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Summary. This paper presents the substructure isolation method, which a novel method for
substructural analysis and structural health monitoring (SHM) at the local level. The motiva-
tion behind it are the facts that global SHM of large and complex structures is generally difficult
and that often only small substructures are crucial and require monitoring. These facts suggest
that there is a need for ways of applying global SHM approaches locally, which is impossible
with typical substructuring methods. The paper offers an overview of the common substruc-
turing approaches and describes the substructure isolation method. The method splits the task
of local monitoring into two stages: (1) Isolation; the outside influences are numerically elim-
inated from the measured response of the substructure. (2) Local SHM; all methods aimed
originally at global SHM can be used with the constructed response of the isolated substruc-
ture. Local analysis is possible in time domain as well as in frequency domain; in offline and
in online time regimes. The method is illustrated in a numerical example and substantiated in
an experimental study using a damaged cantilever beam; the robustness of the isolation with
respect to unknown modifications of the outside structure is tested.
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1. INTRODUCTION

Research on damage identification in SHM often focus on large specialized structures, such
as bridges, tall buildings, dams, etc. Such complex structures are difficult to be monitored
globally using approaches of low frequency SHM due to several reasons:

1. Accuracy and reliability of parametric numerical models. Boundary conditions and non-
linear components are often hard to model or determine, which might be reflected in a
poor accuracy of any global parametric numerical model of the monitored structure.

2. Poor numerical convergence. In large problems of global identification or model updat-
ing the numerical convergence is usually undermined by a large number of independent
unknown parameters that need to be identified simultaneously. This results in significant
ill-conditioning.

3. Large number of sensors that are necessary to guarantee uniqueness of the result of a
global identification. The reasons are the large number of involved unknowns and the
local-only sensitivity of the global response with respect to local damages. This is costly
and rarely feasible in practice.

4. Unknown excitations. Response of the global structure is often influenced by many exci-
tations that cannot be measured and often even characterized accurately enough.

As a result, in monitoring of large and complex structures, data-driven (pattern-recognition)
approaches have often to be used at the expense of accuracy and physicality of model-based
SHM. However, in many practical applications only small local substructures are crucial and
need monitoring, which suggests that model-based SHM approaches could be applied locally.
Such small substructures feature much fewer structural parameters and unknown factors that
need to be identified and controlled, which makes local modeling and analysis much more
feasible in comparison to global approaches.

1.1 State-of-the-art

The body of research on damage detection through localized analysis is relatively large.
To detect local damage, one can compare locally sensitive information, such as local strain or
local modal characteristics, extracted from the dynamic structural responses measured before
and after the damage occurs. However, a substructure is a local part of the global structure, and
so it is not independent of the global structure. In order to focus on the substructure only, most
of the existing approaches separate the substructure from the global structure by partitioning
the global equation of motion. The generalized interface forces are then used for coupling both
structures and so they need to be identified together with substructural parameters. The local
identification is performed usually in a model-based manner and requires a general parametric
numerical model of the substructure to be known beforehand.
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The substructural approach has been probably first considered by Koh et al. [2] in the con-
text of structural identification and called a substructural identification (SSI) or a divide-and-
conquer strategy. This method applies the extended Kalman filter with weighted global iteration
to substructures with and without overlapping members; in [3], it is developed into a progressive
structural identification approach, which identifies the global structure through identification of
progressively growing substructures. In [4], Yun and Lee employ an ARMAX model of the
substructure and a sequential prediction error method to locally estimate unknown parameters
that are related to damages; complete measurement of the substructure is necessary, including
the interior excitations and the response in all its DOFs. Tee et al. [5] apply the substructural
strategy in the field of SHM and propose two methods aimed at first- and second-order model
identification and damage assessment at the substructural level. The methods are based on
the eigensystem realization algorithm (ERA) and the observer/Kalman filter; in [6], they are
combined with a model condensation approach, which allows the number of necessary mea-
surements to be reduced. In all these and similar methods, complete measurement of interface
response is necessary: the measured response is treated as a known input to the substructure.
A method that does not require the interface responses to be measured directly is proposed
by Koh et al. in [1], where the generalized interface forces between the substructure and the
global structure are identified simultaneously with the unknown physical parameters of the sub-
structure using local frequency response functions. Different sets of internal response measure-
ments are used to obtain different estimates of the interface forces; the identification procedure
amounts to minimization of the discrepancy between them. Yang and Huang propose in [7] a
sequential nonlinear least-square method to estimate unknown excitations, physical parameters
of the substructure as well as the interface forces. Lei et al. propose in [8] a related algo-
rithm for identification of non-linear substructural parameters; the algorithm is based on the
sequential application of the extended Kalman estimator for the non-linear structural parame-
ters and the least-squares indirect estimation of the unmeasured interface forces. Both methods
require only a limited number of output measurements, and they can trace damages changing
with time. A method based on multi-feature genetic algorithm was used by Trinh and Koh [9]
to estimate substructural mass, damping and stiffness parameters. Xing and Mita [10] confine
each substructure of a multi-storey shear building to a few DOFs only and use overlapping sub-
structures; they apply directly the ARMAX method for local identification. Wang et al. [11]
employ the concept of the quasi-static displacement vector to simplify the generalized interface
forces, and use a method based on a genetic algorithm to identify the substructure.

1.2 Separation vs. isolation of substructures

All the methods mentioned above can be collectively called substructure separation meth-
ods, since they rather separate than isolate the substructure from the global structure: although
separated, the substructure and the global structure remain coupled to each other via the un-
known interface forces. Consequently, all the discussed identification procedures need to ac-
count for the unknown interface forces besides the unknown substructural parameters. However,
forces and structural parameters are variables of very different characteristics, and thus all these
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identification methods, although effective, are not standard and have to be specifically tailored
to be used at the substructural level. As a result,

• Standard and widely-researched model updating or health monitoring methods cannot be
directly applied to the separated substructure.

• Many substructuring methods appear to be limited to small substructures that have simple
interfaces. A simple shear building is such a structural model and it is widely used in
most of the references mentioned above. However, in real applications structures are
more complex, and their substructures have more DOFs and more complex interfaces.

To overcome these drawbacks, a substructure isolation method has been proposed [12–18].
The core idea of the isolation method is different: instead of separating the substructure and then
identifying its parameters together with the unknown interface forces, the method splits the task
of local identification into two conceptually distinct stages that are performed separately:

1. Isolation of the substructure. In this stage, the method numerically eliminates the outside
influences of the global structure from the measured response of the substructure. The
response constructed this way is the response of the substructure as if it was physically
isolated from the global structure with supports placed on the interface. The process
is equivalent to constructing an isolated substructure, which is an independent virtual
structure with the same parameters as the real substructure, but isolated from the global
structure with virtual supports placed on the interface.

2. Local analysis and identification of the isolated substructure. Any of the existing, well-
researched methods aimed originally at global SHM can be used together with the com-
puted response of the isolated substructure.

Such an approach places the substructure isolation method in a broader landscape of methods
that use structural modifications, either physical or virtual, to increase the response sensitivity
to selected structural parameters, see [19–22]. Notice that there are no unknown interface forces
to be accounted for in the second stage. Moreover, response of the isolated substructure is con-
structed directly using measured responses of the substructure, so that no parametric numerical
model is required at the isolation stage.

2. VIRTUAL SUPPORTS

The isolation method can be based on the notion of a virtual support [15] and introduced
using the methodology of the virtual distortion method (VDM, [23]). The core idea of the VDM
is to model the effects of local structural modifications using the equivalent pseudo loads and/or
virtual distortions. Here, the same idea is used to model a virtual fixed support. It is modeled
with the equivalent pseudo load that equals the generalized support reaction force that would
occur, if the structure was physically supported. The time history of such an equivalent pseudo
load can be computed using the natural condition that the modeled responses in all DOFs with
virtual fixed supports vanish.
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2.1 Naming convention

The response of the virtually supported structure to an external excitation f(t) is computed
using several responses of the original unmodified structure. These responses are generated ex-
perimentally using two different types of excitations and measured using two types of sensors.
The considered excitations can be divided into: (1) Constraining excitations, which are applied
in all DOFs intended for virtual supports, and (2) Basic excitation, which is the external excita-
tion f(t). The responses to these excitations are measured by the two following types of sensors:
(1) Constraining sensors, which are linear sensors (displacement, velocity or acceleration) that
need to be placed in all the DOFs intended for virtual supports, and (2) Basic sensors, which
are linear sensors of any type placed in the structure in order to measure its response. The aim
is to compute the response to the basic excitation that would be measured by the basic sensors,
if the structure was physically supported in the considered DOFs. The excitations (basic and
constraining) need not be measured for the purpose of the analysis.

Since there are two types of excitations and two types of sensors, four different types of
response are measured altogether, see Table 1. Notice that uL(t) and aL(t) are vectors, while
Bup(t) and Bap(t) are matrices.

2.2 Virtual fixed supports

Assume that the original unmodified structure is subjected to an external excitation f(t) (ba-
sic excitation) and that the responses listed in Table 1 are measured and available. Virtual fixed
supports are modeled with a pseudo load vector p0(t), which acts in all the to-be-supported
DOFs and which would equal the generalized support reaction forces, if the structure was phys-
ically supported. The structure is assumed to be linear, hence, with zero initial conditions, the
modeled responses of the virtually supported structure can be expressed as follows:

a(t) = aL(t) +

∫ t

0

Bap(t− τ)p0(τ) dτ, (1a)

u(t) = uL(t) +

∫ t

0

Bup(t− τ)p0(τ) dτ, (1b)

where the vectors a(t) and u(t) denote the responses of the constraining and basic sensors
respectively. For the moment, the constraining excitations are assumed to be impulsive, so that

Table 1. Naming convention

basic excitation f (t) constraining excitations⋆

basic sensors uL(t) Bup(t)
constraining sensors⋆ aL(t) Bap(t)
⋆Applied/placed in all the to-be-supported DOFs.
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the matrices Bup(t) and Bap(t) contain structural impulse response functions. Stated in the
operator notation, Equations 1 take the following form of two large linear systems:

a(t) = aL(t) +
(
Bapp0

)
(t), (2a)

u(t) = uL(t) +
(
Bupp0

)
(t), (2b)

where Bap and Bup are the respective matrix convolution operators.
If the pseudo load vector p0(t) is assigned such a value that it properly models the effects of

fixed supports in the selected DOFs, then the responses of the constraining sensors to the basic
excitation must vanish, as they are measured in the supported DOFs. In other words, a(t) = 0
in the properly supported structure, and the equivalent pseudo load can be found from Eq. 2a
by solving the following linear system:(

Bapp0
)
(t) = −aL(t). (3)

Equation 3 is a linear system of Volterra integral equations that should be discretized and solved
numerically. Here, the solution is symbolically denoted by

p0(t) = −
(
[Bap]+ aL

)
(t), (4)

where the superscript + denotes the (regularized) inverse operator. Computed the pseudo load,
Eq. 2b can be used to compute the modeled measurements in the virtually supported structure:
upon substitution of p0(t) into Eq. 2b, the following formula is obtained:

u(t) = uL(t)−
(
Bup [Bap]+ aL

)
(t). (5)

2.3 Non-impulsive constraining excitations

The response of the virtually supported structure Eq. 5 is based on the assumption that the
constraining excitations are impulsive. In practice, such excitations might be hard to apply, but
this assumption can be relaxed, so that the experimentally applied constraining excitations can
be non-impulsive, if assumed that the pseudo loads are expressed in the form of the convolution

p0i (t) = (qi ∗ pi) (t) =
∫ t

0

qi(t− τ)pi(τ) dτ, (6)

in which qi(t) denote the actually applied non-impulsive constraining excitations. This equa-
tion, collected for all i, takes in the operator notation the form of

p0(t) = (Qp) (t), (7)

which makes use of the corresponding diagonal matrix convolution operator Q. As a result,
Equations 2 take the following form:

a(t) = aL(t) + (Bapp) (t), (8a)

u(t) = uL(t) + (Bupp) (t), (8b)
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where, in comparison to Eqs. 2, the following substitutions have been performed:

Bap ← BapQ, Bup ← BupQ. (9)

In both cases Bap and Bup are the matrix convolution operators with the measured responses of
the constraining and basic sensors to the constraining excitations. Equations 8 yield

u(t) = uL(t)−
(
Bup [Bap]+ aL

)
(t), (10)

which is formally the same as Eq. 5. The operator Q does not appear explicitly in Eqs. 8
and 10, hence the constraining excitations qi(t) need not be measured. However, they affect the
properties of the operator Bap and thus the accuracy of the result. In practice, quasi-impulsive
excitations, obtained e.g. with modal hammer, tend to provide good results.

2.4 Computations in frequency domain

Thus far all the derivations are performed in time domain. Equations 8 are large Volterra
integral equations, and Eq. 10 involves computing a solution to a system of such equations. In
time domain, this can be a computationally demanding task, as it involves computing a solution
to a very large and ill-conditioned linear system, which has the dimensions proportional to the
number of the considered time steps. As a result, the manageable length of the measurement
time interval is significantly limited. However, the problem can be formulated and solved in
frequency domain, which dramatically improves the computational efficiency.

The derivations can be repeated in frequency domain in an analogous way. The naming con-
vention is the same as in Table 1, with the exception that the responses are complex amplitudes
that depend on the frequency ω. The frequency-domain counterparts of Eqs. 2 are

a(ω) = aL(ω) +Bap(ω)p0(ω), (11a)

u(ω) = uL(ω) +Bup(ω)p0(ω), (11b)

where p0(ω) is the frequency-domain pseudo load that models the support reaction forces and
Bap(ω) and Bap(ω) are complex matrices. In contrast to Eqs. 2, which constitute a large single
system of Volterra integral equations, Equations 11 yield for each ω a different linear system.
Thus, the following frequency-domain counterpart of Eq. 3,

Bap(ω)p0(ω) = −aL(ω), (12)

is a matrix equation of a moderate size: the number of unknowns equals the number of the
to-be-supported DOFs (constraining sensors). It needs to be solved separately for each ω of
interest. Finally, in frequency domain Eq. 10 assumes the following form:

u(ω) = uL(ω)−Bup(ω) [Bap(ω)]+ aL(ω), (13)

where− [Bap(ω)]+ aL(ω) denotes the solution to Eq. 12. In practice, even repeated solutions of
Eq. 12 are considerably faster than a single solution of the integral equation Eq. 3. The process
is even less time-consuming, if only a limited number of frequencies ω is of interest instead of
the full spectrum.
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3. SUBSTRUCTURE ISOLATION AND LOCAL ANALYSIS

A series of virtual supports placed in all interface DOFs of the considered substructure can
be used to eliminate all influences of the global structure from the measured basic response
of the substructure. Such an approach can be used for complete virtual substructure isolation.
However, a straightforward application of the virtual supports would be faced with the four
following difficulties that can significantly limit the potential for practical applications: (1) the
global structure needs to be linear, (2) constraining excitations need to be placed in all DOFs
of the interface, (3) virtual fixed supports need displacement sensors in all interface DOFs,
(4) zero initial conditions are required (no online applications). All these requirements can be
considerably relaxed or dropped, so that

1. Only the substructure is required to be linear, while the global structure besides the sub-
structure can be nonlinear, yielding, changing or simply unknown.

2. Constraining excitations can be placed in the DOFs of the interface or anywhere in the
outside structure (but not in the DOFs internal to the substructure). In online applications,
operational loads can be used for this purpose.

3. In addition to fixed boundary conditions modeled with virtual fixed supports, virtual free
supports can be introduced to model free boundary conditions. Virtual free supports
require strain measurements instead of displacements (velocities or accelerations), which
can be more feasible, especially in rotational DOFs of frame structures. Virtual fixed and
free supports can be simultaneously used in different DOFs of a single node in order to
model nodal virtual supports of various types, such as virtual pinned supports.

4. Non-zero initial conditions are possible at the cost of an additional linear trend and a free
response component that may occur in the computed response, see Section 3.5.

3.1 Naming convention

The same convention is used as in the case of virtual supports. The excitations are divided
into: (1) Constraining excitations, which are applied in the DOFs of the interface or in the DOFs
of the outside structure. The number of constraining excitations must not be smaller than the
number of the interface DOFs. They need not be impulsive, and each of them results in a vector
qI
i(t) of the generalized interface forces that excites the substructure. (2) Basic excitation, which

is the external excitation f(t) placed inside the substructure. The constraining excitations can be
placed also outside the interface, that is not necessarily only in the to-be-supported DOFs of the
interface. It is possible, because the response of the outside structure can be disregarded, while
the substructural response to the ith constraining excitation is exactly the same as the response
of the substructure to qI

i(t).
The responses are measured by the two following types of sensors: (1) Constraining sen-

sors, which are linear sensors (displacement, velocity or acceleration) that implement the virtual
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supports and need to be placed in all DOFs of the interface. (2) Basic sensors, which are placed
inside the substructure. The purpose of isolation is to compute the response to the basic exci-
tation that would be measured by the basic sensors, if the substructure was physically isolated
from the rest of the global structure. As before, there are a total of four different types of the
measured responses, which are named as in Table 1.

3.2 Isolation in time domain

The substructure is virtually isolated by placing virtual fixed supports in all DOFs of its
interface with the global structure. The supports are modeled by the pseudo load vector p0(t)
that would equal the generalized support reaction forces, if the substructure was physically
supported. As in Eq. 6, the pseudo load vector is represented as

p0(t) =
∑
i

∫ t

0

qI
i(t− τ)pi(τ) dτ, (14)

where i indexes constraining excitations, pi(t) are certain unknown functions, and qI
i(t) are the

generalized interface forces that correspond to the ith constraining excitation qi(t). Equation 14
can be stated in the operator notation as

p0 = QIp, (15)

where QI is the matrix convolution operator that, unlike Q in Eq. 7, is not diagonal.
The considered substructure is assumed to be linear. For the substructure, the constraining

excitations and the corresponding interface excitations qI
i(t) are equivalent. Thus, the responses

of the basic and constraining sensors in a supported substructure can be modeled as follows:

a(t) = aL(t) + (Bapp) (t), (16a)

u(t) = uL(t) + (Bupp) (t), (16b)

where Bap and Bup are matrix convolution operators with the measured responses to the con-
straining excitations of the constraining and basic sensors respectively. The interface responses
a(t) vanish in a properly isolated substructure, a(t) = 0, and Eq. 16a yields

(Bapp) (t) = −aL(t). (17)

Equations 16b and 17 yield together the formula

u(t) = uL(t)−
(
Bup [Bap]+ aL

)
(t), (18)

which is formally the same as Eqs. 5 and 10. The operator QI does not appear in Eqs. 16 nor in
Eq. 18, hence neither the constraining excitations qi(t) nor the equivalent interface excitations
qI
i(t) need to be known. However, the character and placement of the constraining excitations

affect the properties of the operator Bap, which is inverted in Eq. 18, and thus the accuracy of
the isolation, see Section 4.1.
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Figure 1. A substructure of a 2D beam (axial displacements of the interface ignored)

a. b.

c. d.
Figure 2. The four types of nodal virtual supports defined in Eqs. 19

3.3 Isolation with other types of virtual supports

Up to now, the constraining sensors have been assumed to measure displacement, velocity
or acceleration, so that they implement fixed boundary conditions. Other kinds of virtual sup-
ports can be also used to emulate other types of boundary conditions and nodal virtual supports.
In the following, isolation of a 2D beam is used as an example. Figure 1 shows the structure,
the substructure to be isolated and the physical quantities of interest at the interface: the inter-
nal shear force aT(t), the internal bending moment aM(t), the vertical displacement ay(t), the
rotation aθ(t) and the strain aε(t). For the moment, the axial displacement and axial force are
ignored for the sake of simplicity: in their absence, the strain aε(t) (measured off the neutral
axis) is proportional to the bending moment aM(t), but much easier to measure. The mentioned
quantities can be used to formulate four different types of boundary conditions,

a.

{
0 = ay(t),

0 = aθ(t),
b.

{
0 = ay(t),

0 = aε(t),
c.

{
0 = aT(t),

0 = aθ(t),
d.

{
0 = aT(t),

0 = aε(t),
(19)

where the strain is used as a substitute for the internal bending moment. Equations 19 define
four kinds of nodal virtual supports that can be applied to isolate the substructure, see Figure 2.

If axial displacement and axial force are to be considered, the strain is no longer a direct
substitute for the internal bending moment. In such a case, two strain sensors can be placed on
the opposite faces of the beam in the same distance from its neutral axis: the axial stress and the
bending moment will be proportional to the sum and to the difference of their measurements.
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3.4 Isolation in frequency domain

A frequency-domain formulation is proposed to decrease the computational effort. The
frequency-domain counterparts of Eqs. 16 have the form of the following matrix equations:

a(ω) = aL(ω) +Bap(ω)p(ω), (20a)

u(ω) = uL(ω) +Bup(ω)p(ω). (20b)

In a properly isolated substructure, the response of the interface sensors vanish, a(ω) = 0, thus

Bap(ω)p(ω) = −aL(ω), (21)

u(ω) = uL(ω)−Bup(ω) [Bap(ω)]+ aL(ω). (22)

Equations 21 and 22 are frequency-domain counterparts of the time-domain Eqs. 17 and 18.
The most important differences between the two formulations can be summarized as follows:

1. Equation 21 is a separate matrix equation for each frequency line ω, and so it might be
solved only a limited number of times. The time-domain Eq. 17 is a single system of
Volterra integral equations that needs to be solved once and for all.

2. Equation 21 is of a significantly smaller size than the discretized version of Eq. 17. The
former system has the dimensions of number of interface sensors× number of constrain-
ing excitations, while in the latter system both dimensions are Nt times larger.

3. The time-domain system is extremely ill-conditioned. The frequency-domain system is
well-conditioned for most of ω, provided the constraining excitations are properly placed.

4. The time-domain system is constructed using directly measured discrete time-domain re-
sponses, while the frequency-domain system needs an initial pre-processing of the mea-
surement data (windowing, averaging, discrete Fourier transform, etc.).

3.5 Online isolation

Above, zero initial conditions are assumed, which excludes online isolation in structures
under operational loads. Still, online isolation is possible, and the assumption of zero initial
conditions can be dropped. It affect the computed response of the isolated substructure:

• The nonzero initial conditions of the DOFs internal to the substructure result in a free
response component in the computed response of the isolated substructure.

• The nonzero initial conditions of the interface DOFs can result in an artificial constant
bias or a linear trend appearing in the computed response of the isolated substructure. For
example, if accelerometers are used on the interface and strain sensors inside the sub-
structure, a linear trend can occur; with a velocity sensor on the interface, a constant bias
can appear in the computed internal strain response, etc. Such a response can be still used
with many typical SHM methods, such as those based on the local natural frequencies, as
they can be directly extracted from the computed response.

11
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4. APPLICATION OF THE METHOD

4.1 Excitations

The constraining excitations can be of any type, but their character and placement influence
the conditioning of Eq. 18, and thus the computed response. They should provide full dynamic
information about the interface. The following hints can be considered:

1. In order to ensure a high signal-to-noise ratio, the constraining excitations should be
placed near the interface rather than far away from it.

2. The constraining excitations should be applied in different points and in various direc-
tions. In this way, there are more chances that the constraining responses are independent.

3. The constraining excitations should not be very soft or too hard. A soft excitation may
excite only low frequencies, while a hard excitation may result in only high-frequency
response. In both cases, information in a certain frequency range would be lost.

4.2 Identification at the substructural level

Equations 18 and 22 yield the response of the isolated substructure to the basic excitation.
The isolated substructure has the same physical parameters as the actual substructure, but con-
stitutes a (virtual) system that is independent from the outside structure and which has its own
characteristics that can be found by investigation of the constructed response and the basic ex-
citation. Local damage identification can be then performed by any of the standard methods
that have been originally aimed at global identification. In the experimental examples below,
the substructure is identified by updating selected parameters of its local FE model.

In time-domain applications, local damage of the substructure is identified via a comparison
of the discrete response u of the isolated substructure with the response uFE(µ) that is computed
using its FE model and which depends on the vector µ of unknown structural parameters. The
vector µ is treated as an optimization variable, and the damage is identified by minimizing

F (µ) :=
∥u− uFE(µ)∥2

∥u∥2
. (23)

In frequency-domain application, if the basic excitation is a short quasi-impulsive load, then
the constructed response is a free response of the isolated substructure. Its local natural frequen-
cies ωi and mode shapes ϕi can be identified e.g. by the Eigensystem Realization Algorithm
(ERA). A local damage is then identified by minimizing the following discrepancy between the
identified modes with the modes computed using a local FE model:

F (µ) :=
∑
i

∣∣∣∣ωi − ωFE
i (µ)

ωi

∣∣∣∣2 + κ
∑
i

∣∣1−MAC
(
ϕi,ϕ

FE
i (µ)

)∣∣2, (24)

where ωFE
i (µ) and ϕFE

i (µ) are respectively the ith natural frequency and mode shape of the
numerical model of the isolated substructure, and κ is a weighting factor of the mode shape
errors that are computed using the Modal Assurance Criterion (MAC).

12
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Figure 3. The setup

5. EXPERIMENTAL EXAMPLE

In the experimental example, time-domain and frequency-domain isolation is used to con-
struct the time-domain responses of the isolated substructure to a windowed sine pulse or to a
modal hammer excitation, respectively. Then a local damage is identified by Eqs. 23 and 24.
Two modifications of the global structure are used to test the robustness of the isolation with
respect to unknown modifications of the outside structure.

5.1 Experimental setup

The specimen, an aluminum cantilever beam, see Figure 3, has the length of 136.15 cm and
a cross-section of 2.7 cm × 0.31 cm. The fixed end is clamped to a stable frame. Young’s
modulus is 70 GPa, and the density is 2700 kg/m3. Its upper part (of length 79.4 cm) is the
substructure to be identified. It is damaged by cutting even notches near the fixed end on the
length of 10.2 cm, which decreases the stiffness of the damaged segment to 42% of its original
stiffness and leaves the mass nearly unchanged, see Figure 4 (left). Three different global
structures that share the same substructure are used to verify the robustness of the isolation with
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Figure 4. (left) The to-be-identified damage of a section of the beam (stiffness decreased to 42%,
mass unchanged); (right) The basic excitation f1 for time-domain identification: a windowed

sine pulse sin 60πt applied using the piezo-actuator (APA)

Table 2. The three global structures with the same substructure

symbol outside structure

b1 original beam
b2 original beam with an additional unknown mass
b3 original beam with a “sponge support”

respect to unknown modifications of the outside structure. Based on the same beam, the outside
structure is modified by fixing an unknown additional mass or by mounting a “sponge support”
in place of the free end, see Table 2. Two kinds of the basic excitation are separately applied to
be used with different isolation methods:

1. For time-domain isolation, a windowed sine pulse sin(60πt) is applied using an Amplified
Piezo Actuator (APA), see Figure 4 (right). The APA is fixed to the inner substructure in
such a way that it can be assumed to apply a pure moment load.

2. For frequency-domain isolation, the APA is not mounted and an impact by a simple unin-
strumented hammer is used instead in the role of the basic excitation.

Three piezoelectric patches are glued to the beam to measure the strain x1, x2 and x3, and the
transverse interface velocity x4 is measured using a laser vibrometer, see Figure 3. Raw voltage
readings are used in computations in order to avoid unnecessary scaling of the measurement
noise. To reduce the measurement noise, each excitation is repeated 4 to 5 times and the aver-
aged responses are used for identification. The sampling frequency is 10 kHz. The sampling
time is 0.4 s (4000 time steps) for the time-domain isolation and 4 s (40000 time steps) for the
frequency-domain isolation.
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Figure 5. Substructure isolation with a single virtual pinned support in the interface node (free
support in the rotational DOF, fixed support in the transverse DOF, negligible axial distortions)

A single virtual pinned support is used to isolate the substructure in the interface node, see
Figure 5. As axial distortions are negligible, it is implemented by the two interface sensors:
the strain sensor x3 plays the role of the free support in the rotational DOF and constrains the
bending moment, while the velocity sensor x4 plays the role of the fixed support and constrains
the transverse displacement. The two other strain sensors (x1 and x2) are placed in the inner
substructure and used for damage identification.

Two virtual supports are used, and two constraining excitations are thus required. They are
applied at two points of the outside structure and denoted by f2 and f3, see Figure 3. A simple
uninstrumented hammer is used to apply simple transverse impacts. In order to ensure that the
corresponding responses are independent, f2 and f3 are placed far from each other.

The substructure is divided into five segments, see Figure 5. The damage is modeled by de-
creasing the stiffnesses of the segments and represented by the vector of their stiffness reduction
ratios µ = {µ1, µ2, . . . , µ5}. In experiment, only the second segment is actually damaged,

µactual := [1.00, 0.42, 1.00, 1.00, 1.00]T . (25)

An updated FE model of the undamaged isolated substructure is available. The three global
structures are not modeled parametrically.

5.2 Isolation and identification in time domain

The APA is used to apply the basic excitation f1 depicted in Figure 4 (right). First, the
responses of the four sensors x1 to x4 are measured in three global structures b1 to b3. Then,
the responses to the constraining excitations f2 and f3 are measured. Finally, the substructure is
isolated by Eq. 18. The process involves the responses to the basic and constraining excitations,
which can be measured in any of the three global structures b1, b2 or b3. Figure 6 (top left)
compares the constructed responses x1 and x2 of the isolated substructure to the responses
of the undamaged substructure as simulated using its FE model. The constructed responses
are visually indistinguishable, which is consistent with the fact that all three global structures
share the same substructure. The influences of its outside, including the additional mass and
the sponge support, are eliminated. The difference between the constructed and the simulated
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Figure 6. Isolation in time domain. (top left) Constructed responses x1 and x2 of the same
substructure isolated out of the three considered global structures b1, b2 and b3 compared to
the FEM-based responses of the undamaged substructure; (top right) The nine constructed re-
sponses of the isolated substructure; (bottom left) Block Toeplitz structure of the matrix Bap in

structure b1; (bottom right) Actual and identified damage

responses is related to the local damage and can be exploited for its identification. In order to
verify the robustness of the isolation method in a case of a global structure that changes during
the measurements, the responses to the basic and constraining excitations can be measured in
different global structures. There are three structures and nine possible combinations denoted by
“Bi–Cj” (basic excitation in bi, constraining excitation in bj). Figure 6 (top right) plots the nine
responses constructed this way. They match well, which confirms that the constructed response
is not influenced by developing outside modifications, provided the substructure remains the
same. Figure 6 (bottom left) illustrates the block Toeplitz structure of the matrix Bap.

Damage identification in time domain amounts to the minimization of the objective function
Eq. 23 with respect to the five stiffness reduction ratios µ1 to µ5, subject to 0 < µi ≤ 1 for
i = 1, . . . , 5. The identification results are shown in Figure 6 (bottom right) and compared to
the actual values. Both the location and the extent of the damage are identified with a high
accuracy. The damage is identified at the substructural level, that is no FE model of the global
structure is used for this purpose.

16



Jilin Hou, Łukasz Jankowski and Jinping Ou.

0 100 200 300 400 500 600
0

1

2

3

4

5

frequency @HzD

am
pl

itu
de

x1-B1-C1
x2-B1-C1

0 100 200 300 400 500 600
0

1

2

3

4

5

frequency @HzD

am
pl

itu
de

x1-B3-C1
x2-B3-C1

0 100 200 300 400 500 600
0

1

2

3

4

5

frequency @HzD

am
pl

itu
de

x1-B1-C3
x2-B1-C3

0 100 200 300 400 500 600
0

1

2

3

4

5

frequency @HzD

am
pl

itu
de

x1-B3-C3
x2-B3-C3

Figure 7. Isolation in frequency domain. Spectra of the four constructed responses to f1: (top
left) B1–C1; (top right) B3–C1; (bottom left) B1–C3; (bottom right) B3–C3. The vertical

gridlines mark the natural frequencies of the undamaged isolated substructure

5.3 Isolation and identification in frequency domain

For isolation in frequency domain, the beams b1 and b3 are used without the APA. Instead,
the basic excitation by a simple uninstrumented hammer at the same location is used. The
responses of four sensors are measured in the two global structures. The identification is based
on fitting the natural frequencies, and hence a long time interval of 4 s (40 000 time steps) is
used.

The responses to basic and constraining excitations used in the isolation formula Eq. 22
can be measured in different global structures. Two structures are used, and there are four
combinations. The spectra of the constructed responses x1 and x2 are shown in Figure 7. The
vertical gridlines mark the natural frequencies computed using the FE model of the undamaged
structure. They are clearly different than the plot peaks; the differences are due to the damage.
The first seven natural frequencies are obtained by peak-picking (besides the seven pronounced
peaks there are two small spurious peaks at approx. 2 Hz and 375 Hz. They correspond to the
first natural frequency of the global structure and to its first torsional mode. The former is not
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Table 3. Isolation in frequency domain. Natural frequencies of the isolated substructure in Hz

theoretical FEM identified experimentally

no. intact damaged B1–C1 B3–C1 B1–C3 B3–C3

1 17.64 17.47 17.08 17.08 17.69 17.70
2 57.33 52.00 52.14 52.14 52.27 52.27
3 119.15 112.94 112.49 112.52 113.25 111.83
4 203.28 195.65 195.48 195.51 193.27 193.27
5 310.44 290.01 286.27 286.31 289.84 289.84
6 439.89 413.88 414.96 414.97 414.81 414.82
7 592.37 550.98 550.99 550.99 553.04 553.04
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Figure 8. Isolation in frequency domain: (left) Objective functions in the four considered cases.
Only µ2 is assumed to be unknown. The vertical gridline mark the actual damage of 42%;

(right) Actual damage and the results of full identification

fully isolated, while the latter cannot be modeled using a plane beam model employed here),
see Table 3. They are in good agreement with the natural frequencies computed using local FE
model and the actual damage extents. The identified natural frequencies are almost the same in
all four combination cases.

Damage identification is based on updating the local FE model of the substructure to fit its
first seven natural frequencies to the frequencies listed in Table 3. The first summand in Eq. 24
is used as the objective function. First, it is assumed that the location of the damage is known,
so that only µ2 is unknown; Figure 8 (left) plots the four objective functions in dependence
on µ2. All the four minima are located close to the actual value of 42%, which is marked with
the vertical gridline. Then, the full identifications are performed with respect to all five stiffness
reduction ratios. The results are shown in Figure 8 (right). Identification accuracy, even if
slightly lower than in the time-domain analysis, is still very good in terms of localization as
well as quantification of the damage.
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