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NUMERICAL MODELLING OF THE THERMAL
UPSETTING MECHANISM IN A TWO-BRIDGE
ACTUATOR

J. Widlaszewski
Institute of Fundamental Technological Research of the Polish Academy ol Sciences, Poland
Abstract

Angular deformation of the two-bridge actuator heated by a single laser pulse is analysed
using finite element method. Experimentally validated numerical model allows decper
understanding of deformation mechanism, in particular the role of thermally generated
bending load in the actuator. Prediction of laser-induced micro deformations requires
determination of energy absorption and dissipation parameters with high accuracy.
Experimental-numerical procedure was applied to find emissivity and coctlicients of
absorption and convection, using two-colour pyrometer and 'EM simulations. The need for
precise thermoplastic material data 1s demonstrated by means of a scries of numericul
simulations and the critical temperature concept.

Keywords: laser forming, two-bridge actuator, numerical modelling.
1 Introduction

Non-contact forming with the use of a laser beam has [ound many mdustrial applications i
manufacturing of micro components. Thermal forming of big parts, e.g. ship hull plates, using
different heat sources is under development with some successtul implementations. Both
areas of micro and macre thermal forming require thorough investigation of thermomechanics
of the applied processes in order to possibly cxactly model the involved phenomena and
predict final shape and microstructural changes of the material. Behaviour of the two-bridge
actuator [1], frequently applied in optoelectronic micro components, allows for cllective
studies of the role of modelling methods and material parameters in prediction of processing
results.

Laser-induced deformations of the two-bridge actuator and other miniature frame structures
have been investigated mainly experimentally [2], |3], [4]. [5], 6], [7]. but also modelled
analytically [8], [9] and numerically [5], [10]. Presented research was primarily aimed at
verilication ol theoretical assumptions employed in an analytical model for the behaviour of
the two-bridge actuator presented at the previous LANE conference [9]. Efforts were
concentrated on the basic phenomena and modelling aspects involved with thermally-induced
micro deformations. Therefore experiments and simulations with the use of the finite clement
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Laser Assisted Net Shape Engineering 3

method (FEM) were limited to a single pulse laser heating of a model structure (Fig. 1).
deformation of which could be measured with sufficient precision, as presented in [9], [11].
Characteristic dimensions of the specimen made of the 18-8 type stainless steel (approx, 18%
Ni. 8% Cr) were L - 6.t b= 10 mm, w = 2 mm and thickness h - 0.505 mm.
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Fig, I: Characteristic dimensions and notation of segments of the actuator,
2 Numerical model

Nonlmear uncoupled quasistatic analysis ol thermo-clastic-plastic problem was conducted
using the ABAQUS linite element method system. Taking advantage of the symmetry of the
modelled sample and its thermal load only half of it was modelled (Fig. 2). Eight layers of
finite elements on thickness of the material (Fig. 7) were employed to observe cffects of the
temperature gradient. The model contained 6016 solid 8-node linear full integration elements:
DCADK for thermal analysis and C3D8 for stress/displacement analysis.

Multimode Nd:YAG laser beam was modelled as a heat (lux of uniform distribution on the
material surface. The nominal laser beam diameter was set up with the optical system (o be

equal to the width of the heated bridge.

(a) (b) {c)

Fig. 2: Numerical model: (a) the applied mesh of elements on the half of the sample,
th) thermal load acting on one of the bridges, (¢} laser spot region in detail,

However, due to existence of o vailing edge in the laser beam intensity distribution a part of
the beam was not falling on the material surface and was going pass the sample. In the case
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under consideration measurements of the laser radiation power behind the sample revealed
that this fraction was about 8%. To account for this effect the laser spot diameter was
assumed somewhat larger than the bridge width, as shown in Fig. 2¢. The effectively applied
laser beam power was corrected accordingly.

The applied temperature dependent data of the 18-8 type stainless steel are presented
Figs. 3a-d. Special attention has been given to two issucs related to modelling of lascr-
induced plastic deformations. namely: (1) parameters of absorption and dissipation of the
laser beam energy by the material, and (2) the sensitivity of modelling results to temperature
dependence of the material yield stress.
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Fig. 3: Thermophysical properties of the 18-8 tvpe stainfess steels: (u) specific heat ¢

(h) heat conductivity A, (¢) coefficient of linear thermal expansion «x, | {(d) densite p
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Value ol the laser beam energy absorption coefticient and value of the convection cocellicient
according to the Newton’s law were established using experimental-numerical procedure. A
square sample of dimensions 12 x 12 x 0.5 mm, made of the same stainless steel from which
the two-bridge actuator samples were prepared, was irradiated by the Nd:YAG laser beam.
The sample was annealed in a furnace lor hall’ an hour belore laser irradiation experiments.
The resulting  oxide-film  ensured stable absorption conditions for the laser heating
experiments.

Temperature ol the material during laser heating was measured by a non-contact method with
a two-colour pyrometer Raytek FRIA CE1. In order to eliminate disturbance caused by the
reflected radiation temperature measurements were conducted on the surface opposite to the
surface irradiated with the laser beam. Recorded time-runs of the temperature during heating
with the laser beam of different power levels and during subsequent free cooling were treated
as reference data for numerical simulations of the same problem using the ABAQUS finite
element method program.

Within the material temperature range of 500+1100 °C relatively good agreement of the
experimental and calculated temperature time-runs were obtained assuming the value of the
absorption coefficient 0.92 and the value of the convection coefficient 4-107° W/(°C em”).
According to the Kirchhoff's law the material emissivity is equal to the absorption coefficient
for the same radiation wavelength and in the same temperature.

The dependence ol the material yield stress on temperature plays important role in modelling
of clevated- and high-temperature plastic deformation processes like hot working and
welding, Special dithiculties arise when dealing with micro deformations involved in the laser
adjustment method. High-temperature yield stress data usvally come from hot compression or
hot torston tests and are based on a relatively high offset value, not adequate for micro
adjustment processes. The strain rate sensitivity adds another factor to the complexity of the
problem. Fig. 4 presents some examples of the high-temperature yield stress data available in
literature [127], [13]. [14] for stainless steels of 18-8 type (e.g. AISI 304).
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100 ———
0K Stainless steel 18-8 [Frost, Ashby 1982]
80 0 - du /dt =1 [1/s], AISI 304, &,
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Fig. 4: Examples of high-temperature yield stress data of the 18-8 type stainless steels

The figure contains curves calculated with an algorithm presented by Frost and Ashby [12] m
their work on maps of deformation-mechanisms. The curves describe the steady state flow
stress o, dependent on temperature and on the strain rate £ =de/dr within the range

10 " +1 [1/s]. The assumed grain size of the steel is 50 microns.

Commonly employed method in modelling high-temperature detormations consist 1
application of the critical (cut-off) temperature concept [15], [16], [17]. 1t is successtully
applied since introduction probably by Okerblom in his works on welding distortions | 18],
[19]. This approach relies in essence on the assumption that above certain temperature the
material yield stress value can be neglected.

Similar method has been applied in currently presented work. Two points were added to the
temperature-yield stress data [20] of the BS304S515 stainless steel: (1) the so called
characteristic point of critical temperature 7, at which the yield stress assumes negligibly
small value o, and (2) an auxiliary point of temperature 1500°C and yicld stress 1 MPa
added to avoid numerical instability of the FEM code. A few examples of matcrial
characteristics employed in simulations are marked by dashed lines in Fig. 4.

The Huber-Mises-Hencky yield criterion was applied together with a model of isotropic and

clastic-perfectly plastic material, as strain hardening effect can ofien be neglected in high-
temperature plasticity.
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2 Experimental verification

The specimen was made from the 18-8 type austenitic stainless steel by laser cutting, It was
anncaled i a furnace for half an hour at 500°C in order to reduce residual stresses and to
create oxide layer increasing and stabilizing absorption of laser radiation. One of the bridges
(segment | in Fig. 1) was heated with Nd:YAG laser beam of 21.5 W power for 1.3 s
Angular deformation of the sample during laser heating and free cooling was measured in a
non-contact manner with a laser scan micrometer (Fig. 5a) [9].
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Fig. 5: Experimental verification of the FEM model: (@) non-contact measurement of the angular
deformation a . (b) comparison of experimental and numerical results,

Time runs of the angular deformation of the specimen measured in experiment and calculated
with I'EM modelling are shown in Fig. Sb. Final angular deformation was 0.01°. The
simulation was performed with the critical point parameters 7, - 840 "C and o, ~ 5 MPa.

3 Discussion of results

The distribution of temperature at the end of laser heating phase (Fig. 6) justifies the Saint
Venant’s principle for the heat conduction problems. When material temperature reaches the
highest value, its distribution is close to that of the one-dimensional heat transfer model, with
the exception of some region near to the heat source.
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Fig. 6: The distribution of temperature [ “CJ in the Fig. 7: Notation of points on th
segment [ ai the end of heating phase. middle cross sections of scgmenis |
and 2.

Behaviour of the structure can be illustrated by thermal cycles of the stress and strain on the
middle cross section of the heated scgment 1. Changes of the axial (normal) stress component
o, and the plastic strain component &l during laser heating and free cooling are shown in
Figs. 8 and 9, respectively. Notation of axes and points of analysis are presented in Fig. 7.

Thermal cycle of the axial stress component o, (Fig. 8) shows significant tension occurring
at points 1-3 in segment 1 during the phase of heating, although the driving force for
deformation of the actuator is thermal expansion of segment 1. Tensile internal forces result
from a bending moment generated in the segment due to reaction and deformation of the
whole structure. Only when material temperature approaches the maximal values at the
considered locations (800-900°C), compressive forces become dominant on the bridge cross
section. Together with decreasing yield stress. this leads to thermal upsetting ol the segment
in a form of a plastic collapse in its central region.

Thermal cyele of the longitudinal plastic strain component s (Fige 9y reveals thal

dependent on the maximal temperature of the cycle, a part of the heated segment can end up
the deformation process with positive (tensional) plastic strain (c.g. points 2 and 3).
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Fig. 8 Thermal cvele of the stress component o, at points 1-9 in segment 1. The dashed line
denotes the applicd vield stress dependence on temperature T

Comparison of graphs located in the same row (points 1-2-3, 4-5-6 or 7-8-9) in Fig. 9 shows
small effect of the temperature gradient on the actuator thickness. Time runs ol the stress o
at points 2, 5 and 8 in segment 2 (Fig. 10) indicate strong bending with some small
contribution of an axial load produced by deformation of the heated segment 1. After return to
the initial temperature residual stresses in segment 2 result from the existence of the bending
maoment and a compressive force.
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Fig. 9: Thermal cycles of the longitudinal plastic strain component el at points 19 in
segment 1.

Time-runs of the normal stress component o, at points 1, 2 and 3 of segment 2 (Fig. 11}
demonstrate the effect of temperature gradient during phase of heating.

Figs. 12a and b present comparison of the mean axial stress &, calculated from the resultant
axial force in the heated segment 1. stress o, at the central point 5 of segment 1 and
analytical solution presented in [9] during thermal cycle of heating and cooling.
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Fig. 10: Changes of stress o, al points Fig. 11: Influence of the temperature gradi-
2 5 and 8 of segment 2. ent on stress o, in segment 2.

The courses of the mean axial stress &, and that of the stress o), al the central point 5 of
segment | significantly differ from cach other. However, the analytical solution during
heating phase closely follows the mean axial stress &, course, what explains relatively good
agreement of analytical and experimental results in [9] and [11].

(a) N
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Fig. 12: Thermal cvele of the mean axial stress &, stress oy, at the central point 5 of
segmoent I and analviical solution: (a) FEM modelling results, (b) detailed view of the 1'EM
modelling and analvtical results.
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Sensitivity of simulation results to the yield stress dependence on temperature can be
illustrated by a diagram shown in Fig. 13. An experiment ol heating the actuator with a
Nd:Y AG laser beam of power 16.7 W for 1.6 s was modelled in a serics of simulations. using
different yield stress simplified characteristics. The assumed critical temperature 7, values

were 730, 740, 750, 760, 770, 780, 790 and 800°C. The assumed yield stress o values at the
critical temperature were 3. 3.5, 4, 4.5 and 5 MPa. Results of altogether 40 .\illel‘dli(in.\ are
presented in Fig. 13 as a map of calculated permanent angular deformation @ dependent on

parameters 7, and ;. Bold line denotes loci of solutions corresponding to the experimental

result 0f 0.001° (0.017 mrad).
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Fig. 13: Map of permanent angular deformation of the two-bridge actuator catculated i
FEM simuwlations using different parameters of critical temperature T and stress o

The map clearly shows high sensitivity of simulation results to thermoplastic material data,
especially in modelling of thermally-induced micro deformations. A few percent change in
the critical temperature T, value can give a change of the FLM result described by a factor of
100. Calculations performed on a personal computer with 2.6 GHz processor frequency and |
(GB RAM capacity took approximately 31 hours.

4 Conlusions

Numerical modelling of the two-bridge actuator allowed insight into thermomechanics of
laser-induced plastic deformation of the structure. Apart from the upsctting mechanism. the
behaviour of the actuator is influenced also by bending moments usually related o [rame
structures. The upsetting mechanism dominates high-temperature detormation of the actuator.
Temperature gradient mechanism on the material thickness plays minor role in the case under
consideration, where relatively long laser pulses were applied.
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Modelhng of thermally-induced micro deformations requires adequately accurate material
data. tn particular regarding energy absorption, dissipation and the material thermoplastic
properties. Series of FEM simulations showed high sensitivity of numerical results to the
yield stress dependence on temperature. Application of the critical temperature concept and
simplified yield stress characteristics. although frequently necessary due to the shortage of
high-temperature thermo-mechanical data of materials, can lead to significant crrors of
calculated micro deformations.
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