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Systems of Hamilton-Jacobi Equations in Terms
of Symplectic and Contact Geometry

J. J. Stawianowski

Institute of Fundamental Technological Rescarch, PAS
5B. Pawinskiego str., 02-106 Warsaw, Poland
jslawian@ippt.gov.pl

Abstract. Discussed are some geometric problems concerning systems of
first-order partial differential equations for the one unknown funclion, first of
all systems of Hamillon-Jacobi equations. Lel us remind that the Hamilton-
Jacobi equations are imposed only on the differential of the unknown funclion
but are invarianl under its gauging by an addilive constant. Physically our
discussion is implied by the geometric study of the quantum-classical corre-
spondence in lerms of symplectic and contacl structures. It turns out that
quantun wave funclions, scalar products, projectors and superposilions are
in the classical limit represented by certain classical relationships in symplec-
tic and contact spaces. Those classical concepls are rigorous limits of quan-
tum ones. bul at the same time they have very nice geometric interpretalion,

somehow related to the historical optico-mechanical analogy. As expected, su-
perpositions of continuous families of wave functions are given by structures
related to generalized envelopes, in a sense Lo the TTuygens figures. 'They are
“Stat” operation introduced Lo mechanics by

| [10]. 1t is very interesling that the

analytically described by the
J. L. Synge and W. M. Tulczyjew (8§
composition rule for the two-potnt characteristic function through intermedi-
a classical limil of the Feynmann path integral rule.

alte evenls 18 n a sense

1 Introduction

Let us begin with the concept of a lincar sympplectic space (I, 17). 1t is a linear space 11
endowed with the second-order twice-covariant skew-symmetric and non-degencratle tensor
e TEA T 1T

assume II to be finite-dimensional; for our purposes the passing over to the infinite dimen-

2 11*. To avoid discussion of the sense of term “non-degenerate” we

sion is not very essential, although it brings about some non-trivial problems. Therefore,
analytically we have:

Lo = —Lbas det !I‘a.h] #0 (1)
This implies obviously that the dimension of T is even, dimIl = 2n, n € Z. In

analogy to the diagonalizing bases of symmetric (or complex-Hermitian) metrics, in the
skew-symmetric case we are dealing with the distinguished Darboux bases such thal

il.uh = e T (9)
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where 0, denotes the n x n zero matrix and [, is the n x n identily matrix. The con-
travariant inverse 11 € T AT © I & 11 is analilycally denoted by 1'% where

1—.»_4{'1-\{Ih ‘_)'!Ih [ z, :I

3 s - s . af R . - i
obviously, in Darboux bases the matrix of [I 7 equals the minus of that for [I"as], but
only in those bases,

0, : Iy
b £
% R T e (1)

The Poisson bracket of two (-class functions I, ¢ : 11 is definied as:

ar ac

G2 ST et
] : (_)’E_-" s

where €% are some lincar coordinates on T1.
It is clear that the linear spaces of smooth functions, of analytic lmctions and of

all polynomials on Il (the last two cases are different things), i.e., C™ (11), C* (II),
& Tpoly o {

[1) are Lie algebras under the Poisson brackel, (5).
Obviously, by Lie-algebraic properties we mean the following ones:

e Poisson bracket is bilinear over numbers,

{al'+ 3G 1} = a{F H}+ 3{G, II} (6)
{H,aF + 3G} = o{H, F}+ 3 {II,G} (7)

e [t is skew-symmetric,
{F G (G, F} (8)

e It satisfies (he Jacobi identity,
HrGy HY+{{G,H} , F}+ {{II,F}, G} =0 (9)

everything for any numbers and lunctions in the above identifies.
And finally. in addition to the general Lie-algebraic properties of the Poisson bracket,
let us quote some slightly different one, namely:

'
{F(E o KOG = ) Bl kB0 K7) 1 €Y (10)

where (K4, ..., K}), G are arbitrary functions on IL. F is an arbitrary function on B! and
comma-sign at F', (F;,}, on the right-hand side | denotes the pariial derivative with respect
to the m-th variable of I7.

Globalizing those concepts one obtains a symplectic manifold.

Lel 7 be a differential manifold and ~

-an exterior lwo-lorm on P, ie., a smooth skew-
symmetric twice covariant lensor fields satisfying the following propertics:

o Al any p € P, y,-is non-degenerate, thus

det [A'"i’:zb] A () (11)
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e ~ is closed, therefore,
dy =10, Le., Yape + Voea + Yeap =0 (12)

This means that for any p € P, the tangent space T, P is a linear symplectic space

(1P, vyp) with the symplectic two-form «, and locally

= (Jr_-_-v' [1 -I{ ._‘.'

"T'his means that locally the symplectic manifold may be identified with a linear symplectic
space (TT,T), however without an additional geometric structure in P this identification
is non-canonical . Nevertheless, at any p € P there exists a neighbourhood UV 5 p and
coordinates £€* on U in which « is expressed as in (2) and (1):

0, I a0 Tl T :
Iﬁ-"a _ [ T n [,\{_.n‘, by n .r: “—'U
| fab | ) [ ! ‘,ﬂ 0, J |

So, locally, there exist mappings g : U — 1I such that

The essential condition here is the local flatness, i. e.. the fact that v is closed:
dy =10 (15)

ITaving at disposal a fixed twice covariant and non-degenerate tensor, we can define the
operalions of raising and lowering the tensor indices. However, v is skew-symmetric, so,
unlike the Riemannian case, Lhere are a priori two possible conventions differing in sign.
The difference is trivial, but one must fix one of them. So, we define the lowering of vector
indices as follows:

Mou—ul €l | T,P>X — XmpeTiP (16)
i.e., analytically,

(D), =l ==Tand? . (Xom), =Xy, (17)
and conversely:

o= =T, n =m' = — % (18)

i.c., dilfeo-

anonical transformations are defined as symmetrics of the structure
morphisms ¢ : P — P of PP onto P preserving the two-form +:

?;1“ Y=, (19)

Let us remind that in the pseudo-Riemannian case, when geometry is introduced to a
manifold M by some non-degenerate symmeiric metric tensor g, the isometry group is
always finite-dimensional. The maximal possible dimension equals 1, dim M (dim M + 1).
This is the exceptional case one is faced with in constant-curvature spaces, in particular
in flat pseudo-Euclidean spaces. No differential identity satisfied by the metric tensor
may increase the dimension of the isometry group above the value ; dim M (dim M | 1).
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(13)
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(17)
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Unlike this, in symplectic manifolds the symmetry group is always infinite-dimensional.

This is easily seen when we ask lor infinitesimal symmetries.
We say that a vector field X on P ia a canonical field, or infinitesimal symmetry of
(£, ~) when its local one-parameter group preserves v. This holds when the Lie derivative

of v under X vanishes,
gy =1, (20)
Making use ol the general rule

Lxy=Xidy+d(Xy)=0 (21)

and the symplectic rule (15) we obtain that
e ) (22)
i.e., the covector Reld X oy is closed. In any case this holds of course when it is exact:

X dl’ (23)

The function F is referred to as the Hamiltonian or Hamiltonian generator of the vector
field X. and the latter is often denoted as Xp, thercfore,
ar o aF 9
K= — (24)
Op; Ogt  Og* Ip; '
So, in any case it is seen that the symmetry group of (P, ) is ruled by arbitrary func-
tions. The integral curves of Xp satisfy the Hamilton equalions with F' as a Hamillonian:
dyg® aF dp; ar

= — (25)

dt p; T dl g

2 Special cases of symplectic manifolds and spaces

It is well-known that in the usual treatment of the Hamiltonian formalism one begins with
Lhe configuration space; the even-dimensional phase space il is secondary by-product. Even
if the phasc space is not just derived directly from the configuration space, nevertheless
the configuration-type description is alweys desirable.

The first special case is just algebraic one of the self-dual symplectic manifold. Let V
be an arbitrary linear space of dimension n. lis dual, ebviously of the same dimension
will be denoted V*. Let us take the Carlesian product

L= Vs 1 (26)
This 2n-dimensional linear space carries plenty of intrinsic structures. The first of them

is given by the canonical bilinear form on II:

wilIxIlI— R (27)
defined by the following formula:
wlz,ze) =@ ((qr.p1), (g2, p2)) = {m,2) — p1 (g2) 5 (28)
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various alternative notations are used. This form has nosparticular (a)symmetry and is

evidently degenerate. Its malbrix is given by

“-‘J ”r?
lwap) = ..o - ... |. (29)
Fe 1 DO
But, obviously, its symmetric and skew-symmetric parts are non-degenerate,
A((g,p).(@Q,P) = Q) +(Pq (30)

2 ((g.p) . (@, P)) = (p,@Q)—{(Pq)

[ is the natural symplectic two-form and it is the only structure which survives the
transition from linear spaces to manifolds. It is not the case with the symmetric pseudo-
Fuclidean form A of the neutral signature (n(+),n(-)). This form has no manifold

counterpart. The skew-symmetric form

(w—w’) = Asymw (31)
admits a natural relormulation to the manifold language.

Let us now replace the linear space V by a differential manifold @, the configuration
space of our system. It gives rise to the continuous family of mutually dual linear space
1,Q, T, Q. The first of them is referred to as the space of generalized velocities of g € @,
and the second one is the space of canonical conjugate momenta. Then, one performs the
set-theoretical unios, i.e., tangent and cotangent bundles over Q:

Pr=Tg=| 1.0, P=lfg=|] "0 (32)
qel qei)

Physically they are respectively spaces of Newton-Lagrange slates (position and veloc-
ity) and Hamiltonian stales (position and canonical momentum). The natural projections

onto the configuration space will be denoted respectively by
TR —=Q, 7":T"Q—0; (33)
obviously

0 1,Q) ={qg}, 0" (1,"Q) = {g}. (34)

"The canonical Cartan one-form wg on 1@ is defined by the following prescription:

wy =poT rg,*, (35)

and the symplectic two-form is its exterior differential,
v = dw (36)

Any local coordinates ¢ on @ induce coordinates (¢',v"), (¢*,p:) on TQ and 17Q); for
simplicity we use the same symbol ¢* for ¢}, T'Q, T*@Q, although they are all [unctions on
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different manifolds. The symbols v*, p; are components of vectors v € T,Q. p € 1,7Q) in
coordinates ¢*. 1t is casy to see that

w=pmdq", v=dp; Adg (37)

'he Hamiltonian vector field Xg is given by the previous formula (24) and its integral

curves - by There is no difference in notation and the meaning of symbols in the

cases of linear spaces and manifolds. For any smooth [unction I7 the elements ol the

one-parameler group Xy preserve v, i.e., they are canonical transformations. The main
difference between linear spaces and manifolds is that in general, in a symplectic space
there exist also canonical (ransformations generated by the vector fields X for which the

contraction X |~ is closed,

d(X |y)=0, ie, (X (X ). =90 (38)

Plab I1ha

2 bul not necessarily exact.
Let us now discuss a very important point, namely, the classification of linear subspaces
ol a symplectic space and the resulting clagsification of submanifolds in a symplectic man-
ifold. This is the key to understanding the Muygens principle and other quasiclassical
relationship. The basic concepl is the symplectic orthogonality, i.c., duality, of linear
subspaces of the linear symplectic space (11,17).
Let A C 1l be a linear subspace. lts I'-dual subspace (or I'-orihogonal subspace) A~

consists of vectors which are I'-dual ( 1-orthogonal) to A:
A-={yel:I"(y,-)|A=0}, (39)
i.e., such ones that
U(y,z) =0 forany =z€A. (40)
3 The non-singularity of I' implies that dim At = dim IT — dim A. Therefore, dim A~ = m

when dim A = 2n — .

The crucial point, of classification of A-subspaces is the relationship between A and
.\J_

In Buclidean spaces with non-degenerate positive melrics such a problem does not
exist: the corresponding subspaces A—, A are there complementary. In symplectic spaces

33 all situations are possible. Let us quote the exireme special casoes:

A-CA co-isotropic A
Ac A isotropic A (41)
A= Lagrangian A

Obviously, in the last case dim A = n. Lagrangian subspaces are simultancously minimal
= co-isotropic and maximal isolropic ones.
Lel us introduce the concepl of internal singularity of a subspace A,
K({A):=AnA % (42)

The traditional term “class” is used in the sensge:

CLA = (k,m—k) , k=dimK(A). (13)
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One uses often the following abbreviations:

CLA=TI when k=m , CLA=II when k=0; (144)

they are respectively first-class and second-class constraints.
el us introduee an important concept of the reduced symplectic space. If A C 1l is a
linear subspace, then the underlying linear space is given by

II'(A)=A/K (AN = A/ (;‘\ NnA ) (15)
"The reduced symplectic structure is given by the two-form
~(A) e TI' (A) AN (AT, where, (16)

and wa : A — II'(A) is the canonical projection onto the quotient space. Therefore, v | A

is the pull-back of 4/(A) via ma

(v (A),u A (A), Tam A ma a':j:- . (47)

If CIA = (k, m — k), then obviously

/ k
dim [T (A) —2(::—% ) (48)
If CIA = I, and only then,
dim I’ (A) = 2(n —m). (49)

i.e., there are (n — m) reduced degrees of freedom

[t is clear that the lowest possible co-isotropic dimension and the largest possible

dimIl. Any hyperplane A C 1l, dimA — 2n — 1 is a co-

isolropic dimension equal n =
isotropic subspace. Indeed, dim A+ = 1 and A is odd-dimensional, so certainly A~ C A.
The set of all Lagrangian subspaces will be denoted by A (II). The second-order Pfaff

problem for ' is regular, i.e., every isotropic subspace £ of dimension v < n is contained

in some (v + 1) -dimensional isotropic subspace v+l {he arbitrariness of €1 does not
depend on €Y. Therefore, the knowledge of A (I1) is [ully equivalent to the knowledge of
the family of all isotropic subspace.

Obvicusly, A (11) and the set A (IT) of all v-dimensional isotropic subspaces are dif-
ssmann manifolds D (I1), DY (11) of

ferential manifolds. They are submanifolds of the Gra

all n-dimensional and v-dimensional linear subspaces of II. One can prove that they have

the following dimensions:

dim A (IT) = %u (n+4 1), dim A" (II) = » (2n — v) ]) viv—1). (50)

A (TT) is a very important set. It defines the very symplectic two-form I' up to a multiplier.

Because of this it is a geometric “skeleton” of the symplectic space (11, 1"). For any linear

subspace A C IT let A (A) € A(II) denote the set of Lagrangian subspaces contained in
A. One can show that

A(A)#0, iTCLA =1, (51)

i.e., A(A) is non-empty if and only il A is co-isotropic.
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Let us give an analytic condition for thae class of a linear subspace. Let A be given as

Ai=kerFymiker Fo ... ker Fy,, (52)

where Fi, & II* are linear functions on II defining A (they arc “left-hand sides” of the
linear equations for A). One can show that CLA = (k,mn — &) if and only if:

m — k = Rank [{ I, I }] - (53)
In non-linear description, when A when is given by:
Av=dpell: F.(p)=0, g=1,...,m} (54)

where Ipare arbitrary functions, we have instead the [ollowing “weak equalion” in Lhe
Dirac sense:

m — k= Rank [{ I, I, }HIA. (55)

I'he subspace A= is spanned by the Hamiltonian fields Xg, . And the singularity K (A) =
A M A= is spanned by such combination

(i

Z,\*‘Xh (56)
k=l
that the foolowing holds:
S {FaEaa=0 , Fi e 1% (57)

Therefore, CIA = 1 |, when
LF. Fak =10, (H&)

or al least we are dealing with the weak vanishing when the functions I, are non-linear.

3 Nonlinear description.

Let us globalize those stalements to the general symplectic manilolds (P,+). Let M be
a (2n — m)-dimensional constraints submanifold. Obviously, for any p € P, (I,F,v,) is a
linear symplectic space and the above conceptls may be directly applicable (o the linear
subspaces T,M C T, P. The problem is however if for different points p € M the resulting
structures arc smoothly compatible. Let us consider the following singular distribution on
M:

M3p— K,(M)="T,MnT,M~. (59)

One can show Lthal the distribution (59) is integrable . This follows [rom the Frobenius
theorem and the fact that v is closed , dv — 0. More precisely, one obtains the integrability
of (59) from the applying dv to the triple of vector fields &y, ko, uw on M, where ki, ks are
singular, i.e., tangent to (59) and w is an arbitrary vectorfield on M. The closedness of 5
implies that the Lie bracket [k, ko] also is singular for constraints M.

Let. K(M) be the integral foliation of (59). Locally there exist reduced symplectic

manifolds in “not too large” open subsets of M. But globally it need not be so. However,

for simplicity let us assume that the fibres of K (M) are closed submanifolds of M and
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that the global assumptions concerning the existence of reduction are satisfied. Then,
globalizing the algebraic process we obtain the reduced phase space

(P (M),y (M) = (M/K (M), (M)) (60)

where « (M) is related to the strong restriction || M by the quotient projection = : M —
M/K (M),
Y|M =+ (M) . (61)

Obviously, dim I” (M) = 2 (n i}i] and the maximal dimension 2(n — m) is attained

when CLM = I. Analytlically the reduction process is deseribed as lollows: We take some
(....q¢" .. 5 ...Pi,.-.) and describe M in terms of

coordinates z% a=1,....2nin M, c.g

some (2n —m) parameters u#, 2% = 2%(...,u*,...). Then

828 Dz2P ;
(YN M) (1) = Yab (2() o s (62)
WELE -‘-( (_“' J'uJ.r Tab L=\t ] ] Sul ut’ ! J

This is the restriction of v to M < P. And now let us take some coordinates wh, A =
1,...,2(n — ™%} on P’ (M). The natural projection m : M — M/K(M) is analytically

expressed as functions of u#, w? (..

. i ' (ARl ! *
riven by w? Souf ). Then + are given by:
£ : ) TAB )

A dw?

- —_—, (63)
dub ¥ :

(¥[IM) (u),,,, = Vg (wuw))

Let us go back for a moment to the symplectic space (ILT) = (V x V*,1') given in (30)

(31). Let S be a quadratic form on V and let us consider a linear subspace mg C V' x V7
given by

my = {(q,dSy) :q eV} CV x V", (64)

And now let us take a linearly independent system of m linear functions Fi.. k =1,..., m on

(V x V) =~ V*Ex V ~ V x V* Lel m, to be a subsct of M = ker Fy xker Fi x - - - x ker I,.

Therefore, S satisfies a system of linear Hamilton-Jacobi equations,

I (q,dSy) = 0. (65)
which obviously is consistent only il
(Fo,F3}=0 , ab=1,....m (66)

This is an academic introduction. More seriously, let us consider a cotangent bundle
(T*Q, dwg), the potential-type Lagrange manifold

mg = {dS; :qge Q} T T7Q. (67)
and let. mg o be placed on constraints M given by
M =dz2cT) : Fp(g)=0; k=1, m} (68)

so that
mg C M. (69)

This leads to the system ol non-linear Hamilton-Jacobi equations:

Fie (dS,) = 0. (70)
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which is compatible only if (IM = [, i.e.,
B HM =0, ab=1,..:m: (71)
This system of weak conditions may be allernatively expressed as
. " ok " il
{‘La-- {':}} C. n{'al'lﬂ'- [1_"']
where (%, are sufficient ly smooth [unctions.
Therefore, roughly speaking, the system of Hamilton-Jacobi equations is geometrically
interpreted by the fact (hat some Lagrange manifold my is a subsel of some coisolropic
constraints M. The fact that CLM — I corresponds to the compatibility conditions (71); as

usual they are differential with respect to the left-hand sides of constraints equalions. This
is both geometrically intercsting in itsclf, and also eXPress

28 some interesting quantum-

quasiclassical relationships and the optical-mechanical analogy.

Let us begin as usual with the algebraic-symplectic version, where eve vthing is clear;
later on we turn to the manifold language. So, we go back to the symplectic space (11, 1)
and to the manifolds of Lagrangian lincar subspaces A () where A is a I- class linear
subspace of I1.

There exists the natural mapping

Exn = A(ID) — A(A) (73)
Ei(g) = ENMA+A-

As scen, its value on € is €N A extended by A, One can easily show that Fu(£) is a
Lagrangian subspace.

I'his canonical operation, projecting, roughly speaking the set of Lagrangian subspaces
A (ID) onto the set of solutions of the A-Hamilton-Jacobi equation, has a few nice proper-

ties:

s It is a retraction of A (I1) onto A (A):

Ly | M (A) Fdpay (74)
In particular, it is idempolent:
Ep o Ky = Ey (75)

e I A, ® are Poisson-compatible, i.c., CIL(A M @) = ], then:
EpnoFBgs = Epo Ep = Exne (76)

o If A, ¢ are co-isotropic and Ej, Ly commute, then also A M@ is a co-isotropic

subspace (A, ® are compalible, the Poisson brackets of their equations vanish, at
least weakly in nonlinear description) and

Earg = Ey 0o By = Ego K A (77)

e ‘I'he assignment A — Ky is symplectically covariant, i.e., for any f € Sp(IL,I), i.e.,

[or any linear canonical transformation, we have:
g = - Pt
E,r.;_.\;. =l"o iy ok (T8)

where the mapping I : A (1W — A(11) is simply induced by [,



Lel us illustrate this by a suggestive didactic example.

Let (g1, .- qn;pt,- .., p") be a symplectic basis in IT and (¢4, ....q% p1,---,Pn) beits
dual in 1%, i.e., the induced system of symplectic coordinates in II.
Lel us take:
Al ) | =
A = kerg (79)
i.c., the linear shell of:
[ y— G i) (80)
and lake also the following Lagrange subsel
£ =kerp; N...kerpy, (81)
i.e., linear shell of (g,...,qg,). So, roughly speaking, A is given fixation of Lhe coordinate
gt = 0, and £ is given by fixation of all values ol canonical momentum p; =0,1=1,..., n

Then one can show that

ENA =kerg' Nkerp; N...Nkerpy, (82)
thus, it is a linear span qa, ..., (n, SO that
Er(é)=¢NA+A- = Rp‘ S Rge & ... O Rap, (83)
‘This meants that (83) is a linear span of p', gu, . .., @y, and its equations have the form:
g =0, pp=0,...,pn=0. (84)

Therefore, if ¢' is fixed by constraints, then p; becomes arbitrary, completely diffused
on I (£), and all remaining p,-s with a # 1 are non-affected. Fixing q' we make p
completely non-determined. This is an obvious allusion to the Heisenberg uncertainly

relations. This very special example, although very simple, contains the very essence of

the construction and of the quasi-classical unceriainty. Being given by n equation with
(weakly) vanishing left-hand sides of Poisson brackets, Lagrangian manifolds are just quasi-
classical pure states in the sense of optico-mechanical analogy and the quantum-classical

corresp ondence.

Let us consider the general situation of the symplectic phase manifold (/77), e.g.,
(1T*Q, dw) and M being an arbitrary I-class submanifold. And A(IT), A(A) are replaced by
the sets (infinite-dimensional) of all possible Lagrange manifolds and all possible Lagrange
manifolds placed on the first-class constraints, A(P), A(M) .

The generic situation is now that either m € A (P) is disjoint with M or intersects it

in a clean way, like linear subspaces do:

pemnM: T,(mnM)="TmnIM (85)
T'his gives rise to the mapping
Ay A(P)— A(M) (86)
where
Av(m)= | K,(M), (87)

peEm M
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where K, (M) is the singular fiber of K (M) through the point p € m N M. In a generic
situation the dimensions agree:
dim (m N M) + dim Kyemnar (M) = 0= = dim P. (88)

bl | —

or Apyp(m) — D il m, M are digjoint. Let us remind that when we deal with lincar
subspaces, they are never disjoint and always intersect in a “clean” way. Reasoning in
a quasiclassical /quantum way we can say that il m 1 M = @, this may be interpreted in
such a way that the quasi-classical wave function corresponding to Ayy (m) vanishes., And
Lhis just corresponds to the fact thal the phase, informaltion about which is contained in
Apr (m) is not well-defined at all.

We have mentioned above about the clean intersections similar Lo those for linear
subspaces. Let us remind however some possible exceptional situations, e.g., when M is
a value-surface of an ergodic Hamiltonian. Then the fibres of p — K,(M) are dense in
M. Therefore, also Ay (m) is non-closed, dense in a subsel of M ol the same like M
dimension. We have no feeling what does it meant on the quasi-classical quantum stales
which are represented by immersed Lagrange manifolds, not just the submanifold.

4 The two-point characteristic function, Stat -
operation

The structure-of quasiclassical projectors has to do with both quantum/quasiclassical
projectors but also with the theory of Hamilton-Jacobi equations, their systems and the
initial value problems.

Take instead ) the space-time manifold, e.g., either Galilean or Minkowskian one with

space-time coordinales 2™ so that,

E#=T64") ; o ¥ =["")= (89)
Galilei Minkowski
We assume the space-time dimension:
dimX =n+1 (90)

not necessarily n — 3, unless otherwise clearly stated. Now, take the 2{n + 1)-dimensional
“phasc over-space” and [ix the “energy hypersurface” M C T7X with equations, respec-

tively:

F=p+H({tq,ps) =0 (91)
Galilei, p; - t- conjugate momentum, or

. ko - . m '
b= my“ (P —ed) bpy— e Ay} — = 0

(92)
|2,

when we use the parametrization by the proper time. The idea of M is that there are
no holonomic z#- constraints; equations (91)(92) depend explicitly on p,. Let us repeal,
ihey are “energy equations” in the language of J. L. Synge [10]. A, is the clectromagnetic

potential co-vector,



The fibres of the singular foliation K (M) are characteristic, admissible phase-space
motions. Their X- projection 7 (K(M)) are dynamically admissible world-lines. The
the form: - parametrization

corresponding Hamillon-Jacobi equations have, obviously,

e
b'(....r“..“;....fl' “..) =i (93)
! ok, )

) s e X} (91)

is foliated by K (M,S8) ¢ K (M) - the n - parameter pencil of classical trajectories. It is
the optico-mechanical analogy of quantum state, not a single trajectory, but, like Synge

with the proper time

a

grange manifold

For any solution S the Lag

used to call it: the coherent family of classical solutions [10].
Let us now take any fiber T,° X and Aps- project it to A (M) (we can do it, 1, X is a
Lagrangian manifold):

) (95)

my o= Ay (1%
T'his is a Lagrange manifold, almost all over a cross-section over an (n + 1)-dimensional
submanifold of X. This “almost all” excludes the point & € X. Nevertheless, outside this
dangerous region we have the potential representation:

Pl Tt v s )
m,, = {a’.a (), y e X i (96)
The quantity ¢ : X x X — R (or rather defined over some (n + 1)- dimensional region

of X) is just the “two-point characteristic function of M (of the homogeneous dynamics).

Analytically, m, N T X has equations:

do (x.y)

By (97)
7 dyH
The quantity o,0r, to be more precise opr. may be analytically expressed as:
on lz,y) = / W= / pudz’, (98)
! Jl’,l | )
where [(x, y) denotes a characteristic trajectory from K (M) joining the 7* “Lxy, 71 (y).

.l us remind that if .y are sufficiently close to each other (and causally related), there

exists exactly one [(z,y). 1f it does not exist, g, is not defined, i.e., the corresponding qua-

siclassical amplitude, the phase of which is ¢, does vanish. I at “large separation” there
are a few ones, then o, is multivalued and the corresponding quasiclassical propagator is
a sum of a few terms.

As mentioned o (, ) is the Hamilton-Jacobi propagator al 2 € X. Let X € X be a
Cauchy hypersurface for initial data, and let [ : 3 — R be some Cauchy data for the

Hamilton-Jacobi equation. Then the stationary values

flg) + oar (g, ), (99)

represent the solution of the f-Cauchy problem:

98
F(”J%”.. : m)—u F|© = . (100)
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We must explain the meaning of the Synge-'Iilezyjew Stat-symbol [8] [10]. For sim-

plicity, let us assume that the function ¥ : ) — R on a differential manifold Q has exactly
one stationary point @ € (), where its differential does vanish. The quantity ¥(a) is just
identified with StatW¥

Stat¥ ;= {¥(a): d¥,=10}. (101)
If there is a discrete family of stationary points, then Stat¥ is the set of values at them.
If they form a connected continuum Y < @, then it lollows that W|Y = const and this

constani is just Stat¥. And obviously all situations between. One can show that if

Aprm, = my, (102)
then
S'(x) = Staty (S (y) + on (y,2)) . (103)

The idempotence property of Ay implies that
an (x,y) = Stat; (oar (2, 2) +aar (2.1)) . (104)

And more generally, we have the "Feynmann rule™:

op(z,y) =Staty,, oy (op(e,2) Foar(z, )+t om (2ey) - (105)

Let us consider as an example a [ree Galilean particle:

: TH Lo i 7 i -
op (e,y)=5(a,z:q,t) = 571 — 219 (=) (o =@}, (106)
% e B t i

The corresponding unimodular factor for the Schridinger propagation for

f {—I-}\Ij - —h':_) FARY! 107
li— = AW (107)
ol 2 R
i.e
exp [ o (@, 1 'I) — exp (r A gii (¢ —a") (¢ —a’) (108)
X 7af (T, 2ep | 2 —if i — :
p( ;om (@,y) oltpn pwld —a) e —=) (108)

agrees with that for rigorous quantum formula.
I'he Tamily:
15(a,0;4,¢) a0 € Q} (109)

is a complete integral of free Hamilton-Jacobi equation

(:““r v 1 Il {)..L)‘ Ir_}f‘.!r e

i T i s S (110)
a " am? Aqk agt ¢
As usual, the corresponding Van Vleck determinant
oS ;
det | (L11)
dgtdlal

gives the quasiclassical probability term at exp (Fonr (2,4)):

| H2¢ ] . i ; s
\I,-{-[m { o 1.;_--;;}'1( - i (¢" — a*) (g rr’_‘]) (112)

dytdal | 2h (1 —

183



o
rigorous quantuim 5 ( 01

After modifying the constant normalization term, it becowfes just Lhe

Schrodinger propagator:
ger propag Hu
- m \3 1 771 —_— i
K {T~‘E) T (m) exp (.F!‘ r)‘r,qk'.r.‘ik‘ii) : IJ-J-‘;] The symple
folds on wh

= ¢' —a'. Such a compatibility between classical, quasiclassical and Lagrang

oy

where 7 =t — 2,
purcly quantum rules does appear quite often in high-symmetry problems, like geodetic,
oscillatory and Columb motion. In any case, it is quile interesting that the rigorous
quantum formula may be found quite often within the framework of the purely classical

problem is
more impor
is the way «

' concepts. In non-

It is interesting that the classical, but nevertheless the rigorous quantum formulas

(112) (113) were oblained with the help of zeroth/first order WKDB approximation. The
density expression, i.e., the Van Vleck determinant was obtained from the zeroth-order

dimensiona

phase approximation. Therefore, in the sense of optico-mechanical analogy it corresponds The 1
z : \ ; . o 1he last exg

to something like Fresnel approximation. :
' . 3 po i canonical i1
Let us also mention that in the homogeneous, e.g., relalivistic mechanics the proper

description of quasi-classical phenomena will be based on the tensor expression

I'he corr

V= Uﬂ{f.i.'[] Y T . dr™ & f.Il.r_{.]_.l. A Ada®. { 1 |~1-,'
y . . P : ; . I . Realistic tra
Contracting this with i{a) = Hd: iarcia i 39‘];:' we obtain the differential form e
: a a according 1
j(t(a)) = DRz Ada' A A p AL da™ (115)
Obviously D* is the minor of the matrix |52 ”' } obtained by the removing of the u-th Obviously.
b | O 1
structure in

column. The symbol g used in the exterior product means that the differential form da*

is rejected. The structure of Van Vlect objects implies that bhe pl'n‘w:;;
additive

agt qg R curvature tw

J T (116) ature

ArH

It is clear thal any singular vector field k of the dynamical constratsts-M C 17X is
tangent to submanifolds m, = g~ '(a), and because of this it induces on them the vector Tha lseal

fields k(a). Those, projected onto X give rise to the vector ficlds v(a). One can easily

show that S 1
sl o .r'_}{’:-“ Bl 1563 =0, (117) s0 locally
S akdal e R i
where v# arc components of the vector feld v.
Obviously, according to the standard rule,
Integra
Lriard (ta) = k(a) | dj (ta) +d(k(a) | (). (118) denoted by
Any c
But according to (117) we have then singular
Li(a)i (ta) = 0, (119)
i.e., j(lyy is obtained by the pull-back of a fixed differential form on the Lagrangian sub- Latais ta

manifold mp7(m,). This is, roughly speaking, the conservation of probability.
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Lagrangian sub-

5 Contact spaces and their geometric meaning.
Huygens superpositions and envelopes

The symplectic Pfaff problem is quadratic: it demands us to find subspaces and submani-
folds on which the two-form v (or I') does vanish. Its solution is A(P) or A(II), the set of
Lagrange manifold and of their submanifold. However, working with the quadratic Plaff

problem is inconvenient, it is much more casy to deal with the linear one. And what is

more important, there are certain quasiclassical structures but one: superposition. What
is the way out? To increase the dimension.

[n non-conservative, time-dependent amilton mechanies one mtroduces the odd-
dimensional evolution space parametrized by the variables (t,q":pi). Then we put:

Qy = pidq' — H (L,q,p)dt = PdQ" — dz. (120)
T'he last expression is fundamental for the traditional way of introducing and discussing
canonical transformations.

The corresponding singular two-form is given by

Ny =dfly = dp; Adg' — dH »odt (L2}

istic trajectories are then integral eurves of the singular vector field of I'y7, normalized
according to:
d a9 aH 8

Xp= 4 —-" —— -
H= B ap; dg' gt Op;

(122)

Obviously, this is a contact space in the sense of (120). But strictly speaking, the contact
structure in a manifold €7 (contact manifold) is given when ' is a principal fiber bundle over

the phase space (symplectic manifold (P,+)) with the one-dimensional structure aroup,

(1), and with the connection one-form € for which the

additive B or multiplicative {
curvature two-form I' is a pull-back of v under the projection w: €' — P,

["=d{d = 5% e, (123)
The local description is given by
Q= pidg* — dz (124)

so locally just like in (120), and the principal vector field is given by:

a e
k -—. (125)
oz '
Integral surfaces of 2 are horizontal or Legendre submanifolds of C. Their set will be
denoted by H (7). For any me A(P), 7! (m) C ' is foliated by its horizontal lift.
Any constraints M C P give rise to the contact space constraints 7! ( M). Their
singular foliation is then lifted to

Y(M) = hor liftK (M) (126)

Let us take two Lagrange manifolds My, My € H(C). We assume for a moment that
My, My project onto my, my interesting along a single point or along some connected and

185



simply-connected region in P. Then there is exactly one element ¢ of the structure group,
such that mj,mo € A(p). Then we tell that the scalar product [, M| is given by:

(90t |9, ] = ¢ (127)

And more generally we say that the Huygens scalar product or vertical distance of

Wiy, My € H(C) is defined as the subset |9, ‘TTTZ] of the structure group such that My M
g9 # 0, ie., is non-cmpty. If |2 |Mz] = @, then we say that My , My are orthogonal.

Then their projections my, my C P are disjoint, my Nmg = 0.
Special contact transformations are defined as symmetries ol the contact space, i.e.,
such one-to-one mappings ¢ : €' — C which preserve (1,

@ =0 (128)

Then automatically everything is conserved, e.g., the singular fibers and the action of

structure group.
Moreover, for any special contact transformation ¢ : " — €' there exists exactly one

canonical mapping @l” — P of P onto itselfl such that @ om = 7o, where, let us remind,

- (129)

One can easily show that the special contact transformations are “unitary” in the sense
of preserving the above-introduced “scalar product”,

[0 || = [0 [90,] (130)
Let us consider the potential Legendre manifolds:

Mg = {(dS,,S(g)):q€Q} CT*Q x R. (131)
Then one can easily show that

[, |Ms,] = Stat (Sz — S1) (132)

One can show, using the WKB-method that it is not the formal analogy but just the
classical limit of the phase of the scalar product. Namely, if we take the wave functions
on ¢,

[

Wy = \J’—)] exp (%‘ﬂ) , Uy = \J[)_g exp ([’i‘a_:) (133)

and their scalar product

(U W) = / U (g) Walg)dyg = vV Dexp (}—;) " (134)
: {
then in the limit A — 0, the method of stationary phase tells us that
w = Stat (S» — 51) (135)

just like in (132). Therefore, the vertical distance between Mg, and Mg, really tells us
what is the quasiclassical phase of the scalar product. Nevertheless, the expression (135)
is just based on the contact geometry, without any appealing to this limil transition. If
the projections my, my of My, My to (P,v) intersect along some connected submanifold
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my M mg, then the vertical distance between 9My, My is nevertheless unique. If my M mo
consists of a few connected components, then [Ny |[M] is a subset of the structure group
and the classical scalar product is the sum of a few expressions (135). Il my Nmy = 0,
then [90;[M3] — 0 and this corresponds just to orthogonality in the classical limit.

Let us now introduce the concept of superposition of Legendre manifolds, to be more
precise, of their continuous family. I turns out that the concept is strictly related to
the Huygens envelope prescription, as it should be expected. Let us begin with taking a
— C". We say that its determinant set. or the characteristic sel

differential submanifold N

Y(N) is the subset which consisis of such points z € N thal

Q.| TN =0, (136)

i.e., €1, vanishes on the tan genl spaces at z.
Take a family of Legendre subsets:

(M, :a€ A} CH(O) (137)
The superposition of M,-s denoted by

m= E M, (138)

&

is the maximal element of H (C') contained in the characteristic set of the union of M ,-s,

3 U M, (139)
acA

ixamples make this clear:

Example 1)
In €' =170} x B take a family of Legendre manifolds with definite positions,

M, = (17Q,0) . (140)
And take Lhe potential Legendre manifold:
Mg = {(dS;.5(q)) : g€ Q}. (141)
Obviously, it has equations:
a8 o P (149)
¥ = - b= . e B BT (1142)
k g : \&
Then
(143)
where [1] M denotes the raising of M by ¢ in the z- direction.
Example 2)
In ' =77¢) x R take the [amily of Legendre manifolds:
Mo = Mg(.a) = (dS(-,a)y, S (g,0a)) : g € Q}; (144)
where
S:0xA—-R (145)



is a differentiable function and A is a parameter set. Take a coefficent function f: A — R

and assume:

El [f (a)] DM, = {(dS,, S (q)) : g € Q} (146)
Then:
S(g) = Sta;c (S (g,a)+ f(a)) (147)
ac s

S

This is a generic situation. What it means geometrically
Take projections of M-s onto @ x R:

Es = {(¢.5(¢)): qeQ}c QxR (148)
Ea €50y =1(g,5(g,0)): qeQtC QxR

Therefore, €5, the diagram of S, is the usual envelope of the f(a)- moved in the z -
direction £,-s, i.e., the diagrams of §(-,a) + f(a).

This is the generic, regular situation. In the previous example we were dealing with
the singular situation where the graph of § was the “envelope” of the n- parameter family
of the null-dimensional manifolds (g, S(q)) in @ x R. Nevertheless, in the phase-space
language that situation was just as regular as the previous one.

Example 3)

Now lel @ be an n- dimensional linear space V, Therefore 17 and C become respec-
tively Vx V= and V x V* x R (or V x V* x U(1)). Take the Legendre manifolds of the

fixed position and momenta:
Mz] = {(z,p,0): pe V*} , Mp| = {(z,p,(p.x)): x €V} (119)
Then we have:

Mpl= E [(p.e))Mz] , Mz = E1 [— {p,z)] M |p] (150)
pe )

|
rel
and for any function S: V — R,

My = B [S@)]Mia] = B [,ﬁé":p)J M [p)]. (151)
TEVY 3 2 |

peV

where the following Fourier- envelope relations hold:
S[p] = Stalgi..‘ﬁ«.‘(;z-} —{p,x)), Slz]= Stfa_t (Sn:p} + {p, ;r'}) (152)
®E ) pEVF N g
Let F': H(C) —+ H(C) -be a mapping of the set, of Legendre transformations induced
by STC f: ¢ C. It is "envelope-linear” (Huygens-linear):

FE [ta] My = E [ta] £ (153)

It is also "envelope-unitary”

[FON || = [0t 901, (154)

Now, we shall lift the operation Ay @ A(F) — A(M) to some operalion in the contact

space

Lar 0 H(C) — Hu(C). (155)
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Har(C)- is the family of Legendre submanifolds on 7= (M). This o yeration,
At : 4 ) I :

as : H{C) — Hy{C), CLM =1 (156)
m- projects onto Agr : A(P) » A(M)
e = A il (157)
where 11 : H(C') — A(P) is the natural 7 - projection. And:
MAx~H (M) =N (ILyM) . (158)

Obviously, Ly (M) is a one of horizontal lifts of Apr(m) , m = m(9M), such one which has
a non-trivial intersection with 907,
Let us quote the properties of Ty

L. Retraction/projection:

Hprollyy =Ty (159)
2. If M, N - compatible co-isotropic (T-class), then:
Hppolly =Ty oMy = Mygen (160)
3 If
Iar o My = iy oIy, (161)
then N, M - compatible and the last line equals 1Tz

4. If F- a mapping of H(C') induced by the special contact transformation f, then
g :

Mgy =Follpyro (162)
5. Projections are "envelope-linear” (Hughens-linear)
My B [T = B [T, Ty, (163)
ac A i as=A :
If {M,: ae A} C H(C) is such thal the projections m, = w(M,) do foliate (12~)
L Pro} )
(" polarization™). then
M = EA [, | o), (164)

(under certain additional conditions). As m, Mmg = @, this is an orthonormal "basgis” .
Let {9M, : ¢ € Q} be such a basis and let a special conlact transformation /7 of €' be
such that its symplectic projection U o P transforms m,-s 80 that U(m,) intersects other

my - s pointwisely:

U(m,) Nmy — a one-element set. (165)
Then the following holds:
!-"imr; — Lf {.r,r(‘ q) *:JJIQ; I & [,r)}'f_ r‘r} — 'L-T]Rc'," | [.-'me{‘,_ (166)

and for any Lagrange manifold

M= E [S(g)|M, (167)
qeQ) SRRl
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we have:

UM = E [S(]UM, = E [5(q)] M,. (168)
ge@ - K qeEQ ) . '
where
S'(q) = Stat (U (¢.4') + 5 (¢)) )
atat ) 7 ),

These are "ITuygens matrix elements” - the W- type genereting function of U.
Let us now consider a systems of Hamilton-Jacobi equations so, we take constraints

McT*X — l-class submanifold
(co-isotropic of co-dimension m)
Analytical description of M is as [ollows

(170)

M By (2ot
with the co-isotropy property:
{Fa, Fo} | M =, i, {Fo, By} = C5u . (171)

The corresponding compatible system of Hamilton-Jacobi equations has the form

;08 as
ot | ol — 0. = Liirerms (172)
’ ( ' ok’ Az I
This means that Lagrange and Legendre manifolds

. as )
soumfid Qo pae XL o g = S (173)
1, {dS;: z€ X} Pu ah (1rd)

M, :={(dS:, S(x))r € X} 5 pu=5—r2=5(z)
) ! dxh ‘

belong recpectively to M € P, m~Y{(M) c C.
Let us consider the concept of the complete integral. We take an (N — m)- parameter
family ol solutions: —-
o (. cal .., H'V_'”’} (174)

such thal the Legendre manifolds

M, = {(dS(-,a),,S(x,a)): € X} (175)

fit together so that | 9, is an image of a cross-section of C' over M.
acRN-m )
At least locally there are many complete integrals. But a general solution is to depend

on arbitrary functions. But in a sense M, is a "basis”. The general solution is ruled by a

function [ of (N —m) variables:

Sref] = Stet (S (z,a) + [ (a)),
ackN—m
M(f) = E [f(a))MM, (176)
aclgN-—m &t

Roughly speaking, every solution of II-J- equations may be obtained in this way by
"superpositing” elements of a complete integral. One can show that those purely contact-
geometric concepls follow also from h — 0.
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(168)

(169)

nstraints

(170)
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(173)
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(174)
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6 Explanation in terms of WWMYV (Weyl-Wigner-
Moyal-Ville) formalism for quanta

Let us represent the operator Ain the integral form:

(A¥) (q) = ] Alg.d) v (d) dud (177)

[uther on, we introduce the phase space description:

; ; ! L = il L (- o
Algq] = / exp (F—_?-,rr (g — rj')) A (E (¢+7) .p) .- zr.—fii.“ (178)
Alg,p| = / exp (—;p . r'.'rJ A -f)‘ + (: o %1 dntv

Then the multiplication of operators is represented by the Weyl-Wigner-Moyal-Ville
composition of functions A, B:

(A+B)(z) = 22 / exXp ( fl'{ 2— 2.z — 2y ]) A(z) B(za)dp (20 dp(29) (179)
\ \ A ) .
(AWV) (¢) J— -t'.'.\{} ( -Iiij- (g - {}f}) A i (G+ ¢, p‘}) () d.q'dup
' e (2mh)™ i 2 % Sy 4 '

In particular, for the phase-space distributions for pure states we obtain:

g L_ Ll duNoon e e Sl | o
Pl p) = {,2_”_?7. q _Ex.)f_.xp \—Tp) q -+ 9 1T | €y 7 [@E.105

For the diagonal elements of the T - algebraic "hases” describing the states localized in
positions and momenta,

Pax (D) =0 (g— ) |, pgglg.p) =8(p ). (181)

This is the special case of:

i | R 1 : ; d

i g2 (g.p) 0 ((f = Z (1 f{-z]) CXD (ﬁ;? (g — 2 ‘I) { l"i,,'
4 3 bt 5 rT .
P, po [ff-. a2l = (.“ = 2' (D1 + P2 .-') exp (E - '}-}'_’\J 7 (f)

They had their suports on Lagrange submanilolds. It is no longer the case for Lhe
general pure states. Nevertheless, it is still true in the quasi-classical limit. Take

W(g) = \‘ﬁq} exp ( ;'! Sg ]J ; (183)
Then, taking distribution-sense limit, we obtain
G s AeE  wmiin LR T Az -
por (2,8 = limp (D, S| =D (@) §|p1— — | ---6 e ) (184)
Fi—s() ' * g dg™

Similarly, for the classical limit with wave functions
A — \ D [ q] exp ( 5 5 |f\{]r J‘l)
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we obtain in the WKB-limit of the Schitdinger equation g [7] Stawiar

& The Uz
oY _ Hy Surve
ot Sydney-1
the following classical equation ] Stawian
a8 . 38 ers, Wars
+H | q*, —,t =0 s
ot (q ' o¢' ) (1991
f?” + ..rl.j;-,!"' = 0 9] Stawia
ot dq' ized Wey
where 5 " 35 (2012
i 11 d 1 as e
3I=DvlH S =D 3 (‘a’ 1 }_"'> 10] Synge .J.|
oy ) L i e :
! ! Verlag, B
Geometrically,
Al . . 11| Weyl H.
= = -‘: | H.5 J[) =10 ¢
ot B
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