberg (1992), the
four consecutivesteps for parallel updating1 are:

1Parallel updating essentially means that all these steps are
applied forall the vehicles at the same time. Note that these
rules guarantee that the system is accident-free. In contrast
to parallel updating, there is also possibility to do it in ran-

1. Acceleration:vn → min(vn +1,vmax),

2. Breaking:vn → min(vn,dn−1),

3. Randomization with probabilityP: vn →

max(vn−1, 0),

4. Vehicle movement:xn → xn +vn.

All steps of this is basic model are necessary
to reproduce the basic features of real traffic flow,
like, e.g., the fundamental diagram. Step 1 rep-
resents driver tendency to drive as fast as possi-
ble, step 2 is necessary to avoid collisions and
step 3 introduces random perturbations necessary
to trigger spontaneous jam formation (which is a
real phenomenon in traffic dynamics due to ran-
dom changes of vehicle velocity in regions with
high density). Finally, in step 4 the vehicles are
moved according to the new velocity calculated in
steps 1-3. There exists many modification of the
Nagel-Schreckenberg model (NaSch), like incor-
porating cruise control where the fluctuations are
turned off forvn = vmax (Nagel and Paczuski, 1995)
or implementing slow-to-start rule (Takayasu and
Takayasu, 1993) and many others.

Through this paper we usevmax = 5, which
should be equivalent to about 50km/h in a real city
traffic flow. Then, assuming that a single cell cor-
responds to a real size of 7.5m (a vehicle length
with safety distance in front and behind it), each
step is about 2 seconds in real time. All the results
presented below are calculated for automata with
C = 100 orC = 50 cells, all vehicle velocities are
0 and vehicles are placed at random positions in a
link in the initial state.

Figure 2 shows simulation of classical NaSch
cellular automaton, i.e., a single link of our net-
work. Again, the boundary conditions are periodic,
i.e., the end of the street is connected with its be-
ginning. The densityρ = m/C is simply the num-
ber of vehiclesm in the initial state divided by to-
tal number of cells in the link,C. For the density
ρ = 0.16 (which means that 16 cells are occupied
in an automaton consisting of 100 cells) andP = 0
the flow is in its free-flow state, that is, all the ve-
hicles quickly reach their maximum velocityvmax

without any stops. However, when fluctuations are
introduced,P= 0.25, one can see spontaneous traf-
fic jam formation.

dom sequential manner which gives different results and, e.g.,
does not lead to spontaneous traffic jam formation (Chowd-
hury et al., 2000).
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Figure 2: Phase diagram showing movement of ve-
hicles in a cellular automaton with NaSch rules.
Each line represents a single vehicle, the max-
imum velocity is vmax = 5, there are 100 cells,
black color corresponds to the maximum velocity.
Top: ρ = 0.16, P = 0.0, the density is close to
ρmax= 0.17, there are no fluctuations and resulting
flow J = 0.8 is near its maximum (Jmax = 0.83 for
ρmax = 0.17). Bottom: due to the presence of fluc-
tuations,P = 0.25, traffic jams are spontaneously
formed and the mean flow is significantly reduced,
J = 0.503.

Of course, for givenvmax there exists a maximum
density for which all the vehicles can move freely
with vmax, ρmax = v−1

max. If this density is exceeded,
there exists at least one vehicle which has less than
vmax occupied cells in front of it, and therefore is
forced to slow down.

Relation between mean flow (number of vehicles
leaving a street per unit time) and density,J(ρ), is
known as the fundamental diagram. The diagram
for the NaSch model is presented in Fig. 3. Maxi-
mum value of flowJ determines the critical density
ρmax above which the flow is no longer in free-flow
state. Notice that including fluctuations decreases
flow rate significantly.
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Figure 3: Fundamental diagram for NaSch CA
model. Mean flow rateJ(ρ) against vehicle density
is shown. Notice the influence of different fluctu-
ation probabilitiesP (J(ρ) for P = 0 has a simple
exact analytical solution).

In deterministic limitsP = 0 andP = 1 it is pos-
sible to find dependenceJ(ρ) exactly. ForP = 0,
in free flow regime, we have simplyJ = ρvmax, if
ρ > ρmax the average headway distance is 1/ρ−1,
giving average flux 1− ρ, so for P = 0, J(ρ) =
min(ρvmax,1− ρ). On the other hand, forP = 1,
the flow rate is always zero,J(ρ) = 0 since vehi-
cles are not able to accelerate. Although in this
case forρ < (vmax− 1)−1 it is possible to obtain
a metastable state in which all vehicles travel with
velocityvmax−1, such flow breaks down if any per-
turbations are present (Chowdhury et al., 2000).

All results presented below are for the determin-
istic limit P = 0. This is somewhat artificial as-
sumption, however it makes possible to fully define
self-controlling nodes described in Section 3.2.

2.2 Intersections

As already mentioned above, each link connects
to a node which represents intersection of two
streams. Each intersection gives „green light” to
either west-east or south-north streams. There is an
intermediate period between switching from „red”
to „green” and „green” to „red”, the setup time
which takesτ steps. During the setup time no vehi-
cle is allowed to pass the intersection.

In order to implement these rules into the model,
we change rule 2 of the automata according to the
BBSS model into:

2. Breaking:
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• Traffic light at the intersection to which
the link is connected is „red” or the
intersection is in setup time:vn →

min(vn,dn−1,sn−1)

• Traffic light is „green”: if two cells be-
hind the intersection are occupied:vn →

min(vn,dn − 1,sn − 1), otherwisevn →

min(vn,dn−1),

wheresn is the distance between vehiclen and its
next intersection. The main difference between the
model applied here and the BBSS model is intro-
duction of the setup time. The nonzero caseτ 6= 0
does not change general features of the flow, how-
ever, it makes possible to relate flow rates directly
with these for networks with self-controlling nodes
(such nodes requireτ 6= 0). Throughout this paper
we always useτ = 2 (steps).

3 Controlling strategies

3.1 Periodic switching

The simplest possible strategy for control in nodes
is to use cycle-based switching. For each node the
cycle is

• „red light” for T steps

• setup time forτ steps

• „green light” for T steps

• setup time forτ steps

giving 2T +2τ steps in total. Additionally we allow
phase shiftsTφ for different nodes in network. This
means that the first step of the cycle is realized at
time stept +Tφ.

3.2 Self-controlled nodes

In contrast to the imposing cycle-based control pro-
cess described above, we will consider a responsive
self-controlling strategy proposed by Lämmer and
Helbing (2008) (LH). Here we only briefly sketch
the general approach, for more detailed informa-
tion see the paper by Lämmer and Helbing (the
symbols used here are the same as in the cited
work).

Let σ denote the stream which should be open
for service (i.e., should get „green light”),

σ =

{

headΩ if Ω 6= /0
arg maxi πi otherwise,

whereΩ is an ordered set containing stream in-
dices which should be served in order to maintain
stability, πi is a priority index for the correspond-
ing streami. The controller realizes combination
of two control strategies. One is called stabiliza-
tion strategy which assures that each stream will be
served at least once inTmax period and, on average,
once inTavg. If a streami should be served in order
to fulfill these requirements, its index is placed into
theΩ set.

If set Ω is empty,Ω = /0, a stream with the high-
est priority indexπi is chosen for serving. The pri-
ority indicesπ are chosen in such a way that the to-
tal expectedwaiting time for vehicles is minimized.
This control regime works well for small densities
and consequentlyΩ = /0 whenρ is small.

The priority index for streami, provided that cur-
rently served stream isσ, is defined as

π =
n̂i

τpen
i,σ + τ+ ĝi

,

where n̂i is number of vehicles expected to be
served in timeτ + ĝi for the streami, τ is the re-
maining setup time, ˆgi is time required to clear ex-
isting queue at the intersectionand all vehicles ar-
riving just after clearing, provided that they arrive
with the maximum flow rate (i.e., as a platoon trav-
eling withvmax), τpen

i,σ is the additional penalty term
for switching from streamσ to i.

Let us consider two streams:σ (with „green
light”) and i (with „red light”) for flows with densi-
tiesρ < ρmax (the same for each stream). The pri-
oritization strategy will determine wheter to con-
tinue servingσ or start servingi in such a way that
the expected waiting time for all vehicles is mini-
mized. For example, ifσ is being open, it may be
more efficient to leave it open in order to serve ap-
proaching platoon instead of switching toi (where
vehicles queue grows). Moreover, each switching
is penalized due to presence of setup times.

However, if densities are large enough switching
from σ to i could never occur (for example if queue
being cleared atσ is infinite). This is when the sec-
ond strategy takes over,Ω 6= /0, so each stream is
served at least once inTmax steps.

This LH controlling strategy has been imple-
mented in our cellular automata city traffic model.
Here we consider only deterministic limitP= 0, so
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Figure 4: Platoons of vehicles formed by the cycle-
based intersection.T is chosen in such a way that
all vehicles always get a „green light”. This is pos-
sible, since the initial density for all links was small
enoughρ = 0.05, P = 0, C = 100.

that it is possible to calculate exact number of ap-
proaching vehicles to an intersectionIi, j . Therefore
appropriate priority indices can be found for each
node. Note that such controller at each node uses
only information from two links which are con-
nected to it.

4 Results for regular networks

4.1 Single node case, N=1

The simplest possible network is, of course, when
N = 1 (Fig. 4). First, let us consider periodic cycle-
based switching strategy. Then, for given initial
densityρ, P andτ, the flow rate through this sin-
gle node depends solely onT. Such dependence is
depicted in Fig. 5. Detailed discussion concerning
dynamical phases of the flow for differentρ andT
is presented in Brockfeld et al. (2001).

Naturally, strategy based on regular cycles im-
poses certain dynamical situation rather being re-
sponsive to the current traffic state. WhenT
is properly adjusted vehicle platoons which are
formed usually get „green light” giving maximum
possible (optimal) flow rateJ. If density is small
enough, i.e., platoon lengthρvmaxC per link is
shorter thanC/2− τvmax, that is

ρ <
1
2

vmax− τ/C≡ ρcrit,

then there exists a cycle for which vehicles can
move without stopping and the resulting mean flow
is maximal, J = Jmax = ρvmax (similar relation
holds for networks forN > 1 as well). However,
since vehicle acceleration is finite, the condition
ρ < ρcrit does not guarantee that a state with maxi-

mal mean flow will be achieved for all initial con-
ditions (in the fact, such state must be explicitly
designed whenρ is close toρcrit).

On the other hand, for some values ofT pla-
toons are always stopped when arriving to the inter-
section. Consequently one can observe significant
variations inJ(ρ) especially for smaller densities,
ρ < ρmax, where is the largest potential for opti-
mization. Note that by adjusting the green times it
is possible to vary the mean flow by almost 100%.

If the cycle-based strategy is replaced by the LH
self-controlling one, the situation is different. The
only adjustable parameters areTmax andTavg which
are relevant only in the stabilization regime, i.e.,
for large densities. Forρ < ρmax the strategy based
on priority indices defined above quickly and auto-
matically converges to the optimal solution found
for the cycle-based method. The resulting flow rate
(horizontal lines on Fig. 5) for the LH controller is
near the maximum possible value.

The two working regimes: optimizing with pri-
ority indexes and stabilizing, can be clearly identi-
fied in Fig. 6. The vertical line denotesρmax above
which the stabilizing strategy is dominant.

4.2 16 Nodes case, N=4

Naturally, even if the control at each intersection is
optimal, the dynamic coupling of intersections in
the network can make the overall flow inefficient
or even unstable (meaning that queue length grow
infinitely). In reality even very small and simple
networks with simple switching rules can produce
complex and chaotic dynamics, and generally it is
impossible to predict the evolution of the system
over longer time horizons. However, for the case
of regular lattice-like network with one-way links
and periodic boundaries, finding strategies giving
good results is straightforward.

Consider now a network withN = 4 and cycle-
based switching strategies in each node. In order
to find maximum average flow (i.e. sum of average
flow through all the nodes divided by the number of
nodes) a green-wave optimization is applied. Such
scheme is easy to find, because distanceC = 100
between all the nodes is the same.

Let all the nodes have the cycle period set to
T. At the timet, light at the intersectionI1,1 turns
„green”, and at the same time a vehicle approaches
this intersection from the west side with maximum
velocity. It takesTdelay = C/vmax steps for the ve-
hicle to get to the next intersection at the node

6



 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0  20  40  60  80  100  120  140

M
ea

n 
flo

w
 J

 [v
eh

ic
le

s/
st

ep
]

Period T [steps]

ρ=0.05
ρ=0.10
ρ=0.15

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  20  40  60  80  100  120  140

M
ea

n 
flo

w
 J

 [v
eh

ic
le

s/
st

ep
]

Period T [steps]

ρ=0.20
ρ=0.50
ρ=0.70

Figure 5: Dependence of the mean flowJ on green-
time periodT for a crossing of two streets with
periodic boundary conditions for different densi-
ties. Top: ρ < ρmax = 0.17, bottom: ρ > ρmax,
vmax = 5. The horizontal lines denoteJ for a net-
work with self-controlled nodes. In the free-flow
regime the LH strategy performs very well and the
mean flow converges closely to the optimal value.
For densitiesρ > ρmax the stabilizing strategy with
Tavg = 50,Tmax = 100 takes over and the controller
is forced to switch periodically withT = Tavg/2−τ.
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close to 1 then stabilizing strategy dominates. This
is clear for densitiesρ > ρmax (ρmax is labeled with
the vertical line).

I2,1. Consequently the cycle in this intersectionI2,1

should be delayed byTdelay: Tφ
(2,1) = Tdelay. Assum-

ing that forI1,1, Tφ
(1,1) = 0, the phase shift for all the

other nodes is then

Tφ
(i, j) = (i + j −2)Tdelay mod(2T +2τ).

Again, for cycle-based switching the flow rate
depends only on the initial densityρ (the same for
all the links) and cycle periodT. Such dependence
is shown in Fig. 7.

Analogously like forN = 1 case, simulations
with self-controlled LH nodes were performed for
different initial densities. The results are repre-
sented in Fig. 7 as horizontal lines. It is clear
that also in this case, proper switching periods and
phase shifts are found and the resulting mean flows
are close to the maximum possible values. Note,
that this is achieved without any parameterization
(except, of course, the stabilization regime where
Tavg = 50 andTmax = 100 were specified).

4.3 N=4 with turning allowed

Apart form the initial state, all the results presented
above were fully deterministic (P = 0 with random
vehicle positions in the first stept = 0). Let us in-
troduce now an important feature of any real traf-
fic flow, namely possibility of turning with given
probabilityPturn. This means that vehicles traveling
along west-east (south-north) direction can enter an
intersection provided that there is „green light” as-
signed to the appropriate stream. However, these
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Figure 7: J(T) for cycle-based controllers in the
N = 4 network for different densities. Horizon-
tal lines mark mean flow values achieved when the
LH self-controlling were used instead of the cycle-
based.

vehicles do not have to follow theirs straight routes,
but are allowed to turn to south-north (west-east)
link with probability Pturn.

This is a significant change, since any strategy
based on precalculated parameters relevant to cer-
tain flow characteristics (like the density which is
obviously related to inflow rates) undoubtedly will
perform worse ifPturn 6= 0. The question is to what
extend. In reality this is a general problem for any
controlling strategy based on some flow observa-
tions from the past, because traffic conditions never
occur in future exactly with the assumed, averaged
parameters. There are always unpredictable events
like traffic collisions, road works, etc., leading to
significant discrepancy between expected and real
traffic properties.

Figure 8 shows mean flow rates in theN = 4 net-
work with turning probabilityPturn = 0.2 for cycle-
based controller with periodT and phase shifts re-
sulting in the green wave scheme. When compar-
ing this figure with Fig. 7, one can notice signifi-
cant degradation in terms of the mean flow valuesJ.

As before, we have also performed simula-
tions with self-controlled nodes (horizontal lines in
Fig. 8). As one can see, the resulting mean flow is
very large and, forρ = 0.05, even larger than the
maximum values for the cycle-based strategy. This
means that irregular switching cycles are present
which, however, give superior overall performance.

In order to investigate what cycles are selected
by the LH strategy in this scenario, we plot a his-
togram with frequencies for „green light” periods
during simulation, see Fig. 9. We note that, for
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Figure 9: Normalized histogram showing fre-
quency for „green” time periods in 10000 steps for
simulationN = 4 network withPturn = 0.2 and self-
controlling LH nodes.

small densityρ = 0.05, very short „green time” pe-
riods are dominating. That means that switching
occurs frequently in order to serve approaching ve-
hicles. The situation is different for larger densi-
ties where many different „green time” periods are
present.

5 Conclusions

In this paper we demonstrated two possible strate-
gies for controlling flow in a simple and regular
city-like traffic network with use of cellular au-
tomata model. One strategy is based on periodic
cycle-based switching mechanism in which each of
two streams is granted „green” light forT steps. It
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is easy to find optimal valueT for which the re-
sulting mean flow in the network is maximal, by
performing simulations for all relevant values ofT.

It is evident that the most promising regime for
optimization is for low density flows,ρ < ρmax.
This is understandable since for congested traffic
where for each stream a large queue is present,
there are no switching schemes which would out-
perform others significantly.

As the second control method we implemented a
self-controlling strategy proposed by Lämmer and
Helbing (2008). It has been shown that this meth-
ods quickly converges to the best solution (i.e.,
giving maximum possible mean flow), constructed
with cycle-based scheme with optimal periodsT
and phase-shiftsTφ leading to the green wave for-
mation. In other words, green waves emerged
spontaneously without any parameterization. Such
synchronization was possible because the strategy
makes use of knowledge concerning approaching
vehicles and, therefore, information can be propa-
gated between nodes simply by vehicles.

The discussed autonomous controller has some
features related to self-organized systems: lack of
any central control unit, openness, scalability, fail-
ure tolerance. For example, if a single controller
fails (i.e., all conflicting streams get „flashing or-
ange light” and vehicles follow traffic signs), cy-
cles at neighbouring intersections will be modified
in order to adapt to the new situation. In contrast
to the traditional cycle-based control there is no
distinction between controlling and controlled el-
ements: traffic lights control vehicles which in turn
influence the lights. This approach leads to efficient
utilization of the network for varying conditions.

Influence of such varying conditions was pre-
sented in Section 4.3. It is clear that after introduc-
ing a possibility of turning with random parameter
Pturn, the self-controlling strategy gives much bet-
ter results. Naturally, even in this case the mean
flow values are smaller when compared to the fully
deterministic limitPturn = 0. However, still the per-
formance is superior to that with regular, imposed
cycles.

The next question which needs to be answered
is how the discussed LH strategy will perform in
networks with more complicated topologies with
comparison to optimal (or nearly optimal) solution.
Moreover, when using the CA traffic model, the
non-deterministicP 6= 0 version needs to be ap-
plied.

There are recent realistic simulations of the LH
strategy for a specific network of 13 intersections
in the center of Dresden by Lämmer et al. (2009).
The authors show that it possible to reduce wait-
ing times by 56% for public transport vehicles, 9%
for regular cars and by 36% for pedestrians and
bicycle riders. The large differences in improve-
ment are due to assignment different of weights for
buses and trams when calculating priority indices,
see Sec. 3.2. In this way there is a possibility to
prioritize certain vehicles in order to promote pub-
lic transport in the city.
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