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ON THE STRESS EQUATIONS OF MOTION IN THE LINEAR THERMOELASTICITY
JOZEF IGNACZAK (WARSZAWA)

Introduction

It has been shown in [1] that if a dynamic problem of linear elasticity® is formu-
lated in terms of stresses, it is sufficient to meet only one stress tensor equation?
and suitable stress initial and boundary conditions. In this case, displacement
vector is excluded from the considerations.

In [1] and [2] certain aspects of pure stress equations of motion method have been
emphasized. From the theoretical point of view it may be interesting to ask if the
dynamic stress problem can be reduced to a «natural stress-boundary value problem?».
For example, can the system of plane stress equations of motion (three equations)
be replaced by another system (two equations) in such a way that there will appear
only such stress components as are prescribed on the boundary of the elastic body?
In the last system the number of equations and unknown functions will be the same
as in the displacement method of solution but the boundary conditions will take
the simplest form.

One should not mix this question with the economy of solution methods in classic-
al elastodynamics. In the present paper, we shall make neither any attemps to
appraise the comparative merits of the alternative methods of solution of initial-
boundary value problem nor prove that stress equations of motion method appears
to be considerably more economical than the procedures previously used in this
connection. Only some new aspects concerning direct determination of stresses
from the stress equations of motion will be pointed out. The problem chosen
for this purpose is that of the stress formulations in dynamic thermoelasticity.
Anexample of the so—called« natural stress boundary value problem» will be also
shown.

1. The Necessary and Sufficient Conditions for Tensor 0;; to Belong to Linear,
Dynamic Thermoelasticity
Let us consider a homogeneous, isotropic, elastic medium. We assume that the
elastic moduli 2, u and the coefficient of thermal expansion of the body a, are constant
and independent of the temperature 7' = T'(x, 1).

1 In [1] a linear non-homogeneous and anisotropic elastic solid has been considered.

2 A system of six equations for six unknown components of the stress tensor oj;.

3 The first initial-boundary value problem in linear elastodynamics (the displacement vector
prescribed on the boundary for ¢ > 0 and its value and velocity at initial moment # = 0) is naturally
governed by the displacement equations of motion.
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The following equations must be met by thermal stress tensor 0y, (04),1,j =1, 2, 3,
(a, B = 1,2) in any linear elastic body:
1. Three—dimensional space x; = (xy, Xy, X3), ¢ = time,
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2. Two-dimensional case: x, = (X, X).
a. Plane strain solution: o, = 0,4 (x,, 7).
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Proof of necessity of (1.1)-(1.2) has been given in [3]. To demonstrate (1.3)-(1.6)
the definitions of plane strain and generalized plane stress solutions should be taken
into account. See, for example, [4].

Equations (1.1)-(1.6) provide general suggestions about the stress tensor oy;.
However, they are not sufficient to solve in general the stress boundary value problem
even if suitable stress initial and boundary conditions are prescribed.

4 For the notations that we have adopted, see [3].
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The following stress initial-boundary value problems are formulated correctly:
I,: Find the tensor 0;; = 0y;(x, t), x belongs to ¥V, 0 < ¢ < oo, such that:

(1.7) 03 (%, 0) = 6;(x,00 =0, xeV,
(1.8) 0y (6, Ony(x) =0, xeB, 0<1t< 00,

+2a,0 Tai]

1]. 20;
(1.9 c—g[o'u(x’ 1) — 31+2 5o (x, 1)

—U‘ik'kj(x, t)—o'jk’“(x, t)=0, er, 0< R0
I1,: Find the tensor 0,3 = 0,5(x, 1), xeD, 0 <t < oo, that meets set:

(1,10) 0o (x,0) = Gpp(x,0) =0, xeD,

(1.11) (X, Inp(x) =0, xe€£, 0<t< o,
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II1,: Find the tensor G,5 = d,(x, 1), x€ D, 0 < t < o0, such that:
(1.13) | Tap(x,0) = 0pp(x,0) =0, xeD,
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xeD, 0<t<oo.

To prove the correctness of stress formulations 7, I1,, I11, see [1] and use Duha-
mel-Neumann strain-stress relations which account for temperature field.

The necessary conditions (1.1)-(1.6) can be useful to solve problems I,-I11,,
that we have just stated. According to (1.2), (1.4), (1.6), the following tensors can
be accepted as the particular stress solutions of dynamic thermoelasticity:

(1.16) ofy = BT (26 (T sy — T 5s0y5) +0T8,],
(1.17) o = 190[];2[2‘11(1",,3 Tyu aﬁ)+9T5¢ﬁ]
(1.18) 2 = Do 012 [20(T ap — T,pu Oug) + 0T0s],

where 172 and Dl_z denote the inverse operator of []2 and inverse operator of Dv
respectively. We note that (1.16)-(1.18) display an explicit dependence of the stress
tensor on the temperature function. Direct substitution of (1.16), (1.17) and (1.18)
into (1.9), (1.12) and (1.15) respectively shows that of;, 0%, 0%, also meet sufficient
conditions, consequently, they represent the particular solutions of dynamic thermo-
elasticity®. If, for example, I, problem has to be solved, we can write: 0y = of+ofj,

® The particular stress solutions (1.16)-(1.18) constitute a counterpart of potential solutions
n thermoe lasticity. See, for example, [5] and [6].
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where of; meets a non-homogeneous boundary conditions'and homogeneous stress
Eq. (1. 9) We shall not discuss here the economyof the last-procedure that seems
to be somewhat lengthler than the displacement method of analysis. We shall show
an example concerning /71, problem and show how this problem can be replaced
by the so—called «natural stress boundary value problem»?

Example. Find the stress tensor g, = 0,p(, ) that meets I11,,if D is a strip region
[eyl =00, 1% | =il <7lioos

One of the most natural methods of solution in this case seems to be the integral
transforms method [7]. Taking into account (1.18) as the particular stress solution,
it is seen that the only system which will be left to discuss are three homogeneous
Egs. (1.15). Applying to (1.15) the Laplace transform and then Fourier transform
defined by:

(1.19) £ x5 p) = | € (x5, x03 D,

0

0

f ¢i8%1 g% (x, xy ; p)dXy,

(1.20) g(&, x35p) =

1
Vo .
we note that ¢, can be eliminated from the considerations and we arrive at
two ordinary differential equations for 6§, and 6f,.

(1.21) [to (D* — ) + (1 — ) D¥]ity — i, Dty = O,
(D?— ud [l — @) D6gs — j& 00l =0.

Boundary conditions in the transform domain take the simple form:

(1.22) [6%; + 6Bale,=un =0,  [0f2+ 0Falx, =20 =O.
In (1.21) we have adopted the notations:

= 8 P o

= EC;’ kl <. —E—f, k2 T3d 'LT%"

m=Va+r, m=Va+a,

k3/2 2442
g4k3y2’ O 342’

The boundary value problem described by (1.21) and (1.22) constitutes the so—called
«natural stress boundary value problem» for such stress components as are pre-
scribed on the boundary.

" We also draw attention to the fact that second equation of (1.21) is the third
order equation with respect to x,, a circumstance which does not appear in dis-
placement treatment of the problem under consideration.. 3 it ¢ ;

(I):
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Clearly, the system (1.21) can be also used to solve general dynamic stress problem
in the strip region, provided arbitrary surface tractions are prescribed on the
boundary®.
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¢ We reduce problem (1.21) to the form:

i€1130, = D[tod> (D* — )+ (1 — @) 316 s
where
(D — ) (D* — ) 5, = 0;
6}, can be found from the relation:
E+ k35, = — (D*— o,

Streszczenie

O NAPREZENIOWYCH ROWNANIACH RUCHU W LINIOWEJ TERMOSPREZYSTOSCI

W pracy sformutowano warunki konieczne i dostateczne dla tensora naprezenia w liniowej, dyna-
micznej termosprezystosci przy zalozeniu niezaleznosci statych materiatowych i cieplnych od tempe-
ratury. Pewien przyktad redukcji naprezeniowego problemu dynamicznego do tzw. naturalnego
naprezeniowego zagadnienia brzegowego jest podany dla pasma tarczowego, poddanego nieusta-
lonemu polu temperatury.

Pesmome

OBb YPABHEHWAX IOBWJKEHWS B HAIIPSDKEHUSAX B JIMHEWHOM TEOPUU
TEPMOVIIPYT'OCTU

IIpuBoguTca opmyIupPOBKa HEOOXOAUMBIX M JIOCTATOUHBIX YCJIOBHM IS TEH30pa Hamps-
JKCHUH B JIMHEHHOHN, JMHAMHYECKOH TEPMOYIPYTOCTH, NPH IPE/NOJIOMKEHHH He3aBHCHMOCTH
TOCTOAHHBIX MaTepuana M TEPMUYECKUX IOCTOSHHBIX OT Temmeparypsel. JlaeTcsi mpumep cBe-
JICHUA [MHAMUYECKOH 3a/lauM B HANPMKEHHAX K TAK HASbIBAEMOM, €CTECTBEHHON KpaeBoik
3ajjave, Ui IOJIOChI IOJBEPIKEHHOW MEHCTBHIO HECTAIIMOHAPHOIO TEMIIEPATYPHOrO MOJIA.
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