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1. Introduction

The main objective of this paper is to improve stability conditions, uniqueness and convergence
of numerical analysis of metal forming processes with contact constraints enforced by the penalty
method. A commonly known drawback of this approach is the choice of penalty factor values. When
assumed too low, they result in inaccurate fulfillment of theconstraints while when assumed too high,
they lead to bad conditioning of the equations system which affects stability and uniqueness of the
solution. The proposed modification of the penalty algorithm consists in adaptive estimation of the
penalty factor values for the particular system of finite element equations and for the assumed allowed
inaccuracy in fulfillment of the contact constraints. The algorithm is tested on realistic examples of
sheet metal forming. The finite element code based on flow approach formulation [1, 2] (for rigid-
plastic and rigid-viscoplastic material model) has been used.

2. Main idea of penalty algorithm modification

The main idea is to estimate the penalty factors , adjusting their values to current stiffness and
load conditions of the model and to an assumed accuracy of contact modelling. It is assumed that the
penalty factorsǫk differ at different locations (for different discrete node-to-surface contact constraints
k = 1, . . . , M) and at different time steps or even equilibrium iterations.
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Figure 1. Elastic spring with contact constraint

The idea is first explained on a 1D exam-
ple. The model shown in figure 1 is considered;
k denotes stiffness of the spring,q is the excit-
ing force,û is the assumed value of displacement
(restriction resulting from the contact constraint),
ǫ is the penalty factor andδ is the allowed in-
accuracy of contact modelling (limit penetration
depth). It is clear that, in order to preserve the de-
sired accuracy of the solution, the penaltyǫ must
at least equal[k(û − δ) − q] /δ.

Let us now pass to the general 3D case, i.e.
consider a FE-discretized structure, with a non-
linear system of equations solved by the Newton–
Raphson scheme for the unknown displacement
vectoru. Our goal is now to estimate the penalty
factor valuesǫk as large enough to preserve the desired accuracy of contact constraints but not larger
so that the conditioning of the system matrix is not significantly worsened.

The allowed inaccuracy of contact modeling (penetration) is now a vectorδ = {δk}. Thus,
in the worst case we allowDu − û = δ, whereD is a geometric matrix of directional cosines
of rigid surfaces at the contact points. Substituting this to the general contact-penalized system of
equations [4]
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u′ = q′ + DT
ǫû′, ǫ = diag(ǫk),(1)



Figure 2. Benchmark test of deep drawing: initial geometry and deformed shape with contact penetration map.

(whereu′ is the solution corrector at the current iteration andq′ the vector of residual forces), one can
derive after a series of transformations the formulaǫδ = D(q′ −Ku′). Recalling thatǫ is a diagonal
matrix, we rewrite it the index notation as

ǫk =
Dki(q

′

i − Kiju
′

j)

δk

(no summation overk).(2)

Equation (2) is the recipe for the adaptive penalty factor values. Unfortunately, the displacement
correctorsu′

j on the right hand side are not known the moment and we need to replace them by their
available approximate. Since in the convergent iteration scheme the subsequent corrections tend to
zero, it is proposed to setu′

j = 0, except for the nodes where active contact constraints apply –
thereu′

j are set to simple orthogonal projection vectors of the current node position onto the contact
surface. Thus, the formula (2) does actually yield approximate rather than exact values of desired
penalty factors, which does not guarantee fulfillment of theimposed accuracy condition of contact
modelling, but appears to be sufficient to keep the inaccuracy at least at the order of magnitude of the
allowed limits,Du− û ∼ δ.

3. Numerical example: Deep drawing of a plastic sheet

The numerical example is a deep drawing of a sheet. The drawing parameters and geometry of
tools are taken from the benchmark proposed by Woo in [3]. Thegeometry of the sheet and tools are
presented in figure 2. The assumed inaccuracy of contact modelling at all nodes isδ = 0.001 mm.

Figure 2 (right) presents the contact modeling inaccuracy,i.e. the penetration depth of sheet
nodes into rigid tools. The picture presents the results forthe step for which the worst inaccuracy was
detected. As it can be seen, its magnitude is kept at the levelof 10−3 mm.
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