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The paper deals with harmonic solutions to the third-order derivative-in-time temperature equation
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in which @ = 6(¢, x) represents a temperature field of a two-temperature model of ballistic heat transport

in a metal film, and a is a nonnegative parameter; ¢ and x denote the time and space variables, respectively.
It is shown that for a suitably restricted range of the wave numbers k and of the parameter o there are three

real-valued harmonic solutions &,(i =1,2,3) of equation (*) such that 6, represents a dissipative standing

wave with a damping A, = h (k) >0, while 6, and 6, are both dispersive and dissipative waves moving

with the same damping &, = h,(k) >0 and a velocity ¢ =c(k) >0 in the directions of decreasing and

increasing x, respectively.

Also, use of the harmonic solutions is made to obtain a closed-form transient-in-time solution to a Cauchy

problem for equation (*) in which |x| < oo and & 23/2. Numerical results are included.

Key Words: Dispersion; Dissipation; Heat Transfer; Metal Films; Modeling; Third-Order
Derivative-In-Time Heat Conduction Equation; Wave Motion.

1. Introduction

D.Y. Tzou has shown in [1] that a central
equation of the one-dimensional theory of a two-
temperature model of ballistic heat transport in the
electronic gas of a metal film subject to a laser heat,
takes the form

9’ 9’ d d)9°
2 22 22 [1+aZ |2 =0, a
{8t3+ i o (matjaxz} W

where @ =06(t,x) represents a dimensionless metal

lattice temperature; ¢ and x denote the dimensionless
time and space variables, respectively; and a is a
nonnegative parameter. [Equation (1) is equivalent
to eq (10.21) from [1] if we let ¢ =B, t= [, and

o= x\/z ; where B, and O are the notations from
(111.

In the present paper we are to show that the
third-order derivative-in-time temperature equation
(1) contains two types of energy loss: absorption and
dispersion. This will be shown by looking for the
harmonic solutions of eq. (1) in the form

0(t,x) = 6, expli(kx — w1)], )

where i =+/—1, k is a real-valued wave number, @
is a complex-valued variable and 6, is a complex-
valued constant. In particular, we are to show that
for a suitably restricted range of the parameters «

and k there are three real-valued solutions to (1) of
the form

6,(t,x) =Re{6,(t,x)}, i=123, 3)

such that 6 represents a standing wave that is
strongly attenuated on the time axis; while 8, and
0, are the dispersive strongly attenuated on the time

axis waves moving with a velocity ¢ >0in the
directions of decreasing and increasing x,
respectively. In Section 2 a dispersion relation for
the propagation of harmonic waves governed by eq.
(1) is obtained. In Section 3 the existence of the
three real-valued harmonic solutions to eq. (1), in
the form of four theorems, is proved. In Section 4,
use of the harmonic solutions of Section 3 is made to
obtain a closed-form solution to a Cauchy problem
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for eq. (1) in which ’x| <oo and « 2>3/2 . Finally, in

Section 5 results and conclusions are summarized.

2. Dispersion Relation

By substituting 6 =6(t,x) from (2) into (1),

the dispersion relation for the propagation of
harmonic waves governed by eq. (1) is obtained

@ +2i0" -2+ dkHw-ik* =0. (4)
By letting
2
O=Q——i 5
3 )

and substituting « from (5) into (4) we obtain

Q-3 (k) Q-2ipk)=0, (6)
where
w(k)= %@Jr akzj, (N
o(k) =%K1—§ajk2 —kg}, ®)
and
k, =§ % . )
If we let
Q=iy, (10)

and substitute Q from (10) into (6), the third-order
algebraic equation with real-valued coefficients for
Y is obtained

Y’ + 3w (k)Y +2¢(k) =0, (11)

The following theorem holds true.

Theorem 1. There is a real-valued root Y, and two
complex conjugate roots Y, and Y, of eq. (11) given

by
Y (k) =a(k)—b(k), (12)

5

Yy (k) = —%[a(k) b1+ i%{a(k) +b(0)1, (13)

where

a(tk) ={[g> (k) +y’> ()1 =)} (14)
and

b(k) ={[@* (k) + ¥’ ()" + p(k)}'"” . (15)

In eq. (13) the roots Y, and Y, correspond to the
plus and minus signs, respectively.
Proof. First, by substituting (12) into (11) we prove

that Y] is a solution to (11). Next, we show that

Y2 4+3pY +20= (Y -Y)Y -Y,)¥ -V,), (16)

where Y, =Y, ; and this completes the proof.

Theorem 1 plays a central role in formulating
the existence theorems for harmonic solutions to

eq. (1).
3. Existence Theorems
The following theorem holds true.

Theorem 2. For the wave numbers k satisfying the
inequality

2 -1/2
k> [1—504] ko (17)
where
1 3
—<a<—, 18
> 5 (18)

there are three real-valued solutions to eq. (1) of the
form

6,(t,x) = 6V exp[—h, (k) t]sin kx , (19)
0,(t,x) = 6" exp[—h, (k) t]sink[x + c(k) t], (20)

0,(t,x) = 6 exp[—h, (k) t]sin k[x — c(k) ], (21)

where

Iy (k) = {% ~la(k) - b(k)]} >0, 22)

iy (k) = {% +%[a(k> - b(k)]} >0, (23)

5

c(k) =%73[a(k)+b(k)] >0, (24)

and 0 (i=1,2,3) are real-valued constants. The
function 6, represents a standing wave that is
strongly attenuated on the time-axis, while 8, and
(7

. are strongly attenuated on the time-axis

dispersive waves propagating with the velocity
c=c(k) in the negative and positive directions of
the x-axis, respectively.

Proof. First, we note that the inequality (17)
together with (7)-(9), (14), and (15) imply that

b(k)—a(k)=0  Vk2k,,  (25)

where
R 2 -1/2
ky= (1 —gaj kg . (26)

Next, it follows from Theorem 1 as well as from (5)
and (10) that there are three complex-valued
frequencies @, (k =1,2,3) such that
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i(kx—a)lt)zikx—{g—(a—b)}, 27)

i(kx—w,t)=i kx+§(a+b)t —EJr%(a—b)}

(28)

i(kx—a,t)=i kx—g(a-f-b)t _EJF%(G_Z))}

(29)
Therefore, substituting (27), (28), and (29),
respectively, into

8,(1,x) = 6y explilkx -, 1)] (30)

for j = 1, 2, and 3; and taking the real parts of the
resulting equations, we obtain eqs. (19)-(24), except
for the inequality h,(k) >0 [see Eq. (23)]. As a

result, to complete proof of Theorem 2 we need to
show that

OS[b(k)—a(k)]<g Vk=k,. (3l

To this end, we rewrite (31) in the equivalent form
4Y .
0<(-a) <(§j Vk 2k, (31a)
or, using (11) and (12), in the form

3
20+3p(a-b)< [gj Vk 2k, (32)

or, using (7)-(9), in the form

3
(1—20{}(2 kg < (ij +(E+ak2j(b—a)
3 3 3 (33)
Vk >k, .

Since the inequalities (31a) and (33) are equivalent,
it is sufficient to prove that the inequality (33) in
which (b—a) on RHS of (33) is replaced by 4/3,

holds true. To this end, we replace (b—a) in (33) by
4/3 and obtain
2
(34)

3
(l—gajkz —ky < (ij +i(g+ak
3 3 313
Vk >k, .
or, equivalently,
(1-2a)k>-4<0  Vk2k,>0. (35)

Since, by (18), 1-2a < 0, therefore (35) holds true;
and , as a result, (31) holds true. This completes
proof of Theorem 2.

The physical interpretation of the solutions
6 =06,(t,x) (i=123) given by (19) — (21) is well
motivated by the nonlinear attenuations coefficients
h. =h(k) (i=12), and the nonlinear velocity
c=c(k) on the k-axis; in particular, the waves 6,
and 6, reveal two types of energy loss: absorption
(time decay) and dispersion (velocity is a function of
the wave number); while the wave 6 reveals a
nonlinear absorption only. Note that since a
wavelength A =27x/k, the hypothesis (17) implies
that the harmonic waves & (k=1,2,3) are

k
restricted to the wavelengths A4 from the interval
. . 2 172
0<A<4,, ZO=7.3(1—EOJJ ,  (36)

and they represent short waves for ¢ —3/2—¢ as

£—0+0. The function A =4 (a) on (1/2, 3/2)
represents an upper bound on the wavelengths at
which the harmonic solutions 6, do exist.

Also note that the inequality & >1/2 that implies
stability of @, has also been postulated by

R. Quintanilla [2] in connection with a study of
stability of a one-dimensional dual-phase-lag
thermoelastic model.

Finally, for a finite value of ae (1/2,3/2) we
obtain

h(k) — i h,(k) — 1—L> 0,
o 2x

(37
and c(k)e«/a as k — oo .
By extending range of « to the interval
3
az—, 38
5 (38)

we arrive at the following theorem.
Theorem 3. For any positive wave number (k > 0)

and for a satisfying the inequality (38) there are tree
real-valued solutions to eq. (1) of the form (19)-(21)
with the physical interpretation similar to that of
Theorem?.

Proof of Theorem 3 is omitted.

The existence results on the propagation of
harmonic waves governed by eq. (1) include also the
following theorem.

Theorem 4. If o< [0,1/2] and

-1/2
(1 _E“j ky <k<2(1-2a)7"*, (39)

there are three real-valued solutions to eq. (1) of the
form (19) — (21).
Proof of Theorem 4 is omitted.




A result similar to that of Thm. 4 is described
by the following theorem.
Theorem 5. If O<a <3/2 and

-1/2
0<k<(1—§a’j kq . (40)

then there are three real-valued solutions to eq. (1)
described by (19) — (21).

Proof of Theorem 5 is omitted.

It follows from Theorems 2 — 5 that eq. (1) describes
dispersive and dissipative waves over a wavelength
range that depends strongly on the parameter « ; in
particular, for a¢>3/2 equation (1) is dissipative
and dispersive for any finite wavelength, while for
a<€[0,1/2] equation is dissipative and dispersive
only if the wavelength belongs to a finite « -
dependent strip.

4. Cauchy Problem

In this Section we are to find a transient-in-
time solution @ = 6(¢, x) of the equation

9’ 9’ d d) 0’
2 2% 2l J1ta2 |2 |9=0 @1
{at” o o (matjaﬁ} @b

for |x|<o<>, t>0

subject to the initial conditions
2

6(0, x) = 8(x), 30(0, x)=—560,x)=0 (42)
ot ot
for [x] <eo
where 6 =0J(x) is the Dirac delta function. In
addition, we restrict the range o to the interval

3
a>—. 43
> 43)

The problem of finding @ that satisfies eq. (41) and
the initial conditions (42) will be called a Cauchy
Problem for eq. (1). Using the results of Section 3
we arrive at the following theorem

Theorem 6. There is a unique solution to the
Cauchy Problem described by eqs. (41) — (42)
subject to the condition & >3/2, and this solution
takes the form

oo

0(t, x)= 1 j A(k)e™" cos kx dk
VA

0

L e [Bk)eostl—er)- Cle)sinkly—r)ik

e Blk)cos k(x-+cr)+ Clk)sin -+ o
T

0
(44)
where

2, 202
(k): h2+§ ! 2 27’
[(h,—hy)” +k“c7]

_ hl (2h2 _hl)
B = =iy = 2T @

k)=£ (hz _hl)hz —k’c?
ke [(h —h, ) +k*c*

and the dampings A, = h, (k) and h,=h, (k); and the
velocity ¢ =c(k) are given by egs. (22) — (24).
Proof of Theorem 6 is omitted.

Note that the first integral on RHS of (44)
represents a packet of harmonic time-decaying
standing waves, while the second and third integrals
on RHS of (44 represent the packets of harmonic
time-decaying waves traveling with the group
velocity c¢=c(k) in the positive and negative
directions of the x-axis, respectively

5. Results and Conclusions

(a) Three harmonic solutions to a third-order
derivative-in-time dissipative and dispersive wave
equation of the theory of ballistic heat transport in
the electronic gas of a metal film subject to a laser
heat, are obtained in a closed-form. One of the
harmonic solutions is shown to be a dissipative
standing wave, while the two other solutions
represent the dissipative and dispersive traveling
waves.

(b) A Cauchy problem for the wave equation is
formulated, and its solution in the form of a sum of
three packets of harmonic waves, is obtained; one of
the three packets consists of the harmonic dissipative
standing waves, while the two remaining packets are
made of the harmonic dissipative and dispersive
waves traveling with the same group velocity but in
opposite directions.

(c) The results obtained should prove useful to
those modeling heat transfer in metal films as well
as to researchers trying to understand macro- to
micro-scale heat transfer processes.
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