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Abstract

The main objective of the presented study is an evaluation of the effectiveness of various methods for estimating statistics of rotor-shaft
vibration responses. The computational effectiveness as well as the accuracy of statistical moment estimation are essential for efficient
robust design optimization of the rotor-shaft systems. The most important sources of the observed response scatter are inherently ran-
dom rotor-shaft residual unbalances as well as stiffness and damping properties of the journal bearings. A relevant representation of
these parameters leads to multidimensional stochastic models. The compared stochastic moment estimation methods include sampling
techniques, the dimension reduction method and the polynomial chaos expansion method. Two problems of the rotor-shaft vibration
analysis are considered: a typical single-span rotor-shaft of the 8-stage centrifugal compressor driven by the electric motor and a large
multi-bearing rotor-shaft system of the steam turbogenerator. It is shown that methods that provide a satisfactory balance between the
estimation accuracy and computational effectiveness are sampling techniques. Methods employing polynomial chaos expansion per-
form well in the case of reduced stochastic models. On the other hand, low accuracy of the methods based on Taylor series expansion
very often renders these techniques unsuitable for the robust design optimization of vibrating rotor shafts.
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1. Introduction

In exploitation of rotating machines some of the observed phe-
nomena are considered to be particularly undesired from the
viewpoint of effectiveness and safety. Excessive stress concen-
trations and rubbing effects occurring between stators and rotors
attached to flexible shafts subjected to lateral vibrations can be
given as examples of such a detrimental behavior. The modern,
responsible and heavily affected rotating machines must assure
possibly high level of reliability, durability and safety in opera-
tion. For these reasons their design process should be performed
very thoroughly in order to obtain relatively small magnitude of
unavoidable dynamic excitation, e.g. due to residual unbalance,
gas-pressure forces or electromagnetic forces.
While aiming at realistic modeling of rotor-shaft systems the ac-
tual stochastic nature of important model parameters should be
taken into account. The main objective of the presented study is
to investigate methods that allow for efficient scatter estimation
of the rotor-shaft vibration responses. The scatter is basically
caused by inherently random rotor-shaft residual unbalances and
by uncertain journal bearing parameters. By evaluating mean
values as well as variances of the responses of interest one can
not only assess a typical performance of the rotating machine,
but also its sensitivity with respect to parameter imperfections.
Efficient methods of stochastic moments estimation are a cru-
cial component of robust design optimization (RDO) algorithms
(a comprehensive survey of RDO formulations and solution tech-
niques is given in e.g. [15, 6, 1]). The goal of the rotor-shaft
robust design optimization is to find the optimal design that is
not sensitive with respect to parameter imperfections even when
the rotor-shaft is subjected to considerable bending or torsional
resonant vibrations.

In the current paper there is examined feasibility of various meth-
ods to compute statistical moments of the rotor shaft vibration re-
sponses. The investigated methods include sampling techniques,
i.e. the classical Monte Carlo as well as Latin hypercube sam-
pling, the Taylor series expansion method (the perturbation ap-
proach), the so-called dimension reduction methods proposed by
Xu and Rahman [17] and the polynomial chaos expansion method
[3, 2]. It must be emphasized that problems concerning the prop-
agation of uncertainty in analysis of complex systems have al-
ready been addressed by many authors in numerous papers, see
e.g. [4, 5, 8, 11]. However, these issues do not seem to have
been investigated for the rotor shaft systems where the stochas-
tic model is typically given by a big number of random variables
describing residual unbalances and bearing properties.
The paper consists of four main sections. In Sec. 2 each of the
studied scatter analysis techniques is shortly described. Sec. 3
introduces the employed hybrid mechanical model of the rotor-
shaft system, which thanks to its high computational efficiency
is particularly convenient for stochastic analyses. Finally, in sec-
tions 4 and 5 the effectiveness of the selected methods for sta-
tistical moment estimation is compared using two problems of
the rotor-shaft vibration analysis. The first example deals with a
typical single-span rotor-shaft of the 8-stage centrifugal compres-
sor driven by an electric motor. In the second example a model
of a large multi-bearing rotor-shaft system of the steam turbo-
generator is considered.

2. Statistical moment assessment

It is fairly typical in mechanical and civil engineering that some
quantities which describe a structural system and applied loads
should be modeled as random variables, X1, . . . , Xn. They are
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called the basic variables and constitute a random vector X whose
samples x belong to the Euclidian space with the probability
measure defined by the joint probability density function (PDF)
fX(x). Assuming a rotor-shaft vibration response Y is a function
of the basic variables, Y = h(X), in the current study we focus
on estimating the mean value µY and the variance Var(Y ) = σ2

Y

of Y , which are given, respectively, by

µY = E[Y ] =

∫ ∞

−∞
h(x)fX(x) dx, (1)

σ2
Y = E[(Y − µY )2] =

∫ ∞

−∞
[h(x)− µY ]2fX(x) dx. (2)

The following methods for computing the above moments are in-
vestigated:
Simulation methods – They employ samples of basic random
variables X to assess the values of µY and σ2

Y . The commonly
used unbiased estimators are formulated as follows:

µY ≈ Ȳ =
1

N

N∑
i=1

Y (i) =
1

N

N∑
i=1

h(X(i)), (3)

σ2
Y ≈s2= 1

N − 1

N∑
i=1

(Y (i)−Ȳ )2 =
1

N

N∑
i=1

[h(X(i))−Ȳ ]2. (4)

Realizations x(i), i = 1, . . . , N , of the random vector X are
drawn from the distribution of X and the moments are computed
using the well known estimators. The simulation methods dif-
fer mainly by the way the samples are obtained. One may dis-
tinguish two major sampling techniques: random sampling (RS)
and descriptive sampling [10]. Under some assumptions, the so-
called Latin hypercube sampling (LHS) [9] can be classified as a
descriptive sampling technique. In the performed study the effi-
ciency of RS as well as LHS are examined.
Taylor series expansion method – An alternative method of esti-
mating stochastic moments of random functions is based on ex-
panding these functions into Taylor series around the mean values
of random variables. In the expansion the terms of order higher
than two are usually neglected and the stochastic description of
variables is given only by the vector of mean values and the co-
variance matrix. Such approach is called the stochastic perturba-
tion method [7]. Contrary to sampling techniques that reduce to
computing the random function values for many realizations of
random variables the major component of perturbation methods
is sensitivity analysis, i.e. computing gradients and higher order
derivatives of the functions of interest. In our study only the first
and second order perturbation methods are considered.
Dimension reduction method (DRM) – Also this method is
based on expanding the random function into Taylor series
around mean values of random variables, see [17]. However, con-
trary to the perturbation approach, DRM does not require com-
puting values of partial derivatives. The method allows for sig-
nificant reduction of computational cost with respect to numeri-
cal integration of equations (1) and (2). By DRM the multivari-
ate function h(X) is approximated by a sum of less dimensional
functions depending only on s < n variables with the other vari-
ables fixed to their mean values. >From the point of view of
computational efficiency the two versions of the method are par-
ticularly attractive. These are the univariate dimension reduction
(UDR) and the bivariate dimension reduction (BDR) methods .
Polynomial chaos expansion method (PCE) – Provided the vari-
able Y = h(X) has a finite variance, it can be expanded onto the
so-called “polynomial chaos” basis as follows [2]:

Y = h(X) =
∑

α∈Nn

aαψα(X), (5)

where aα are unknown deterministic coefficients and ψα are
multivariate polynomials, orthogonal with respect to the joint
PDF fX(x). In practice, for computational efficiency the series
in Eq. (5) is truncated after a finite number of terms. Most often,
the polynomials, which degree |α| =

∑n
i=1 αi is higher than a

given degree p, are eliminated from the series. The number of aα
coefficients that have to be computed is equal to

M =

(
n+ p
p

)
. (6)

The unknown coefficients are usually computed by the regression
approach. Since the number of coefficients in truncated expan-
sion grows rapidly with the number of variables n and the poly-
nomial degree p, therefore, in order to reduce the computational
burden and to improve the approximation quality of the method
Blatman and Sudret proposed in [2] an adaptive sparse PCE. The
iterative algorithm allows to eliminate these of expansion coef-
ficients which are not significant in approximation of function
h(X). A version of the sparse PCE algorithm implemented by
the authors of the current paper was used for assessing statistical
moments of the rotor-shaft vibration response.

3. Description of the hybrid mechanical model of the rotor-
shaft system

In order to obtain sufficiently reliable results of numerical sim-
ulations together with a reasonable computational efficiency, the
vibrating rotor-shaft system of a rotor machine is usually mod-
eled by means of one-dimensional finite elements of the beam-
type. Nevertheless, such models can still be characterized by rel-
atively high number of degrees of freedom in the range between
hundreds and even thousands, which may substantially increase
the computational cost of sampling methods. Thus, in case of
large finite-element models proper algorithms reducing number
of degrees of freedom have to be employed in order to shorten
computer simulation times. It is to remember that such reduc-
tions of degrees of freedom are troublesome and can lead to com-
putational inaccuracies. In order to avoid the abovementioned
drawbacks of the finite element approach and to maintain the ob-
vious advantages of this method, in this paper, similarly as in
[12, 13, 14], the dynamic analysis of the entire rotating system
is performed by means of the one-dimensional hybrid structural
model consisting of continuous visco-elastic macro-elements and
discrete oscillators. This model is employed here for eigenvalue
analyses as well as for numerical simulation of lateral vibrations
of the rotor-shaft. In the model successive cylindrical segments
of the stepped rotor-shaft are substituted by flexurally and tor-
sionally deformable cylindrical macro-elements of continuously
distributed inertial-visco-elastic properties. A typical i-th contin-
uous visco-elastic macro-element is presented in Fig. 1.
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Figure 1: Flexurally and torsionally deformable continuous
visco-elastic macro-element.
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In this figure symbols Ai, Ii and I0i, i = 1, 2, ..., ne, denote
respectively the cross-sectional area, the diametral and polar ge-
ometric moment of inertia and ne is the total number of macro-
elements in the considered hybrid model. The transverse and tor-
sional external loads continuously distributed along the macro-
element length li are respectively described by the two-argument
functions pi(x, t) and qi(x, t), where x is the spatial coordinate
and t denotes time. With an accuracy that is sufficient for prac-
tical purposes, in the proposed hybrid model of the rotor-shaft
system, some heavy rotors or coupling disks can be represented
by rigid bodies attached to the macro-element extreme cross-
sections, as shown in Fig. 1. Here, symbolsmi, Ji and J0i denote
respectively the mass and the diametral and polar mass-moments
of inertia of this rigid body. Each journal bearing is represented
by a dynamic oscillator of two degrees of freedom, where apart
from the oil-film interaction also the visco-elastic properties of
the bearing housing and foundation are taken into considera-
tion. This bearing model makes possible to represent with a rel-
atively high accuracy kinetostatic and dynamic anisotropic and
anti-symmetric properties of the oil-film in the form of constant
or variable stiffness and damping coefficients. An example of
such a hybrid model of the centrifugal compressor rotor-shaft is
presented in Fig. 2. The rotor-shaft is supported on two journal
bearings, where the additional support in its mid-span caused by
the aero-dynamic cross-coupling effect is also taken into consid-
eration. The complete mathematical formulation and solutions
for such hybrid models of the rotor-shaft systems can be found
in [12, 13, 14]. 

 

Aerodymamic cross-coupling #1 #2 

Ω 

Figure 2: Hybrid mechanical model of the compressor rotor-
shaft.

4. Numerical example: the centrifugal compressor rotor-
shaft

4.1. Model description

In order to create an adequate geometrical and mechanical repre-
sentation, the stepped-rotor shaft of this compressor of the total
length 2.8m and total weight 485 kg has been modeled by means
of ne = 27 continuous macro-elements. All geometrical pa-
rameters of the successive real rotor-shaft segments together with
their material constants as well as the average stiffness and damp-
ing coefficients of the oil-film in the bearings of this compressor
have been taken from [16].
In the first step of dynamic analysis the eigenvalue problem must
be solved in order to obtain fundamental natural frequencies and
the corresponding eigenfunctions of bending and torsional vibra-
tions. As it follows from the comparison performed for the con-
stant nominal rotational speed 5626 rpm, the shear effect taken
into consideration in the case of Timoshenko’s beam theory re-
sults in a little bit smaller natural frequency values than these
determined by means of Rayleigh’s beam model. Here, in the fre-
quency range 0 ÷ 400Hz containing the first 10 bending eigen-
forms, which is the most important from the engineering view-
point, the respective differences do not exceed 2%. The eigen-
functions corresponding to these natural frequencies and deter-
mined using both beam theories respectively overlay each other.

According to the above, one can conclude that in this frequency
range an application of Rayleigh’s rotating beam theory seems to
be sufficiently accurate for further simulations of forced vibra-
tions. For the considered compressor rotor-shaft regarded here
as dynamically isolated from the driving motor by means of the
low-stiffness elastic coupling the torsional eigenvalue problem
has been solved using the analogous hybrid (discrete-continuous)
model described e.g. in [12]. The obtained in this way the
lowest torsional natural frequency values 597.8 and 1212.4Hz
are far away above the fundamental first 10 bending natural fre-
quencies, therefore assumed that during the investigated entire
dynamic process flexural deformations of the shaft are predom-
inant and the shaft torsional dynamic deformations seem to be
negligible. According to the above, the rotor-shaft can be re-
garded as a torsionally rigid body rotating with a rotational speed
gradually varying in time during start-ups and run-downs. How-
ever, the shaft bending vibrations induced by the system residual
unbalance are taken into consideration. For the assumed resid-
ual static unbalances uniformly distributed along each cylindrical
rotor-shaft segment and for the concentrated static unbalances of
each rigid body representing rotor-disks the external excitation is
expressed by means of the following forcing terms:

pi(x, t) = εiρAiΩ
2(t) sin(Θ(t) + ψi),

for 0 < x < li, i = 1, 2, . . . , ne,

Pk(t) = εkmkΩ
2(t) sin(Θ(t) + ψk),

for x = 0, k = 1, 2, . . . ,K.

(7)

where εi, εk denote the proper eccentricities caused by admis-
sible manufacturing errors, ψi, ψk are the respective phase shift
angles of the unbalance circumferential location with respect to
the shaft rotation axis, K denotes the total number of rigid disks
in the model. For the assumed hybrid model of the investigated
compressor rotor-shaft in the frequency range 0 ÷ 1000Hz 14
bending eigenmodes have been considered to calculate forced vi-
bration amplitudes with sufficiently high computational accuracy.

4.2. Assessment of statistical moments

The stochastic model of the compressor rotor-shaft contains 64
random variables X = {X1, . . . , X64}. The stiffness as well
as damping coefficients of the two journal bearings are repre-
sented by 16 normally distributed variables with the coefficients
of variation equal to 10% for the stiffness and 15% for the damp-
ing coefficients. It was assumed that the distribution of residual
unbalances of the rotor-shaft segments can be represented by a
weighted sum of 4 principal eigenmodes with the most proba-
ble contribution from the first eigenmode, with the value of the
corresponding weight coefficient up to 0.8, and the contribu-
tions from subsequent modes controlled by the maximal values of
their weight coefficients equal to 0.1, 0.08 and 0.02, respectively.
Therefore, the weight coefficients are modeled by uniformly dis-
tributed random variables in the ranges (0, 0.8], (0, 0.1], (0, 0.08]
and (0, 0.02]. The random magnitude of the unbalances is ob-
tained by setting the maximal value of such constructed distribu-
tion function to be equal to a realization of log-normal random
variable with the expectation 0.15mm and the standard deviation
0.02mm. The remaining random parameters are: 27 uniformly
distributed phase shift angles in the range 0 ÷ 2π, 8 uniformly
distributed rotor-disk unbalances in the range 0 ÷ 1mm and fi-
nally 8 uniformly distributed rotor disk phase shift angles in the
range 0÷ 2π.
The selected method of modeling the unbalances can be justi-
fied by a technological process of the rotor-shaft manufacturing.
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The predominant unbalance amplitude distribution of the succes-
sive stepped shaft segments according to the first lateral eigenvi-
bration mode is substantiated by the machining processes typical
for the considered rotor-shaft type. Namely, the rotor-shaft usu-
ally clamped at both ends can be forced to bending vibrations by
the cutting tool, when an excitation of the first eigenmode is the
most probable and an excitation of the next eigenmodes seems
to be of a secondary importance. The assumed uniform distribu-
tion of phase shift angles of these unbalances follows from the
shaft segment-to-segment machining steps usually set as mutu-
ally independent during the entire cutting process. However, the
uniform distribution of the gravity center eccentricities together
with their phase shift angles of the rotor-disks can be substanti-
ated by their commonly applied shrink-fit connections with the
shaft, which usually requires final balancing of the entire rotor-
shaft system upon its ’on-site’ assembly.
The rotor-shaft vibrational response Y (X), which mean value
and standard deviation are to be estimated, is the maximal vibra-
tion amplitude. For most of the realizations of the vector X this
maximal lateral rotor-shaft displacement occurs in the mid-span
of the rotor-shaft.
In order to establish reference values of the estimated statistics
a random sampling with N = 100 000 sample points was per-
formed. The obtained values are Ȳ = 0.4808mm and s =
0.2616mm for the mean and standard deviation, respectively, see
Eqs. (3) and (4).
In Fig. 3 there is shown a scatter plot prepared for a 5000 point
random subset of the 100 000 point sample. As can be observed,
unfavorable realizations of the random variables describing un-
certain parameters of the rotor-shaft system may lead to lateral
displacements of the rotor shaft axis up to 1.7mm. The corre-
sponding histogram, presented in Fig. 3, gives some indication of
the kind of probability distribution, the maximal vibration ampli-
tude obeys. The positively skewed histogram can be well approx-
imated by the Weibull probability density function.
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Figure 3: The compressor rotor shaft example. Scatter and corre-
sponding histogram of maximal rotor-shaft lateral vibration am-
plitude.

The correlation coefficients between the maximal vibration am-
plitude and the random variables are illustrated in the form of a
bar chart in Fig. 4. By examining their values it could be con-
cluded that there are no random variables significantly correlated
with the rotor-shaft response. Lacking statistically dominating
relations it is not a straightforward task to eliminate some of the
variables from the stochastic model. On the other hand, sev-
eral random variables seem to influence the output more than the

other. These are the maximal rotor-shaft residual unbalance and
the direct vertical stiffness and damping coefficients of the jour-
nal bearings. Nevertheless, in the performed comparative study
the complete set of 64 random variables is taken into account.
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Figure 4: The compressor rotor shaft example. Correlation coef-
ficients between random variables and the rotor-shaft response.

The methods based on the Taylor series expansion, described in
[8, 17], entirely failed to estimate the mean and standard devi-
ation of the vibration amplitude. For example, the first order
estimation of the mean leads to Ȳ = 2.78mm, i.e. to the value
many times larger than the reference one. Neither the second or-
der expansion nor the univariate or bivariate reduction approaches
provide a substantial improvement of the first order results.
A reason for this unsatisfactory performance may be the way the
residual unbalances of the rotor-shaft are modeled. It was as-
sumed that the phase shift angles of the unbalance circumferen-
tial location with respect to the shaft rotation axis are modeled by
independent uniformly distributed random variables. Therefore,
accounting for the number of rotor-shaft segments, it is extremely
unlikely that all the phase shift angles of the rotor-shaft unbal-
ances as well as rotor-disk unbalances take the same values. This,
however, is the case for the first order perturbation approach. All
the unbalances are in phase with the phase shift angles equal to
the same expected value π. Since the first symmetrical eigen-
mode determines distribution of residual unbalances, harmonized
phase shift angles are the source of a significant excitation lead-
ing to excessive lateral vibrations. Below, only the results of sam-
pling methods and sparse polynomial chaos expansion technique
are presented.
In order to assess the estimation error of the methods employing
random sampling and Latin hypercube sampling, the mean value
and standard deviation of the rotor-shaft response were computed
by RS and LHS for different sample sizes ranging fromN = 120
to N = 2400. For both sampling method and for each N the es-
timation was performed 300 times using independently generated
samples. This allowed to obtain the estimation error statistics, i.e.
the mean and standard deviation. The results are shown in Figs. 5
and 6. As it can be seen, in the considered example there is no
qualitative difference between RS and LHS and neither of them
is visibly superior with respect to the other. It is interesting to ob-
serve that even for relatively small samples, i.e. N = 340 < 6n,
the mean percentage estimation error is less than 3.5%, which
seems to be acceptable for the purpose of robust design optimiza-
tion. According to Eq. (6) assuming the degree of polynomials
p = 2 and for n = 64 random variables, there are 2145 unknown
coefficients in the truncated polynomial chaos equation (5). The
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coefficients have to be determined by the linear regression ap-
proach described in [2]. Obviously, the solution depends on the
design of experiments used to fit the PC response surface. In
the performed study LH based designs of experiments were used
for this purpose. In consequence, due to the random nature of
such a design, by repeating the analysis for various Latin hyper-
cubes it was possible to obtain estimation error statistics. Two
cases were considered: The first one adopting the LH design with
N = 2150 experimental points, which is slightly more than the
number given by Eq. (6), and the second case with N = 2400.
The employed sparse PC algorithm allowed to reduce the num-
ber of PC expansion terms to about 690. The reduction leads to
an improvement of the linear regression results since a smaller
number of coefficients is determined using the same number of
experiments. The mean estimation error of the sparse PC method
is compared in Figs. 5 and 6 with the sampling techniques.
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Figure 5: The compressor rotor shaft example. Mean relative per-
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In the case of the mean value estimation the error of the PC
method is comparable with RS and LHS results. On the other
hand, the corresponding error of the standard deviation estimation
is significantly higher than the one for sampling techniques. Tak-
ing into account the reduced number of terms in the PC expan-
sion, the similar results can be obtained for smaller LH design,
say for N ≈ 700. This, however, requires an a priori knowledge

of the functional relationship between the random variables and
the rotor-shaft response, which is usually not available.

5. Numerical example: the steam turbo-generator rotor-
shaft

5.1. Model description

The presented methodology of vibration analysis is applied here
in the second numerical example of a rotor-shaft system of the
typical 200MW steam turbo-generator consisting of the single
high- (HP), intermediate- (IP) and low-pressure (LP) turbines as
well as of the generator-rotor (GEN). The rotor-shaft system is
supported by seven journal bearings, as shown in Fig. 7. For the
purpose of this study it seems to be sufficient to model the con-
sidered stepped-rotor shaft of the total length 25.9m by means
of ne =49 continuous macro-elements, as an initial approxima-
tion of its geometry. All geometrical parameters of the succes-
sive real rotor-shaft segments as well as their material constants
have been determined using the detailed technical documenta-
tion of this turbo-generator. The average stiffness and damping
coefficients of the oil film in the bearings as well as the equiva-
lent masses and stiffness and damping coefficients of the bearing
housings are obtained by means of measurements and identifica-
tion performed on the real object.

Figure 7: Hybrid mechanical model of the steam turbo-generator
rotor-shaft system.

As in the previous numerical example, first the eigenvibration
analyzes have been performed for the nominal rotational speed
3000 rpm, using the two abovementioned rotating beam theo-
ries. The shear effect taken into consideration in the case of
Timoshenko’s beam also results in a little bit smaller natural
frequency values than these determined by means of Rayleigh’s
beam model. Here, in the frequency range 0÷150Hz, which is
the most important from the engineering viewpoint, the respec-
tive differences slightly exceed 3%. The eigenfunctions corre-
sponding to these natural frequencies and determined using both
beam theories also respectively overlay each other. Therefore,
similarly as in the first example, one can conclude that in this
frequency range an application of Rayleigh’s rotating beam the-
ory for simulations of forced vibrations seems to be sufficiently
accurate, too.
Since typical steam turbo-generators are the devices operating al-
most permanently in steady-state, out-of-resonance working con-
ditions during a majority of their life, their start-ups and run-
downs are rather rare exploitation phases. Thus, in the considered
case simulations of passages through lateral vibration resonance
zones are not necessary. Therefore, the dynamic and stochastic
analyses of the steam turbo-generator rotor-shaft system are go-
ing to be carried out only for the steady-state, out-of-resonance
operation with the constant nominal rotational speed 3000 rpm
corresponding to the excitation of bending vibrations by means
of residual unbalances with the synchronous frequency equal to
50 Hz. Here, for the assumed hybrid model of this object in the
frequency range of a practical interest 0 ÷ 500Hz, 22 bending
eigenmodes have been considered in computing forced vibration
amplitudes.
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5.2. Assessment of statistical moments

The uncertain parameters of the rotor-shaft system are repre-
sented by 59 random variables. As in the first numerical example,
the stiffness and damping coefficients of 7 journal bearings are
modeled by normal random variables. However, here the com-
mon coefficient of variation is taken equal to 5%. Thus, there
are 56 random variables that correspond to the journal bearings,
i.e. 7×(4 stiffness coefficients + 4 damping coefficients). The
remaining 3 variables account for random values of the residual
unbalances.
The rotor-shaft system of the considered turbo-generator consists
of the 3 units described in 5.1, which are independently man-
ufactured and then mutually connected during on-site assembly
process of the entire device. Each of them is characterized by a
combined cross-sectional structure consisting of the load carrying
shaft core and of the strip created by the turbine blade rims or gen-
erator windings, respectively, attached along this core by means
of a shrink-fit connection. Thus, the residual unbalance distribu-
tions of the HP-IP and LP turbines as well as of the generator ro-
tor are in principle not related to the machining process applied as
in the case of the centrifugal compressor rotor-shaft, but it is more
complicated in character. Taking this into account, it seems to be
reasonable to assume that for each given rotor-shaft unit its un-
balance is proportional to the successive shaft segment diameters
with the common proportionality factor for all segments in the
entire unit. For the 3 rotor-shaft units, this assumption results in
3 variables that model the uncertainty of residual unbalances. The
3 proportionality factors are given by realizations of log-normally
distributed random variables. Based on the technical data for the
considered turbo-generator rotor-shaft system, the mean values
of the 3 uncertain factors were estimated as: 5.6 · 10−5 for the
HP and IP turbines, 2.0 · 10−5 for the LP turbine and 3.2 · 10−6

for the generator rotor. The coefficient of variation of these vari-
ables was assumed equal to 10%. According to this assumption,
each rotor-shaft unit is characterized by the common phase shift
angle for all unbalance amplitudes corresponding to successive
shaft cylindrical segments. The obtained in this way 3 phase shift
angles for each abovementioned rotor-shaft units are not random,
but they are determined from respective identification measure-
ments performed for the real object and assumed equal to zero
for the HP-IP turbine, 2.79 rad for the LP turbine and zero for the
generator rotor unit.
To get reference values for the mean and standard deviation of
maximal rotor-shaft lateral displacement a thorough random sam-
pling with the sample size N=100 000 was performed. The ob-
tained estimations are Ȳ = 0.0972mm and s = 0.0091mm.
These values are many times smaller than the corresponding ones
from the compressor rotor-shaft example.
When analyzing the simulation results it is interesting to check
correlations between the random variables and the considered
vibrational response. The values of correlation coefficients are
graphically presented in Fig. 8. Contrary to the previous numer-
ical example, here one can easily select variables that strongly
influence the value of the vibration amplitude. A random scatter
of the values of these variables directly translates into the scat-
ter of the rotor-shaft response. In particular, variable X57, which
represents the random factor of residual unbalance magnitude for
the HP and IP turbines, is strongly positively correlated with the
response. The corresponding correlation coefficient ρ = 0.84
indicates that this variable is the major source of the response
variance. Thus, a natural choice is to reduce the stochastic de-
scription of the rotor shaft by keeping only the variables signif-
icantly correlated with the vibrational response. If considering
only the three variables marked in Fig. 8, the estimated moments

are equal to 0.0975mm and 0.00838mm for the mean and stan-
dard deviation, respectively. The obtained values provide a very
accurate assessment of the moments computed for the full model
consisting of 59 variables. If adding two more variables into the
reduced model, i.e. variables X9 and X19 corresponding to stiff-
ness coefficients of journal bearings #3 and #5, the estimations
of the mean value and standard deviation change to 0.0974mm
and 0.00870mm, respectively. Since the variance of the reduced
model is more than 90% of the variance of the full model, the
performance of stochastic moment estimation methods was ex-
amined for two cases: the full model characterized by 59 vari-
ables and the reduced one characterized by 5 variables.
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Figure 8: The turbo-generator rotor shaft example. Correla-
tion coefficients between random variables and the rotor-shaft re-
sponse.

Below, for the complete stochastic model, in Figs. 9 and 10 there
are shown the mean percentage estimation errors for moments
computed by RS, LHS and PC expansion methods. The error
statistics are based on 300 repetitions of a given method for each
value of N . As it can be seen, contrary to the previous numerical
example, the Latin hypercube sampling provides the best estima-
tion quality for each sample size.
Even though a very precise estimation of the mean value of the
maximal rotor-shaft vibration amplitude can be obtained for rel-
atively small samples, i.e. N = 120 ≈ 2n, a proper estimation
of the standard deviation of this rotor-shaft response requires an
application of more sample points, where N = 360÷ 600 yields
the error of approximately 2%.
The results of the PC expansion method are very accurate, espe-
cially in the case of mean value estimation. Unfortunately for a
big number of random variables this approach is rather inefficient
due to a size of the necessary design of experiments. When post-
processing the sparse PC expansion results, it turned out that the
reduction algorithm allowed to eliminate more than 1000 out of
1830 coefficients from the expansion (5). However, there is still
more experimental points than required for sampling methods in
order to guarantee an estimation that is accurate enough for the
purpose of robust design optimization.
Again, as in the case of the compressor rotor-shaft, the meth-
ods based on the Taylor series expansion performed poorly when
compared to other techniques. The dimension reduction meth-
ods, described in [17], completely failed to produce results of
any relevance to the values of actual statistics. However, con-
trary to the previous numerical example, here the major reason
for the observed discrepancies is not connected with the artificial
excitation of the rotor-shaft vibrations due to the alignment of un-
balance phase shift angles, which has been described in Sec. 4.2.
It seems that for problems with a big number of random vari-
ables the values of stochastic moments obtained by DRM may
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be strongly affected by numerical integration errors, unavoidable
when integrating non-polynomial functions using quadrature for-
mulas. The “standard” perturbation methods yield much better
estimations but still they are inferior when compared to simu-
lation methods. The respective results are given in captions of
Figs. 9 and 10. In fact, only the first order mean value estima-
tion can be considered as a satisfactory compromise between the
estimation accuracy and the computational cost.
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Figure 9: The turbo-generator rotor shaft example - full model.
Mean relative percentage error of the mean value estimation of
the maximal rotor-shaft vibration amplitude obtained using RS,
LHS and sparse PCE. The graph point labels stand for standard
deviations of the errors. The corresponding results for Taylor ex-
pansion methods [8]: first order – for N = 61 the error is 2.4%,
second order – for N = 1830 the error is 2.3%.
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Figure 10: The turbo-generator rotor shaft example - full model.
Mean relative percentage error of the standard deviation estima-
tion of the maximal rotor-shaft vibration amplitude obtained us-
ing RS, LHS and sparse PCE. The graph point labels stand for
standard deviations of the errors. The corresponding result for
Taylor expansion methods [8]: first order – for N = 61 the error
is 12.16%.

The same tests were performed for the reduced stochastic model
consisting of 5 random variables. The results are shown in
Figs. 11 and 12. They can be examined from two different per-
spectives. The first one is a comparison of estimation accuracy of
the investigated methods for a given sample size. The other per-
spective is a selection of the sample size that provides sufficient
estimation quality in order not to introduce an extensive numeri-
cal noise into the objective and constraint functions of the robust
design optimization problem.
If we compare the error values computed by RS and LHS tech-
niques obtained for N = 120 using the complete and the re-

duced model, we may notice that the respective values match
quite closely. This can be considered as a proof that the adopted
reduced model is representative for the complete model and the
eliminated variables do not bring much to the response scatter.
Therefore, if such a reduction is possible, the non-sampling tech-
niques, such as PC expansion, which are inefficient for multidi-
mensional problems, may turn out to be competitive with respect
to LHS. Especially in estimating the standard deviation, indepen-
dently of the model used, in order to get a precise estimation, e.g.
with the error of ca. 2%, samples of more than 300 point are
necessary for Latin hypercube sampling. On the other hand, if
the second order or the third order PC expansion method is em-
ployed, such an estimation accuracy is possible in the case of the
reduced model even for N = 100.
The results of perturbation approach as well as univariate dimen-
sion reduction method are given in captions of Figs. 11 and 12.
Also in this case they are visibly worse than the estimations pro-
vided by other methods.
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Figure 11: The turbo-generator rotor shaft example - reduced
model. Mean relative percentage error of the mean value esti-
mation of the maximal rotor-shaft vibration amplitude obtained
using RS, LHS and sparse PCE. The graph point labels stand for
standard deviations of the errors. The corresponding results for
Taylor expansion methods [8]: first order – for N = 6 the er-
ror is 2.71%, second order – for N = 15 the error is 2.69%.
Estimation by UDR [17]: for N = 25 the error is 1.59%.
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6. Conclusions

The objective of this study was to examine feasibility of various
stochastic moment estimation methods for their use in robust de-
sign optimization (RDO) of vibrating rotor-shaft systems. The
observed scatter of the rotor-shaft vibrational responses is mainly
due to the uncertainty of residual unbalances as well as random
characteristics of stiffness and damping coefficients of the jour-
nal bearings. Since in popular RDO formulations the objective
function and design constrains are defined in terms of mean val-
ues and variances of selected structural performance functions,
the efficiency of stochastic moment estimation is crucial for nu-
merical complexity and convergence of the RDO process.
The following methods were compared: the sampling meth-
ods (classical Monte Carlo and Latin hypercube sampling), the
perturbation approach, the dimension reduction method and the
polynomial chaos expansion method. To evaluate usefulness
of a particular method, the mean and standard deviation of the
maximal lateral vibration amplitude were estimated for two ro-
tor shafts: the centrifugal compressor rotor-shaft and the turbo-
generator rotor-shaft. The vibration analysis was carried out
by means of the hybrid structural model consisting of one-
dimensional beam-like continuous visco-elastic macro-elements
and discrete oscillators. Such a hybrid model proved to be very
computationally efficient and reliable, which is of a major impor-
tance in the context of stochastic analysis.
A proper representation of uncertain parameters of the rotor-shaft
systems may lead to large stochastic models. In the analyzed ex-
amples they consisted of 64 and 59 random variables for the com-
pressor rotor-shaft and the turbo-generator rotor-shaft, respec-
tively. In the second case it was shown that the original model
could be reduced to 5 variables, which are the main sources of
the response scatter observed using the full model.
The methods based on the Taylor series expansion performed
poorly in both considered cases. For multidimensional problems
the dimension reduction technique seems to suffer from using in-
accurate numerical integration scheme. On the other hand, the
classical perturbation approach produced acceptable results only
for the mean value estimation of the turbo-generator vibrational
response. Better estimations were obtained when the reduced
stochastic model was employed. Still, they were inferior with
respect to the other investigated techniques.
The polynomial chaos expansion method provided stochastic mo-
ment assessment of comparable accuracy with the simulation
techniques. However, even using the algorithm of eliminating
insignificant expansion terms, i.e. sparse PC expansion, it may
be of little practical use for problems involving many (tens, hun-
dreds) random variables. On the other hand, if a reduced stochas-
tic model is available, these methods may turn out to be more
efficient than methods based on Latin hypercube sampling.
However, for RDO of the rotor-shaft systems, when the design
changes during the optimization process and it is not possible
to determine in advance the random variables influencing the re-
sponse scatter, a “safe” solution seems to be the Latin hypercube
sampling. Even for relatively small samples it gives the stochas-
tic moment estimation that is sufficient for the purpose of the re-
sponse surface based RDO.
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