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Abstract. Pseudorandom number generators are used in many areas of contemporary tech-
nology such as modern communication systems and engineering applications. In recent years a
new approach to secure transmission of information based on the application of the theory of
chaotic dynamical systems has been developed. In this paper we present a method of generating
pseudorandom numbers applying discrete chaotic dynamical systems. The idea of construction
of chaotic pseudorandom number generators (CPRNG) intrinsically exploits the property of ex-
treme sensitivity of trajectories to small changes of initial conditions, since the generated bits
are associated with trajectories in an appropriate way. To ensure good statistical properties of
the CPRBG (which determine its quality) we assume that the dynamical systems used are also
ergodic or preferably mixing. Finally, since chaotic systems often appear in realistic physical
situations, we suggest a physical model of CPRNG.

1. Introduction

Pseudorandom number generators with “good” properties are frequently used in
modern communication systems as well as in a variety of engineering applications.
The quality in this case means: How well a given device or algorithm producing
random or pseudorandom numbers imitates an ideal source of independent, uni-
formly distributed random numbers? Many cryptographic schemes and protocols
require a source of random or pseudorandom numbers. The quality of this source
is crucial for the security of the scheme or protocol in question.

Traditionally, extensive statistical testing was used to assess or estimate this
quality. Test suites developed for this purpose may be found in [6, 11]. The
American norm FIPS 140-2 [6], which is currently one of the standard benchmarks,
specifies the following 4 tests on sequences of 20000 bits1:

∗ This paper has been prepared with the financial support of KBN, grant 8 T11D 020 19
1Possession of a good pseudorandom bit generator (PRBG) is sufficient to construct a good
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138 J. Szczepański and Z. Kotulski

1. the monobit test — the number of “1” bits in the sequence must lie within
specified limits,

2. the poker test — the histogram of values of non-overlapping four bit segments
must resemble the uniform distribution; in this and the previous test the χ2

test is used,
3. the runs test — the number of runs (the test is carried out for runs of zeros

and runs of ones) of length 1, 2, 3, 4 and 5 as well as the number of runs
which are longer than 5 must each lie within specified limits,

4. the long run test — in the tested sequence there must be no run of length
equal to or greater than 34 bits.

Additional tests used in cryptography include spectral tests, entropy tests and
tests of linear, maximal order or sequence complexity profiles [16].

In the case of some classes of algorithmic pseudorandom number generators a
further level of assurance has been obtained by a theoretical analysis of algorithms.
Linear feedback shift registers (LFSR) are a well-known example. Another example
is the class of generators whose security has been linked to hard computational
problems in number theory (for example the Blum-Blum-Shub generator). How-
ever, in the latter case, the theoretical results are asymptotic in nature and it is
difficult to find any published numerical verification of the quality of these gen-
erators with fixed security parameters. In addition, the results rely on unproved
(although widely believed) hypotheses about the computational complexity of the
underlying problems. In this paper, we propose a class of generators based on the
theoretical foundation of chaotic and ergodic transformations.

In the last few decades, a new phenomenon called chaos [7] in nonlinear systems
has been discovered and intensively investigated. The principal feature of chaos is
that simple deterministic systems arising in many areas can generate trajectories
which appear to be random. The essential property of such systems is the extreme
sensitivity of trajectories to small changes of initial conditions. Such properties
seem to be relevant for the construction of cryptographic algorithms. The earliest
applications of chaos were based on encrypting messages by modulation of tra-
jectories in continuous dynamical systems. These methods are strongly connected
with the concept of synchronization of chaotic systems [15] and of chaos control
[10]. Recently also the theory of discrete dynamical systems is applied in secure
communication [8, 12]. The papers [9, 13, 14], develop the case of block ciphers,
making use of multiple iterations and inverse iterations of chaotic maps.

The objective of this paper is the proposition of the method of constructing
pseudorandom number generators (based on discrete chaotic dynamical systems)
applicable in stream ciphers. The basic idea of construction of CPRNG exploits the
property of sensitivity of the trajectories to initial conditions, which is the essence
of chaos. The generated bits are associated with the behavior of trajectories. To
ensure good statistical properties (which determine the quality of a generator)
of the CPRNG we assume that the dynamical systems used are also ergodic or

pseudorandom number generator and it is often easier to work with bit generators.
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Pseudorandom Number Generators Based on Chaotic Dynamical Systems 139

preferably mixing. This allows us to use of the well-developed theory of dynamical
systems to prove the required statistical properties. Finally, since chaotic systems
often appear in realistic physical situations we suggest some physical realizations
of CPRNG.

In the next section, for the sake of completeness, we recall basic concepts of
discrete dynamical systems theory.

2. Discrete Dynamical Systems

A discrete dynamical system is a pair (S,F ), where S is the state space (usually
metric space) and F : S → S is a measurable map which is the generator of the
semigroup of iterations. The trajectory starting from the initial state s0 is the
sequence (sn)∞n=0 of elements of S obtained by iteration

sn+1 = F (sn) , n = 0, 1, 2, . . . (2.1)

The definition of chaos is closely related to the concept of Lyapunov exponents.
Let s ∈ S, v be an element of the tangent space at s and DFn(s)(v) be the Frechet
derivative of the n-th iteration of F at s in the direction of v. Then the Lyapunov
exponent is given by the limit

λs,v ≡ lim
n→∞

1
n

ln ‖DFn(s)(v)‖ , (2.2)

where ‖ · ‖ is the norm in the tangent space at s. Lyapunov exponents exist under
some general conditions on the smoothness of F [7]. The number of different
Lyapunov exponents at s is equal at most to the dimension of the tangent space.

Among many existing formal definitions of chaos [4] the most exploited in the
literature is the one using the concept of Lyapunov exponents. We say that a
nonlinear dynamical system is chaotic in some region if for almost all points s
(with respect to some invariant measure, equivalent to Lebesgue measure) in this
region it has positive Lyapunov exponents.

Chaos in a dynamical system makes the trajectories very unstable; starting
from two very close initial points, after several iterations we come to quite dif-
ferent final states (trajectories diverge exponentially). More precisely, for a one-
dimensional dynamical system (R,ψ), where ψ is C1, if at some point x ∈ R,
λx > 0 then

∀ ε > 0 ∃ n1, n2 ∃ Un1,n2 � x ∀ n1 ≤ n ≤ n2 ∀ z1, z2 ∈ Un1,n2

e(λx−ε)n|z1 − z2| < |ψn(z1) − ψn(z2)| < e(λx+ε)n|z1 − z2| .
(2.3)

In (2.3), Un1,n2 is an open neighborhood of x. It is essential for practical
construction of secure information transmission to select the appropriate natural
numbers n1 and n2 to guarantee sufficient accuracy of calculations.

To introduce the concept of ergodicity we assume that for the dynamical system
(S,F ) there exists an F -invariant measure µ, µ(S) < ∞, that is, a measure which
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140 J. Szczepański and Z. Kotulski

satisfies
∀ A ∈ σ(S) , µ(A) = µ(F−1(A)) , (2.4)

where σ(S) is the σ-algebra of measurable subsets of S.
Constructing a cryptographic algorithm, we consider dynamical systems for

which some invariant measure µ exists and is equivalent to the Lebesgue measure
with its density function g(s) satisfying, for positive constants g1, g2,

0 < g1 ≤ g(s) ≤ g2 ,

where ∀ A ∈ σ(S), µ(A) =
∫
A g(s)ds). If g1 is close to g2 then the measure µ

is close to the uniform distribution, which is important in cryptography. This
postulate requires an appropriate choice of the map F .

We say that a dynamical system (S,F ) is ergodic [5] if and only if it has only
trivial invariant sets, i.e., if and only if either µ(B) = 0 or µ(S\B) = 0, whenever
B is a measurable, invariant under F , subset of the space S (the invariance of B
means that F (B) ⊂ B).

Ergodicity implies that the space S cannot be divided into invariant nontrivial
(with respect to the measure µ) disjoint parts. Therefore, if a trajectory starts
from any point s0 ∈ S, it never settles in a smaller region, and knowing the final
state of the system we can never identify the region (smaller than S) where the
trajectory started. (In the case of smaller disjoint parts any “brute force” attack
is restricted to one part of the partition which significantly reduces its numerical
complexity).

The next important characteristic of trajectories (stronger than ergodicity) is
the mixing property. A dynamical system is called mixing [5] if the following
condition is satisfied (for µ(S) = 1):

lim
n→∞

µ(F−n(A) ∩B)
µ(B)

=
µ(A)
µ(S)

. (2.5)

From this formula we can see that the part of B which after n iterations of F
is contained in A is asymptotically proportional to the volume (in the sense of the
measure µ) of A in S.

Formula (2.5) gives an asymptotic condition for the spreading of B over the
whole space S under iteration. It is also important to specify the speed of such
phenomenon. In the case of K-systems [5] the convergence is exponential,

|µ(F−n(A) ∩B)−µ(A)µ(B)| ≤ e−qn , (2.6)

for all n satisfying: n0 ≤ n (n0 is some natural number) and some fixed q > 0
depending on F .

Mixing property means that the trajectories of the system have a property of
stochasticity. If we assume the measure µ to be probabilistic then the iterations
of F make each set A (asymptotically) statistically independent from B. In other
words, if we start our trajectory from a vicinity of s0 ∈ S then after sufficiently
many iterations we can reach any region of S with the same probability. This
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Pseudorandom Number Generators Based on Chaotic Dynamical Systems 141

means that for any final state sn and sufficiently large n, any initial state s0 is
µ-equiprobable.

The properties of dynamical systems like chaos, ergodicity and mixing make
these systems “random” in the sense that studying finite-dimensional distributions
in the state space we cannot distinguish whether the system is chaotic or stochastic.
Therefore a chaotic dynamical system seems to be a good candidate for the source
of random numbers (bits).

3. Construction of the Chaotic Generator

In this section, we propose the application of discrete dynamical systems for con-
struction of chaotic pseudorandom bit generators (CPRBG). To ensure the re-
quired statistical properties of generated sequences we shall assume that except of
being chaotic the systems are ergodic or even mixing.

The basic idea of construction is as follows. Let us assume that we have some
dynamical system F : S → S, where S is the state space and by µ we denote
a normalized invariant measure of the system. The central point of construction
is to divide the state space in an appropriate way into two disjoint parts S0, S1
such that µ(S0) = µ(S1) = 1/2. As a seed we shall consider an initial point
s ∈ S′ ⊆ S, where S′ is the set of acceptable seeds (usually µ(S′) = 1). To obtain
a pseudorandom sequence of bits we observe the evolution of the system governed
by F starting from s, i.e., the sequence sn := Fn(s) of iterations of the map F .
The n-th bit bn(s) of the generated sequence is equal to “0” if sn ∈ S0, and is equal
to “1” otherwise. This way, we obtain the infinite sequence of bits G(s). Thus, we
obtain the map

G : S′ →
∞∏
i=1

{0, 1} , (3.1)

such that
G(s) = {bi(s)}i=1,2,... = {b1(s), b2(s), . . .} , (3.2)

where
∏∞

i=1 {0, 1} is the Cartesian product of the infinite number of copies of the
two-element set {0, 1}.

4. Properties of CPRBG

To verify the correctness of the presented construction we should prove that if we
have two different seeds in the generator, then with probability one we obtain two
different sequences of bits. Under the notation introduced in (3.1)–(3.2) we have

THEOREM 1. For each s ∈ S the following holds true:

µ(G−1({bi(s)})) = 0 . (4.1)
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142 J. Szczepański and Z. Kotulski

Proof. Fix s ∈ S. Consider the sequence of bits

G(s) =
{
b1(s), b2(s), b3(s), . . . , bn(s), . . .

}
. (4.2)

To simplify the notation we write further bi instead of bi(s) and we introduce

Sbi = S0 for bi = 0 (4.3)

and
Sbi = S1 for bi = 1 . (4.4)

Define the sets

Ab1 := F−1(Sb1) ,
Ab1b2 := F−1(Sb1) ∩ F−2(Sb2) ,

and, generally, Ab1b2...bn ⊂ S, n = 3, 4, 5, . . . ,

Ab1b2...bn := F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n(Sbn) . (4.5)

Observe that for every n = 1, 2, . . . , Ab1b2...bn is the set of all seeds z such that the
first n initial bits of G(z) are (b1, b2, b3, . . . , bn). More precisely,

z ∈ Ab1b2...bn =⇒ bi(z) = bi(s), for i = 1, 2, . . . , n . (4.6)

This follows from the fact that for i = 1, 2, . . . , n

F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n(Sbn) ⊆ F−i(Sbi) , (4.7)

and, consequently:

F i(z) ∈ F i
(
F−1(Sb1)∩ . . . ∩ F−n(Sbn)

)
⊆ F i(F−i(Sbi)) = Sbi ≡ Sbi(s) , (4.8)

which proves (4.6).
By the basic property of measure we have

µ
(
F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n(Sbn)

)
≤ µ(F−1(Sb1) ∩ F−n(Sbn)) . (4.9)

Now we apply the mixing property (2.5) to the two sets

F−1(Sb1) and Sbn (4.10)

(the set Sbn is equal to S0 or S1). For a given ε > 0 sufficiently small we choose
n1 such that

µ
(
F−1(Sb1) ∩ F−n1(Sbn1

)
)

≤ µ
(
F−1(Sb1)

)
µ(Sbn1

) + ε . (4.11)

Since µ is invariant, from (4.9) and (4.11) we obtain:

µ
(
F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n1(Sbn1

)
)

≤ µ(Sb1)µ(Sbn1
) + ε . (4.12)

O
pe

n 
Sy

st
. I

nf
. D

yn
. 2

00
1.

08
:1

37
-1

46
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 I

N
ST

IT
U

T
E

 O
F 

FU
N

D
A

M
E

N
T

A
L

 T
E

C
H

N
O

L
O

G
IC

A
L

 R
E

SE
A

R
C

H
 O

F 
T

H
E

 P
O

L
IS

H
 A

C
A

D
E

M
Y

 O
F 

SC
IE

N
C

E
S 

on
 0

4/
18

/2
0.

 R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



Pseudorandom Number Generators Based on Chaotic Dynamical Systems 143

Applying the mixing property (2.5) to the sets A = Sbn2
, where

Sbn2
= S0 or Sbn2

= S1 (4.13)

for a certain n2 > n1, and

B = F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n1(Sbn1
) , (4.14)

and using (4.12) we have that if n2 is sufficiently large then

µ
(
F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n1(Sbn1

) ∩ . . . ∩ F−n2(Sbn2
)
)

≤ µ
(
F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n1(Sbn1

) ∩ F−n2(Sbn2
)
)

≤ µ
(
F−1(Sb1) ∩ F−2(Sb2) ∩ . . . ∩ F−n1(Sbn1

)
)
µ
(
F−n2(Sbn2

)
)

+ ε

≤
[
µ
(
F−1(Sb1)

)
µ
(
F−n1(Sbn1

)
)

+ ε
]
µ
(
F−n2(Sbn2

)
)

+ ε . (4.15)

By the invariance property of the measure µ and the symmetry condition µ(S0) =
µ(S1) = 1/2, we obtain from (4.15) the following inequality:

µ
(
F−1(Sb1)∩F−2(Sb2)∩ . . .∩F−n1(Sbn1

)∩ . . .∩F−n2(Sbn2
)
)

≤ 1
2

(1
2
· 1
2

+ε
)

+ε .

(4.16)
In general, using the complete induction property, we can find a sequence
{n1, . . . , np} for any p such that

µ(Ab1b2...bn1 ...bn2 ...bnp
) :=

:= µ
(
F−1(Sb1) ∩ . . . ∩ F−n1(Sbn1

) ∩ . . . ∩ F−n2(Sbn2
) ∩ . . . ∩ F−np(Sbnp

)
)

≤
{[(

µ(Sb1)µ(Sbn1
) + ε

)
µ(Sbn2

) + ε . . .
]
µ(Sbnp

) + ε
}

+ ε

≤
{[(1

2
· 1
2

+ ε
)1

2
+ ε . . .

]1
2

+ ε
}

+ ε . (4.17)

We see that the right hand side of the above inequality is equal to the value of
the np-th iteration of the function h(x) = x/2 + ε at x = 1/2. For np sufficiently
large, we have

hnp

(1
2

)
< 3 ε . (4.18)

Moreover, Ab1b2...bn ⊆ Ab1b2...bm for every n ≤ m and

µ(Ab1b2...bn) ≤ µ(Ab1b2...bm) . (4.19)

This means that the sequence of numbers µ(Ab1b2...bn), n = 1, 2, . . . is monotonic
and, since ε > 0 can be arbitrarily small, we deduce from (4.17)–(4.18) that it
contains a subsequence converging to zero. Thus,

lim
n→∞

µ(Ab1b2...bn) = 0 , (4.20)
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144 J. Szczepański and Z. Kotulski

which concludes the proof of Theorem 1. �

In practice, for the introduced partition of the state space S, due to chaotic
property, any two different seeds (initial conditions), independent of how close they
are, lead to completely different sequences of bits. This property is very important
in applications.

To pass a statistical test the generated sequence must have certain properties
controlled by the test. In the case of CPRBG these properties are guaranteed
by theorems concerning dynamical systems of ergodic and mixing type. As an
example of how the theory of dynamical system works we give several applications
of it.

By ergodicity we obtain that the expected number of “0” bits in the generated
sequence is equal to the expected number of “1” bits. To be more precise, we can
use the Birkhoff-Khinchin Ergodic Theorem [5], which applied to our system gives:

lim
n→∞

1
n

n−1∑
i=0

χS0(F
i(s)) =

∫
S
χS0 dµ = µ(S0) , (4.21)

where χS0 is the indicator function of the set S0 and s ∈ S′ (µ(S\S′) = 0). Since
by our assumption µ(S0) = 1/2 we obtain that in the pseudorandom sequence
determined by the seed s the average number of “0” tends to 1/2. (Moreover,
since superposition of the ergodic map with itself is also ergodic, we have that any
subsequence (bkn)n=1,2,... has the above property, too.)

The mixing property, defined by the condition (2.5), means that any measur-
able set A ⊂ S will be µ-uniformly distributed over the whole state space S under
iteration. We use this property to prove the theorem which states that the bits
generated by CPRBG are asymptotically independent.

THEOREM 2. For n = 1, 2, . . ., the bits Bn, Bn+k (considered as random vari-
ables) generated by a given mixing dynamical system (S,F ) are asymptotically
independent as k increases.

Proof. Introduce the notation: Hn
k := (F k)n. For each k, n = 1, 2, . . . we define

random variables Y n
k in the following way:

Y n
k (s) := χS0(H

n
k (s)) = χS0

(
(F k)n(s)

)
, (4.22)

acting on the probabilistic space {S′, σ(S′), µ}, where σ(S′) is the σ- field of the
measurable sets of the space S′ and µ is the F -invariant measure. These ran-
dom variables describe the bits generated by the CPRBG based on the dynamical
system (S,F ).

For every n = 1, 2, . . . consider the σ-fields corresponding to the random vari-
ables Y n

k and Y n+1
k . They are, respectively:

σnk =
{

Ø, S′, F−nk(S′
0), F

−nk(S′
1)
}

(4.23)
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and
σn+1k =

{
Ø, S′, F−(n+1)k(S′

0), F
−(n+1)k(S′

1)
}
. (4.24)

When k is sufficiently large, we have:

µ
(
F−(n+1)k(S′

α) ∩ F−nk(S′
β)
)

= µ
(
F−k(F−nk(S′

α)) ∩ F−nk(S′
β)
)

≈ µ
(
F−nk(S′

α)
)
µ
(
F−nk(S′

β)
)
, (4.25)

where α, β = 0 or 1.
The last relation follows from the mixing property (2.5) and the approximation

becomes more accurate as k increases. The relation (4.25) is in fact the definition
of independence of the random variables Bn := Y n

k and Bn+k := Y n+1
k , which gives

the conclusion of Theorem 2. �

Utilizing the result of Theorem 2, we take for the construction of CPRBG the
modified dynamical system

(S′,H1
k) := (S′, F k) , (4.26)

for sufficiently large k, and we obtain sequences of statistically independent random
bits.

5. Final Remarks

In the paper, we presented the construction of a generator of pseudorandom se-
quences based on the theory of dynamical systems. We showed that statistical
properties of sequences generated are sufficiently good for cryptographic purposes.

In the process of generation of bits according to some algorithm, one requires
complete repeatability (which is a necessary condition of correct decryption in
the stream cipher methods). In practical implementations the numbers used in
calculations are expressed with some accuracy. Therefore, when the state Fn(s)
is close to the boundary of separation of the sets S0 and S1, then the numerical
error can make a “0” bit generated in one computer become “1” bit in another
(or vice versa). The idea of how to prevent this inconvenience was presented in
[3]. The authors suggest to introduce a forbidden gap of small size at the partition
zone and then neglect all trajectories which go through this gap which is possible
for some maps because of an explicit characterization of the forbidden trajectories.
They also give arguments (computing topological entropy and analyzing successive
approximations of the grammar of symbolic dynamics by means of a sequence
of transition matrices) that for a sufficiently small gap the loss of trajectories
generating the sequences is negligible and, therefore, such a procedure does not
deteriorate the statistical properties of the sequences. On the other hand, to avoid
problems connected with inaccuracy of numerical computations, we suggest to
consider physical models of CPRBG. There are many chaotic dynamical systems
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in real life. It could be promising to construct physical systems realizing our
cryptographic algorithms.

An interesting example is the application of non-classical reflection law models,
originating from the kinetic theory of dilute gases, which is the source of the
concept of chaos and ergodicity. The theory of non-classical reflection laws found
its place in the literature [1, 17, 18, 19]. The models describe the motion of a free
particle in a bounded domain. To establish the model, one must select a domain
with a certain boundary shape and define the reflection law. The generation is the
observation of the evolution of a particle starting from an initial state, playing the
role of the seed. The sequence of bits is generated by taking the n-th bit equal to
“0” if the state of the particle at the moment of the n-th reflection is observed in
some subset of the state space, and “1” otherwise. In models of such kind chaos
property of the reflection law is transferred to the dynamical system describing
the motion of a particle [2, 14]. Thus, the security of the cryptosystem based
on unpredictability of the location of a moving particle is assured by its chaotic
behavior. Although physical realization of the CPRBG allows us to avoid the
problem of computational error, we face another one — the accuracy of physical
measurements.
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[18] J. Szczepański and E. Wajnryb, Chaos, Solitons and Fractals 5, 77 (1995).
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