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1. Abstract
Identification of damage and moving load (or mass) are crucial problems in structural health monitoring
(SHM). However, it seems there is not much investigation on simultaneous identification of the two fac-
tors, although in practice they usually exist together. This paper proposes a methodology to solve the
coupled problem based on the Virtual Distortion Method (VDM): the damaged structure is modeled by
an equivalent intact structure (called the distorted structure) subjected to the same moving mass (or in
fact to the equivalent response-coupled moving load) and to certain virtual distortions which model the
damage. The measured structural response is used to identify the moving mass and the damage; unknown
mass and damage extents are used as the optimization variables instead of the usually chosen moving
mass-equivalent force. In this way well-conditioning of the identification is ensured and the number of
the necessary sensors is decreased. The numerical costs are considerably reduced by using the introduced
concept of the moving dynamic influence matrix. The proposed identification method can be used both
off-line and online by a repetitive application in a moving time window. A numerical experiment of a
beam with 5% measurement error demonstrates that the moving masses can be identified along with the
damage extents.
2. Keywords: Structural health monitoring (SHM); Moving mass (load) identification; Damage identi-
fication; Virtual distortion method (VDM)

3. Introduction
Identification of structural damage is the primary task of most structural health monitoring (SHM) sys-
tems. In many other applications, identification of moving loads (or masses) is also a crucial problem.
Especially identification of the moving mass is valuable not only in the assessment of the pavement or
bridge but also in traffic studies, in design code calibration, etc. Several techniques have been developed,
which address both these identification problems separately. However, in real applications, unknown dam-
age and unknown loads usually coexist and together influence the system response. Though, simultaneous
identification of moving masses and structural damage seems to be an unexplored area.
Moving load identification has been studied extensively in the past few decades. An indirect identification
through the measured response has received special interest, since in practice it can be performed easier
and with lower costs compared with direct measurements. Chan, Law et al. have proposed four methods
for indirect identification, which are the time-domain method (TDM) [1], the frequency-time domain
method (FTDM) [2], Interpretive Method I (IMI) [3] and Interpretive Method II (IMII) [4]. All of
them require that the model parameters of the bridge are known. Each method has its merits and
limitations, which are compared in [5]. The numerical ill-conditioning of the problem is the main factor
that theoretically worsens the accuracy of the identification results. To improve the accuracy, a pseudo-
inverse or singular value decomposition (SVD) techniques have been investigated and adopted for the
inverse computation [6]. Some other regularization methods [7] have been proposed, e.g. bounds can
be imposed on the identified forces in solving the ill-conditioned problem using different combinations of
measured responses. However, finding the optimal value of the regularization parameter in these methods
is numerically costly and requires long computational time. Moreover, the regularization parameter turns
out to be sensitive to properties of the vehicle and bridge and hard to be precisely assigned [8]. In [8],
an iterative regularization method called the updated static component (USC) technique is proposed in
order to decrease the sensitivity of the regularization parameter. In general, these and similar methods
all require a known and well-defined model of the structure in order to build the load-response relation.
Moreover, existing methods usually take the moving force as the unknown variable, which linearizes the
identification problem, but at the cost of the increased ill-conditioning and larger number of sensors,
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which (in order to obtain a unique solution) are required to be not fewer in number than the moving
forces. And the ill-conditioning makes regularization techniques necessary to obtain meaningful solutions.
For damage identification, low- frequency SHM is in the scope of this paper. In [9], the existing approaches
are categorized as model-based and pattern-recognition. The analysis can be carried out directly in time
domain via sampled time signals, utilizing either statistical concepts and time series models [10] or deter-
ministic model-updating approaches, which are often coupled with quick reanalysis techniques [11]. The
identification problem is frequently transferred into frequency domain and solved using modal methods,
which detect, locate and identify the damages by the respective change of the related modal parameters;
see a summary review in [12]. The wavelet analysis becomes a popular tool used often together with
pattern-recognition methods [13]. Some of these methods rely on the assumption that the external loads
are well-defined and known. Others, like some modal and time series methods, can be used without
the exact information of the loads, but they are applicable only under special conditions like ambient
excitation or free response of the monitored structure.
Therefore, in the case of coupled moving load (or mass) and structural damage, such as in identification
of moving loads that pass a damaged bridge, it is hard to identify the unknown moving load ignoring the
unknown damage. In [14], a method based on the virtual distortion method (VDM) [9, 15] is proposed to
simultaneously identify a general load and damages of unknown types and extents. This paper presents
an efficient VDM-based method, which is tailored to the specific objective of identification of moving
loads (or masses) and structural damage (assumed here to be reduced stiffness). The masses and the
damage extents are chosen to be the optimization variables, which are identified through minimizing the
mean-square distance between the measured and the modeled structural response. The choice of the
variables ensures well-conditioning of the identification process. Moreover, given the identified masses,
the corresponding moving loads can be easily computed with a high accuracy. In addition, fewer sen-
sors can provide the identification uniqueness and required accuracy level. The numerical costs in each
optimization step are considerably reduced by using the proposed here concept of the moving dynamic
influence matrix, which is defined as a collection of impulse-responses with respect to the (changing in
time) positions of the moving masses. The method can be used both off-line and online, by a repetitive
application in a moving time window [14].

4. Virtual Distortion Method for frame structures
The Virtual Distortion Method is a quick reanalysis method applicable in both statics and dynam-
ics [9, 11]. Structural modifications, including damages, are modeled via related response-coupled virtual
distortions imposed on the involved elements. The structural response of a damaged structure to an
external load is expressed in the form of a combination of the responses of the intact structure to the
same load and to virtual distortions that occur in the damaged elements (distorted structure). Both the
damaged structure and the distorted structure are equivalent in terms of identical element strains and
forces. For the sake of notational simplicity, only frame structures, stiffness-related damages and strain
sensors are considered here. The methodology can be straightforwardly extended to include other damage
patterns as well as types of structures and sensors [9, 11, 14].
The paper is structured as follows:

4.1. Virtual distortion vs. damage
The mutual relations between damage extent, virtual distortion and the final strain of a damaged element
can be deduced and expressed in the general terms of the finite element (FE) method. Let the damage
extent of the ith element µi be the ratio of the modified stiffness K̃i to its original value Ki. The dynamic
equation of motion of the damaged structure under external load f is:

Mü + Cu̇ + K̃u = f . (1)

In the FE analysis, the structural stiffness matrix K̃ =
∑ne

i=1 K̃i, where K̃i = LT
i TT

i K̃e,iTiLi is the
stiffness matrix of the ith element expressed in the global degrees of freedom (DOFs); K̃e,i is the stiffness
matrix of the ith element expressed in its local DOFs; Li is the localization matrix linking the global
DOFs to the local DOFs of the ith element; Ti is the transformation matrix from the global coordinates
to the local coordinates of the ith element; and ne is the total number of the elements. Eq.(1) can be
rewritten in the following form

Mü + Cu̇ + Ku = f +
ne∑

i=1

(1− µi)Kiu, (2)
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which is the equation of motion of the distorted structure. Therefore, the response u is a combination of
the responses of the intact structure to the same load f and to certain virtual forces, which in the global
DOFs are defined as p =

∑n
i=1 (1− µi)Kiu. The FE formulation yields

p =
n∑

i=1

LT
i TT

i (1− µi)Ke,iTiLiu =
n∑

i=1

LT
i TT

i (1− µi)Ke,iui, (3)

where ui = TiLiu is the vector of the nodal displacements of the ith element in its local coordinate system.
Hence the virtual forces that occur locally in the ith element can be expressed as p0

e,i = (1− µi)Ke,iui,
where pe,i = Ke,iui are the local nodal forces. Therefore, the local virtual forces and the corresponding
local nodal forces are related to each other by

p0
e,i = (1− µi)Ke,iui = (1− µi)pe,i.

For truss structures with one-dimensional elements, the virtual forces modeling the damage of an element
corresponds to a single axial virtual distortion; in other structures more virtual distortions can be neces-
sary. The number and the forms of the distortions can be analyzed using the eigenvalue problem of the
local stiffness matrix Ke,i of the element. Its eigenvectors are of two kinds: distortion vectors correspond-
ing to positive eigenvalues and rigid motion vectors corresponding to zero eigenvalues. The matrix Ke,i

can be expressed in the terms of its n̄i positive eigenvalues λij and the corresponding eigenvectors ϕij ,

Ke,i =
n̄i∑

j=1

λijϕijϕ
T
ij . (4)

The vector ϕij represents the jth local base distortion of the ith element, and so Ke,iϕij = λijϕij is the
corresponding vector of the forces that realize the base distortion. The damage-modeling virtual forces
can be thus expressed in terms of a combination of the base virtual distortions as

p0
e,i = (1− µi)

n̄i∑

j=1

λijϕijϕ
T
ijui =

n̄i∑

j=1

Ke,iϕij

[
(1− µi)ϕT

ijui

]
= Ke,i

n̄i∑

j=1

Υ0
ijϕij , (5)

where Υ0
ij = (1− µi)ϕT

ijui. In Eq.(5), Υ0
ijϕij is the jth damage-modeling virtual distortion of the ith

element, and Υ0
ij is the combination coefficient of the corresponding jth base distortion ϕij . The local

virtual forces corresponding to the jth virtual distortion can be expressed as Ke,iΥ0
ijϕij . Similarly,

pe,i = Ke,iui = Ke,i

∑n̄i

j=1 Υijϕij , where Υij = ϕT
ijui, and therefore

Υ0
ij = (1− µi)Υij . (6)

For a 2D beam element, the local stiffness matrix Ke,i has three positive eigenvalues and three cor-
responding eigenvectors. Apart from the axial type of distortion ε0

i = Υ0
i1 (as in a truss element), it

also includes pure bending κ0
i = Υ0

i2 and bending plus shear terms χ0
i = Υ0

i3. Hence there are three
components of virtual distortions that have to be considered [16]. In case of structures of other types
(plates, shells, etc.), the base distortions, the corresponding forces and the relation between a damage and
the damage-modeling virtual distortions can be deduced similarly by the eigenvalue problem of stiffness
matrices of the elements. In the following, only 2D beam elements are considered.

4.2. Response of damaged frame structure under known force
With the assumption of zero initial conditions, the discretized response yα(t) of the αth (linear) sensor
in an externally loaded damaged structure is modeled by the VDM as the following sum of the linear and
the residual parts

yα(t) = yL
α(t) + yR

α (t)

= yL
α(t) +

t∑
τ=0

ne∑

i=1

[
Dε

αi(t− τ)ε0
i (τ) + Dκ

αi(t− τ)κ0
i (τ) + Dχ

αi(t− τ)χ0
β(τ)

] (7)

where yL
α(t) denotes the response of the intact structure to the same external force; ε0

i (t), κ0
i (t) and χi(t)

are the damage-related coefficients of the three base distortions of the ith element, and Dε
αi, Dκ

αi and
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Dχ
αi are the discretized impulse-response functions of the intact structure (dynamic influence matrices

according to the VDM terminology), that is the discretized responses of its αth sensor to impulse base
distortions ϕi1, ϕi2 and ϕi3 of the ith element. The excitations of impulse base distortions are equiva-
lent to local impulse forces Ke,iϕi1, Ke,iϕi2 and Ke,iϕi3 in the βth element. Note that this formulation
requires the assumption of small deformations in order to allow the responses to be linearly combined.

5. Structural dynamic response under moving mass
5.1. Equation of motion
The moving masses are assumed to attach to the support system. There are d masses on a flat bridge of
length L, moving at constant velocities v1, v2, . . ., vd, see Figure 1. The current coordinates of the mass
mj is xj = xj,0 + vjt, where xj,0 is the initial position.

v

x

y

o

d 2 1

x1

x2

xd

Figure 1: Moving masses and bridge system

The bridge is modeled as a discrete finite element structure. The moving masses and the bridge are
collectively considered a single system, which is exposed to constant moving external loads of the gravities
of the masses. In each time step, the system mass matrix is assembled with respect to the current positions
of the moving masses, and the current force vector is computed using the shape functions of the finite
elements currently carrying the masses. The equation of motion of the system can be thus written as

[M + ∆M(t)] ü(t) + Cu̇(t) + Ku(t) = B(x)m̄ḡ, (8)

where ∆M(t) =
∑d

j=1 LT
ij

nij (ζj)mj nT
ij

(ζj)Lij (xj) is an n×n time-variant matrix, M, C and K are the
n× n system matrices of the bridge, ij is the element number where the mass mj currently is, ζj is the
relative coordinate of mj with respect to the ith element, Li is the ni × n localization matrix of the ith
element, nij (ζj) is the load allocation vector of the ijth element due to the mass mj (dependent on the
element shape functions), n is the total number of the system DOFs, ni is the number of the DOFs of the
ith element. The matrix B(x) = [b1(x1) b2(x2) . . . bd(xd)] denotes the load location matrix, where
bj(xj) = LT

ij
(xj)nij (ζj). Finally, m̄ = diag [m1 m2 . . . md] is a d× d diagonal matrix, and ḡ is the

d dimensional vector of gravity acceleration constants g. The dynamic nodal displacements, velocities
and accelerations of the bridge can be obtained by numeric integration of Eq.(8).

5.2. Dynamic moving influence matrix
In accordance with the general idea of the VDM, the time-variant matrix ∆M(t) in Eq.(8) is moved to
the right-hand side. The equation can be stated in the equivalent form of

[M + ∆M(t)] ü(t) + Cu̇(t) + Ku(t) = B(x)m̄ [ḡ − a(t)] , (9)

which is the equation of motion of the bridge alone subjected to external moving invariant loads and
response-coupled loads. In Eq.(9), the vector a(t) collects the vertical accelerations of the masses, ai(t) =
bT

i (xi)ü(t). Since the acceleration can be represented using the system impulse-response matrix Ḧ(t),
which describes accelerations in response to unit impulse excitations and include a distributional term,

ai(t) = bT
i (xi)

∫ t

0

Ḧ(t−τ)B(x)m̄ [g − a(τ)] dτ =
d∑

j=1

∫ t

0

bT
i (xi)Ḧ(t−τ)bj(xj)mj [g − aj(τ)] dτ. (10)

In the discrete-time system, let the vertical acceleration of mi at the kth time step ai(tk) be denoted by
aik, and bi(xi) by bik. Then

aik =
d∑

j=1

k∑

l=1

bT
ikḦ(k − l)bjl mj (g − ajl) , (11)
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where Ḧ(k− l) is the discretized counterpart of the continuous impulse-response from Eq.(10), that is its
element Ḧij(k − l) is the acceleration response of the ith DOF at time tk to the unit excitation applied
in the jth DOF at time tl. With proper ordering of the data, Eq.(11) can be stated in the matrix form,

a = Dmmm (g − a) , (12)

where a =
[
aT

1 aT
2 . . .aT

d

]T, and the column vector ai collects all discrete accelerations of the mass
mi in successive time steps. Dmm is the proposed in this paper dynamic moving influence matrix; it is
an ntd × ntd block matrix, composed of d2 lower triangular matrices Dmm

i,j , each of dimension nt × nt,
where nt is the total number of the time steps. An element Dmm

ij (k, l) is the vertical acceleration of the
mass mi at the time tk caused by a unit impulse applied at time tl on the location of the mass mj (that
is, at xj,0 + vjtl),

Dmm
ij (k, l) =

{
bT

ikḦ(k − l)bjl if l ≤ k, 0 ≤ xi,0 + vitk ≤ L, 0 ≤ xj,0 + vjtl ≤ L,
0 otherwise.

(13)

In Eq.(12), m is a ntd×ntd diagonal block matrix, in which the ith diagonal matrix is miInt×nt
, and g is a

column vector composed of ntd elements: either gravity acceleration constants g (when the corresponding
mass is on the bridge) or of zero elements at the time steps when the corresponding mass is off the bridge.

The dynamic moving influence matrix needs to be computed only once for a certain bridge and ve-
locities of the masses. Therefore, for the coupled bridge-moving mass analysis, the accelerations a of the
masses can be solved quickly by Eq.(12) for different moving masses. In this way, the repeated assembling
of the system mass matrix in each time step is avoided. This affords an important advantage in moving
mass identification, as described in the following section.

6. Simultaneous identification of moving masses and structural damage
6.1. Response of a damaged frame structure to moving masses
For a damaged bridge excited by moving masses, let the moving masses and the damage extents be both
unknown. Sensor responses can be computed by Eq.(7), where the damage is modeled by the distortions
and the linear part yL is the response of the undamaged bridge to the equivalent moving force vector
p = m(g − a). Eq.(7), similarly as Eq.(11), can rewritten for all considered time steps nt and for all
sensor locations α and stated in the form of a single large linear equation as

y = Dmp + Dεε0 + Dκκ0 + Dχχ0, (14)

where y is the discrete response (an nts column vector, where s is the number of the sensors), Dm is
an nts× ntd block matrix, composed of nt × nt lower triangular matrices Dm

αj such that Dm
αj(k, l) is the

response of the αth sensor at time tk to the unit impulse applied at time tl on the location xj,0 + νjtl
(position of the mass mj),

Dm
αj(k, l) =

{
gαH(k − l)bjl if l ≤ k, 0 ≤ xj,0 + vjtl ≤ L,
0 otherwise, (15)

where H(k − l) is the displacement impulse-response of the undamaged structure in time tk to the unit
impulses applied in all DOFs in time tl and gα is the observation vector with respect to the sensor α.

6.2. Objective function
In general, there are two ways to identify the unknown moving masses and damage extents (that is, the
stiffness reduction ratios µi). The first way is to solve directly the linear system Eq.(14) in order to obtain
the equivalent moving force vector p and the virtual distortions ε0, κ0, χ0. They can be then treated as
excitations of the undamaged structure and used to compute the corresponding accelerations a and the
responses ε, κ, χ (i.e. Υij of Eq.(5)) of the damaged elements. The unknown masses and the damage
extents can be then estimated using the expression p = m(g− a) and Eq.(6), respectively. However, the
problem of computing the direct solution of Eq.(14) is a well-known ill-conditioned problem, and thus
extremely sensitive to measurement errors. Moreover, since the elements of the vectors p, ε0, κ0 and
χ0 are treated as independent, the number of sensors has to be equal or greater than the number of the
unknown loads plus the threefold number of the potentially damaged elements.
Therefore, this paper proposes a more practical way of identification of the unknown mi and µj by
minimization of the normalized mean-square distance between the measured structural response yM and
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the computed response y of the distorted structure, where the unknown variables are mi and µj . In this
way the number of the unknown variables is significantly reduced, and the ill-conditioning is avoided.
The proposed objective function is thus

f(m1, . . . , md, µ1, . . . , µnd
) =

‖yM −Dmp−Dεε0 −Dκκ0 −Dχχ0‖
‖yM‖ , (16)

where nd is the number of the potentially damaged elements.

6.3.Estimation of the equivalent forces and virtual distortions
In the objective function Eq.(16), the equivalent forces p and the virtual distortions ε0, κ0, χ0 depend
on the unknown masses mi and the damage extents µj . In each optimization step they can be quickly
constructed using precomputed corresponding influence matrices of the distorted structure, based on the
following formulas, which are similar to Eq.(14):

ε = Dεεε0 + Dεκκ0 + Dεχχ0 + Dεmp,

κ = Dκεε0 + Dκκκ0 + Dκχχ0 + Dκmp,

χ = Dχεε0 + Dχκκ0 + Dχχχ0 + Dχmp,

a = Dmεε0 + Dmκκ0 + Dmχχ0 + Dmmp,

(17)

where all D(·)(·) are influence matrices that contain responses to impulse excitations, similar to the
matrices in Eq.(14), but with respect to distortions imposed on the potentially damaged element and
forces or accelerations at the locations of the masses, as defined by the superscripts. The responses ε, κ,
χ and the equivalent forces p are related to the virtual distortions ε0, κ0, χ0 and the accelerations a via
the unknown masses and damage extents by (see Eq.(6))

ε0 = (I− µ)ε, κ0 = (I− µ)κ, χ0 = (I− µ)χ, p = m(g − a), (18)

where µ is an ndnt × ntnd block diagonal matrix, in which the ith diagonal matrix equals µiInt×nt .
Eq.(17) and Eq.(18) yield together the following linear system:

I−




(I− µ)Dεε (I− µ)Dεκ (I− µ)Dεχ (µ− I)Dεmm
(I− µ)Dκε (I− µ)Dκκ (I− µ)Dκχ (µ− I)Dκmm
(I− µ)Dχε (I− µ)Dχκ (I− µ)Dχχ (µ− I)Dχmm

Dmε Dmκ Dmχ −Dmmm










ε0

κ0

χ0

a


 =




(I− µ)Dεm

(I− µ)Dκm

(I− µ)Dχm

Dmm


mg,

(19)
where the unknowns are the virtual distortions and the accelerations of the moving masses. Thanks to
the dynamic moving influence matrices, these key vectors can be obtained in each optimization step fast
and with high accuracy, because (1) in practical cases (relatively small damages and masses) the matrix
of Eq.(19) is well-conditioned square full rank; (2) all the data necessary to form Eq.(19) are computed
based on the FE model, so without any measurement errors. That two factors make the proposed method
of moving mass and damage identification robust to noise, in comparison to the methods based on the
direct solution of Eq.(14).

6.4. Remarks and generalizations
For relatively small damages and masses, the coefficient matrix of Eq.(19) is full rank and well-conditioned;
hence its inverse matrix can be in principle used directly. However, in off-line identification, in the case
of a dense time discretization or a longer sampling time, Eq.Eq.(19) can become prohibitively large and
computationally hardly manageable. To reduce the numerical costs, one can exploit the fact that the
coefficient matrix is a block matrix composed of lower triangular matrices and that all the data in the
equation are computed based on the ideal FEM model without any measurement errors. Thus, the
unknown vectors can be computed stepwise, without a significant loss of accuracy. The equations and
the unknowns in Eq.(19) can be rearranged into a block lower triangular form that can be quickly solved
by block forward-substitution.
In addition, the optimization can be made quicker by specifying proper initial trial values m̃i of the
moving masses. They can be estimated by approximating the masses by moving forces with constant
values of mig and by assuming that the bridge is undamaged, that is by solving

yM = Dmm̃g. (20)
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Given the trial mass values, the mass unknowns in Eq.(16) can be rescaled into mass modification
coefficients µm

i = mi/m̃i, so that all optimization variables are of comparable magnitudes, which usually
makes the optimization quicker.
Furthermore, the proposed method of moving mass and damage identification can be straightforwardly
extended to online identification by repetitive applications in a moving time window [14], that is by
replacing the measured structural response yM in Eq.(16) by

yM ← yM(n) − ȳ(n), (21)

where yM(n) is the measured data in time section n and ȳ(n) is the free vibration response of the un-
damaged structure caused by nonzero initial conditions at the beginning of the time section. The initial
conditions of each time section and the corresponding free vibrations can be computed straightforwardly,
provided the moving masses and the virtual distortions in the previous sections are already identified.
Certainly, if the system parameters are known, then the model of the damaged structure can be used di-
rectly, the virtual distortions in Eq.(16) vanish, and the method can be also used for robust identification
of moving mass alone.

7.Numerical examples
A simply supported beam (Figure 2) is employed to validate the proposed method, with a uniform mass
of 15.3× 103 kg/m, length 100m, Young’s modulus 2.15× 1011 N/m2 and the inertia moment of 0.8m4.
The beam is divided into 20 elements of equal lengths. Strain sensors are used, and placed on the upper
face of the beam (that is, off the neutral axis). The two following cases are discussed:

1. One moving mass m = 61.2×103 kg passes over the beam with a constant velocity 40 m/s. Element
no 10 is damaged with the stiffness reduction ratio µ = Ẽ/E = 0.6. A single sensor is located at
22.7m, see Figure 2 (left).

2. Two masses m1 = 61.2×103 kg and m2 = 53×103 kg moving with constant velocities of v1 = 50 m/s
and v2 = −40m/s. The initial positions of the masses are x1,0 = −10m and x2,0 = 120m. Elements
no 9 and 15 are damaged with the stiffness reduction ratios of µ9 = 0.60 and µ15 = 0.35. Two sensors
are employed: s1 at location 32.7m and s2 at 57.7m. The case is illustrated in Figure 2 (right).

22.7m
v

x

y

o

100m

m

57.7m

v2

m2m1

100m

o

y

x

v1
32.7m

Figure 2: Moving mass-bridge coupled system: (left) case 1; (right) case 2

The respective dynamic responses of the sensors are calculated using the discrete FE model and the
Newmark integration method with the parameters α = 0.25 and β = 0.5. The integration step equals
0.01 s, thus the sampling frequency is 100Hz. A total of 200 time steps is used, which corresponds to the
sampling time interval of 2 s. Measurement errors of the simulated measurement data are modeled by an
independent Gaussian noise at 5% rms level. The simulated sensor responses are shown in Figure 3.
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Figure 3: Strain responses of the damaged and the intact systems: (left) case 1, (right) case 2. Noise-free
measurement, intact beam (,,res damaged”, ,,s1un”, ,,s2un”); noise-free, damaged beam (,,res damage”,
,,s1da”, ,,s2da”); noisy measurement, damaged beam (,,noiseres dama”, ,,s1noiseda”, ,,s2noiseda”)
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In the following subsections, first the moving mass in case 1 is identified under the assumption that the
damage is known and used directly in the FE model, then the moving masses and damage extents are
identified simultaneously in the two considered cases. The identification results are assessed by their
relative accuracy:

δ = 100%× ‖estimatedvalue − actualvalue‖
‖actualvalue‖ .

7.1 Moving mass identification under known damage
Assume that the damage is known. The moving mass m is identified first by a direct solution of Eq.(14).
The results are shown in Figure 4. They are computed using the truncated singular value decomposition
(TSVD). The regularization level has been defined by the number k of the truncated singular values,
which in each case has been determined using the L-curve technique [17]. The L-curves computed for
the noise-free and the noise-polluted measurements are depicted in Figure 4 (top right and top left) and
attest that the equation Eq.(14) is seriously ill-conditioned. Moreover, consistently high values of the
regularizing parameter log10 ‖Lp‖ suggest that it is impossible to get accurate results even at the optimal
regularization level.
In the noise-free case, the optimum regularization level is k = 7. The corresponding computed moving
force is shown in Figure 4 (bottom left); the end part diverges suddenly from the actual mass-equivalent
moving force. With noise pollution, the force is computed at the optimal value k = 40 and shown in
Figure 4 (bottom right); both the front and the end parts diverge largely from the actual values. Table 1
lists the values of the mass identified via the constructed moving force by the formula p = m(g − a).
The identification errors confirm that the result can be very sensitive to the disturbances of the measured
response.
In comparison, the method of optimization of Eq.(16) turns out to be robust to noise (Table 1). The
trial value of the mass via Eq.(20) is m̃ = 61.778× 103 kg; in each optimization step, the acceleration a
is calculated fast using the moving influence matrix Dmm by Eq.(17), which reduces to [I + Dmmm]a =
Dmmmg. The optimal value of the mass-related coefficient is µm = 0.995. Figure 5 (left) compares
the constructed moving load to the actual equivalent moving load; the result is very satisfactory under
5% rms noise pollution.
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Figure 4: Case I, moving load computed by a direct solution of Eq.(14): (top left) noise-free L-curve;
(top right) L-curve with 5% rms noise; (bottom left) computed moving load, noise-free case; (bottom
right) computed moving load, 5% rms noise
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Table 1: Case I, identified mass and relative error

via solving Eq.(14) via optimizing Eq.(16)
noise free 5% noise 5% noise

mass [103 kg] 61.017 52.344 61.469
error δ [%] 0.30 14.47 0.44
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Figure 5: Comparison of the constructed equivalent moving force to the actual value: (left) case 1,
,,value1” is estimated assuming known damage extent, ,,value2” is estimated along with the unknown
damage extent; (right) case 2, ,,actva1” (actual) and ,,estiva1” (estimated) correspond to m1, while
,,actva2” and ,,estiva2” correspond to m2

7.2 Simultaneous identification of moving masses and damage
Assume that the damage location is known, but the extents are unknown. The moving mass and the
damage extent are identified by minimizing the objective function Eq.(16).
In case 1, the trial mass value of m0 = 62.561 × 103 kg is obtained by Eq.(20), and the identified mass
modification coefficient is µm = 0.9833. The relative identification errors are much less than 1%, as seen
in Table 2. In case 2, the trial mass values are m1 = 43.461 × 103 kg and m2 = 76.509 × 103 kg. The
corresponding optimal mass modification coefficients are µm,1 = 1.4243 and µm,2 = 0.6798. The relative
identification error is less than 2% for masses and less than 7% for the damage extents. In addition, the
equivalent moving forces corresponding to the identified masses and damage extents can be computed by
p = m(g − a). The reconstructed moving forces are close to the actual, see Figure 5.

Table 2: Case II, identified masses, damage extents and relative errors

case 1 case2
µ10 m[103 kg] µ9 µ15 m1[103 kg] m2[103 kg]

identified 0.6188 61.516 0.5727 0.3261 61.902 52.011
actual 0.60 61.2 0.60 0.35 61.2 53

error δ [%] 3.13 0.52 4.55 6.82 1.15 1.87

8. Conclusion
Based on the virtual distortion method (VDM), this paper presents an effective method to simultane-
ously identify moving masses and structural damage. In comparison to other approaches, fewer sensors
are necessary by taking the moving masses and damage extents as optimization variables, and the ill-
conditioning of direct force identification is avoided. Furthermore, the proposed dynamic moving influence
matrix makes the computation of the system response fast and precise without the need for repeated as-
sembly of the time-variant mass matrix in every time step. Since the dynamic moving influence matrix
needs to be computed only once for a certain beam and mass velocities, it affords an effective way to
estimate the responses with different moving masses and damages. The proposed method is robust to
noise and can be used both off-line and online by repetitive applications in a moving time window.
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